amatos

Adaptive M esh Generator for Atmosphere
and Ocean Simulation

API Documentation Version 2.0.0
Jorn Behrens, 4/2003

Abstract

This document describes programming interface to amatos, the Adaptive Mesh Genera-
tor for Atmospheric and Oceanographic Simulations. This document does not describe the
techniques behind amatos, but is simply meant to document the features and methods amatos
provides to the user. This is a preliminary documentation, and will probably always remain
S0.

Title: amatos Documentation

Description: Documentation of the
application programming interface (APT)
for the adaptive mesh generator amatos

Version: 2.0.0 (pdfBETEX)

Date: July 13, 2007

Author: Jorn Behrens

E-Mail: behrens@ma.tum.de

Address: Technische Universitat Miinchen

Center for Mathematical Sciences (M3)
BoltzmannstraSSe 3
85747 Garching, Germany

Partly supported by the German :z/

Climate Research Program
DEKLIM

Contents
1 Introduction
2 How to use amatos

3 FEM support
3.1 Examples for the signatures

3.2 Registering variables

4 Conventions

5 Variables and Constants in the GRID Application Programming Interface

5.1 Mesh-Related Constants
5.2 Pysics-Related Constants

6 Routines in the GRID Application Programming Interface

6.1 Routines for mesh creation and termination

6.2 Routines for saving and restoring the mesh

6.3 Routines for data retrieval
6.4 Routines supporting FEM variables .
6.5 Routines for numerical calculation .
6.6 Routines for controlling the mesh . .
6.7 Routines for the dual mesh

6.8 Auxiliary Routines

7 Initial Triangulation

8 Installation and Testing
8.1 Directory Structure
8.2 Building Library and Test Driver . .
8.3 Running the Test Driver

8.4 Input Parameters for the Test Driver

A Copyright

B License

C Warranty

11

13
13
14
15
19
20
24
26
26

27

29
29
29
31
31

32

32

32

1 Introduction

Mesh generation is a complicated and often very problem specific task. Therefore, we do not pre-
tend to have found the ultimate grid generation tool so far. We developed an adaptive grid gener-
ator with specific applications in mind. Atmosphere and ocean circulation with semi-Lagrangian
advection schemes is the generic field of application for amatos.

The philosophy of amatos is to hide away all nontrivial tasks concerning mesh generation and
adaptation from the application programmer. The complete mesh generation process can be
controlled by approx. 20 Fortran 90 subroutines (in object oriented wording: methods). The
application programming interface (GRID API) provides additional variables, data structures and
constants to be used by the programmer.

amatos is implemented in Fortran 90 and the GRID API is a Fortran 90 Module. This choice has
been motivated by the field of application, amatos is meant for. Most theoretical oceanographers
and meteorologists know Fortran, whereas C or C++4 cannot be found very often. However, this
choice is not a restriction for the programmer, as most programming environments allow the call
of Fortran functions from C or C++.

amatos has been implemented in three different flavors. There is a spherical version (sometimes
referred to as samatos) and a parallelized version (not yet supported). There are slight differences
in the interface definitions of these three packages. Features corresponding to a certain package
are indicated in the text.

Acknowledgements

I would like to thank Natalja Rakowski for extensive code optimizations, the introduction of a
short triangulation file format, as well as reformulating the space-filling curve ordering which is first
documented and widely used in Version 2.0 of the package, and many more valuable improvements.
Matthias Léuter provided several bug fixes and the routine grid_coordgradient. Thomas Heinze
provided some methods for the spherical version and Armin Iske gave the thin plate spline radial
basis interpolation routines. Klaus Dethloff and Annette Rinke gave the inspiration to write such
a code. Wolfgang Hiller supported the early stages of development.

Part of this code was developed while being supported by the Bundesministerium fiir Bildung,
Wissenschaft, Forschung und Technologie (BMBF) under grant no. 07/VKV01/1. Other parts
have been developed within the framework of the Alfred-Wegener-Institute (AWI) “Programm
zur Forderung besonderer Forschungsthemen” under the title Anwendungen der Multiskalenmod-
ellierung mit adaptiven Finite-Elemente-Methoden. amatos is now maintained with support of
BMBF under grant no. 01 LD 0037 within the DEKLIM research program.

Gather | Vector
Numerical
Calculations
Scatter | Vector ‘

Grid
Manipulations

EEE]

Figure 1: Two phases of calculation with amatos. Numerical calculations in vectors (after gath-
ering data from mesh), and mesh manipulations (after scattering new values to mesh).

2 How to use amatos

amatos is a mesh generator for adaptive algorithms. There are two philosophies which seem to be
the key to the understanding of amatos:

1. Think of the adaptive algorithm as a two phase procedure: In the first
phase, the mesh is generated/adapted. Each mesh item keeps associated
data. In the second phase, numerical calculations are performed. To
achieve this, first gather all required data from mesh items into vectors,
perform the calculations on vectors (utilizing consecutive storage posi-
tions for efficient pipelined or vectorized execution), and finally scatter
the results back to mesh item storage positions. This is illustrated in
Figure 1.

2. Think of the program as a data-flow, with methods acting and manipu-
lating the data. A data structure (called grid_handle) represents a specific
instance of the mesh. Methods (routines in the GRID API) act on the
instance, manipulating it. Different methods can be applied to the mesh
more or less independently.

The GRID API provides routines that implement methods in both of the above circumstances.
Gathering (grid_getinfo) and scattering (grid_putinfo) accept the mesh handle without manipulating
the mesh topology. Other methods, like grid_adapt alter the topology.

When performing numerical calculations on data gathered from the mesh into vectors, there MUST
NOT be any change to the mesh topology, before scattering the results back to the mesh.

A new feature in Version 2.0 of amatos is the support of diverse kinds of finite elements. In order to
use user defined finite elements, the element’s characteristics have to be defined and implemented.
This task cannot be performed at runtime but has to be concluded before compiling the package.
There are two finite elements predefined in amatos, namely a linear and a quadratic Lagrange
element.

Once the library has been compiled and an application uses amatos, each variable in the application
has to be registered to a specific finite element type. A detailed documentation on finite element
support can be found in section 3.

3 FEM support

From version 2.0 amatos comes with a flexible support for finite elements. Two types are prede-
fined, a linear (unknowns defined in vertices) and a quadratic (unknowns defined in vertices and
edge centers) Lagrange element.

In order to provide a flexible interface to all kinds of finite elements, amatos uses a signature data
structure. The signature of a specific finite element contains the essential information of that type
of element:

e name, order, and total number of unknowns,
e number of data items on the element’s vertices,
e number and position of data on element’s edges,

e number and position of data within the element.

The exact definition of this data structure is provided in the next section. For defining a new
FEM type, the following steps have to be taken:

1. Edit module FEM_signature and define new FEM type in subroutine grid_signatureinit using
the the definitions of the default types as templates;

2. Edit module FEM_signature and add a corresponding basis function calculation to subroutine
grid_fembasis;
3. recompile amatos and install it in your favorite directory;

4. relink the application that uses the new FEM type with amatos.

This procedure involves alterations of amatos’ code and needs to become a little involved with
the structure of the sources. However, it is the author’s believe that code alterations of this kind
are not necessary very often. In any case, if users implement new element types, please send an
e-mail with the corresponding code fragments to Jorn Behrens (behrens@ma.tum.de), I will try
to include them in future versions on amatos.

3.1 Examples for the signatures

1. For a linear element with values in each vertex, the signature is zero everywhere, except for

e i_order=1.
e i_unknowns= 3.
e i_npoints= 1.

2. For a quadratic element with values in each vertex and in each edge center, the signature
has following values:

e i_order= 2.
e i_unknowns= 6.
e i_npoints= 1.

e i_gpoints= 1.
o r_gweights= (1/2,1/2).

This means, each nodal value is situated at position of the node (coordinates are known).
Each edge value can be calculated by the following formula:

(z,y) = p_edge%i_node(1) - r_gweights(1) + p_edge%i_node(2) - r_gweights(2)

3. For a cubic element with one value in each vertex, two values in each edge, and one value in
the element center, the signature has following values:

e i_order= 3.
e i_unknowns= 10.

i_npoints= 1.

e i_gpoints= 2.

e i_epoints= 1.

r_gweights= [(1/3,2/3),(2/3,1/3)].
r_eweights= (1/3,1/3,1/3).

3.2 Registering variables

In order to use different types of finite elements in an application, each variable that is used, has
to be registered with a specific FEM type. This has to be done before any mesh items are created.
The best point for registering variables is right after the call to grid_initialize.

Once a variable has been registered, the appropriate memory will be allocated at each unknown
position corresponding to that element type. The type and order of a finite element can be obtained
by a call to grid_femtypequery. The FEM type identifier corresponding to a registered variable is
returned by grid_femvarquery. For a detailed description of these functions, see section 6.

4 Conventions

There are not many conventions related to amatos. The few conventions are listed here. Variables
are named with a preceded character indicating the data type:

e c_ is a variable of type CHARACTER.

e i_ is a variable of type INTEGER.

e 1_is a variable of type LOGICAL.

e p_ is a variable of user declared type.

e r_is a variable of type REAL.

In the following sections, when giving the syntax, we denote by the attribute (opt) an optional
argument which can be omitted.

5 Variables and Constants in the GRID Application Pro-
gramming Interface

5.1 Mesh-Related Constants

’ GRID_timesteps (integer): ‘
Number of timesteps the grid can manage (allowed: 1,2,3). This value has to be predefined at
compile time (see file FEM_param.f, variable DEF_timesteps).

’GRID_dimension (integer): ‘
Number of spatial dimensions the grid elements can handle (allowed 2,3; predefined at compile
time).

| GRID_dimspherical (integer): |
Number of spatial dimensions in spherical geometry (allowed 2; predefined at compile time, only
available in samatos).

’ GRID_elementnodes (integer): ‘

Number of nodes per element (at current 3).

’ GRID_elementedges (integer): ‘

Number of edges per element (at current 3).

’GRID_eIementchiIdren (integer): ‘
Number of children of a refined element (2).

’GRID_edgenodes (integer): ‘
Number of nodes per edge (2).

’GRID_edgeeIements (integer): ‘
Number of adjacent elements per edge (2).

’GRID_edgechiIdren (integer): ‘
Number of children of a refined edge (2).

’ GRID_patchelements (integer): ‘

Number of elements in a node’s patch (at current 16, but this number depends on the initial
triangulation. Can be predefined at compile time: Variable DEF_ndpatch in FEM_param.f).

’ GRID_elementvalues (integer): ‘

Length of array storing the element stiffness matrix (at current 9, depending on element order.
Can be predefined at compile time: Variable DEF_evalsize in FEM_param. f).

’ GRID_nodevalues (integer): ‘

Length of array storing nodal values (at current 5, see below. Can be predefined at compile time:
Variable DEF_nvalsize in FEM_param. f).

’GRID_pIeasereﬁne (integer): ‘
Predefined value for marking elements for refinement.

’ GRID_pleasecoarse (integer): ‘
Predefined value for marking elements for coarsening.

’ GRID_loworder (integer): ‘
Predefined value for routine grid_coordvalue. This is for low order shape conserving interpolation.

’ GRID_highorder (integer): ‘

Predefined value for routine grid_coordvalue. This is for high order interpolation.

’ GRID_thinplate (integer): ‘
Predefined value for routine grid_coordvalue. This is for thin plate spline (radial basis) interpola-
tion.

’ GRID_ucomp (integer): ‘

Predefined value for retrieving nodal values. This is for the u-component of wind. N.B. from
version 2.0 this is for backward compatibility.

’ GRID_vcomp (integer): ‘
Predefined value for retrieving nodal values. This is for the v-component of wind. N.B. from
version 2.0 this is for backward compatibility.

’ GRID_wcomp (integer): ‘

Predefined value for retrieving nodal values. This is for the w-component of wind (only available
in samatos). N.B. from version 2.0 this is for backward compatibility.

’GR|D_phi (integer): ‘
Predefined value for retrieving nodal values. This is for the geopotential height ®. N.B. from
versiton 2.0 this is for backward compatibility.

’ GRID_zeta (integer): ‘
Predefined value for retrieving nodal values. This is for the vorticity (. N.B. from version 2.0
this is for backward compatibility.

’ GRID_tracer (integer): ‘

Predefined value for retrieving nodal values. This is for the tracer. N.B. from version 2.0 this is
for backward compatibility.

’ GRID_boundary (integer): ‘
Predefined value for retrieving the domain boundary polygonal line by grid_getpolyline.

’GRID_partition (integer): ‘
Predefined value for retrieving partition boundary polygonal line by grid_getpolyline (for the
parallel version only).

’GRID_boundedges (integer): ‘

Predefined value for retrieving the domain boundary polygonal line by grid_getpolyline. The real
boundary in terms of the boundary edges of the grid are returned.

’ i_time (integer): ‘
Tag for the current timestep.

’ i_timeplus (integer): ‘
Tag for the future timestep.

’ i_timeminus (integer): ‘

Tag for the past timestep (equals i_time in the 2-time case).

grid_handle (Type definition):

This is amatos’s main data structure, containing all relevant information on the mesh. It contains
the following components:

e i_timetag: value for current time tag integer

e i_etotal: total number of elements integer

e i_enumber: number of elements for this time integer

e i_enumfine: number of elements on finest level integer

e i_gtotal: total number of edges integer

e i_gnumber: number of edges for this time integer

e i_gnumfine: number of edges on finest level integer

e i_gnumboun: number of boundary edges integer

e i_ntotal: total number of nodes integer

e i_nnumber: number of nodes for this time integer

e i_maxlvl: maximum (finest) level of refinement integer
e i_minlvl: minimum (coarsest) level of refinement integer
o i_reflvlboun: finest predefined refinement level integer

e i_crslvlboun: coarsest refinement level (macro triangulation) integer

e i_unknowns: total number of unknowns integer, DIMENSION(i_femtypes),
where i_femtypes = grid_femtypes%i_numtypes.

| p_grid type (grid_handle) , DIMENSION(GRID.timesteps)

This is an instance of the grid data structure. p_grid will hold the above given data for the grid.

’ grid_param (Type definition):

This is amatos’s fundmental parameter data structure, containing different types of information.
It contains the following components:

e i_stringlength: length of character strings integer

e program_name: name of program character

e author_name: name of the author character

e author_affill: affiliation string for author character
e author_affil2: affiliation string for author character
e author_affil3: affiliation string for author character
e author_email: email address of author character

e version: version of amatos integer

e subversion: subversion integer

e patchversion: patch level integer

o datemonth: release date month integer

e dateyear: release date year integer

e join: input unit number (for redirection) integer

e ioout: output unit number (for redirection) integer

e iolog: log file unit number integer

10

’ GRID_parameters type (grid_param)

]

This is an instance of the parameter data structure. GRID_parameters will hold the above given
data.

| GRID_EPS (real):

Machine precision.

’grid_femsignatur (Type definition):

|

This data structure defines properties of different finite elements supported by amatos. It contains
the following components:

e c_name: name of finite element character
e i_order: discretization order of finite element integer

e i_unknowns: total number of unknowns per element integer,
this value corresponds to

GRID_elementnodes - i_npoints + GRID_elementedges - i_gpoints + i_epoints

e i_npoints: number of points per node integer

e i_gpoints: number of points per edge integer

e i_epoints: number of points per element integer

e r_gweights: weights for point position calculation at edges (barycentric coordinates) real

e r_eweights: weights for point position calculation at elements (barycentric coordinates) real

grid_femtypearr (Type definition):

|

This data structure contains all signatures for finite elements supported by amatos. It contains
the following components:

e i_numtypes: number of FEM types supported integer

e p_signatures: array of signatures for each type fem_signatur

’ GRID_femtypes (type (grid_femtypearr)):

Instance of grid_femtypearr.

’ GRID_SR (integer):

Single precision real KIND parameter.

’ GRID_DR (integer):

Double precision real KIND parameter.

’ GRID_SI (integer):

Single precision integer KIND parameter.

’ GRID_DI (integer):

Double precision integer KIND parameter.

5.2 Pysics-Related Constants

GRID_RADIUS (real):

Radius of the sphere [m] (only available in samatos).

11

| GRID_PI (real):
.

| GRID_SIDDAY (real):

Sideric day [s].

| GRID_GRAV (real):

Gravitational constant g [ms™2].

| GRID_OMEGA (real):

Angular velocity of the earth Q [s™!] (only available in samatos).

12

6 Routines in the GRID Application Programming Inter-
face

6.1 Routines for mesh creation and termination

’ grid_initialize:

Syntax: subroutine grid_initialize(INTEGER i_output, INTEGER i_logging)

Input: i_output (opt): Redirect standard output to unit i_output.
i_logging (opt): Invoke logging to file on unit i_logging.

Output: none

Description: This subroutine initializes amatos. It must be called before any other routines
in amatos and also before any use of variables provided by amatos.

grid_definegeometry:

Syntax: subroutine grid_definegeometry(INTEGER i_vertices, INTEGER
i_dimensions, INTEGER i_polylines, INTEGER i_polymask, REAL
r_vertexarr)

Input: i_vertices: Number of vertices in vertex array
i_dimensions (opt): Number of dimensions (default 2).
i_polylines (opt): Number of polygons for islands (default 1).

i_polymask (opt): Number of vertices for each polygon
(only valid, if i_polylines is also given).
r_vertexarr (opt): array with boundary polygon vertices

DIMENSION(i_dimension,i_vertices)
(default unit sqare).

Output: none

Description: This subroutine defines the computational domain. It must be called before
creating a mesh.

grid_createinitial:

Syntax: subroutine grid_createinitial(type(grid_handle) p_mesh, character
c_filename)

Input: p_mesh: grid handle data structure
c_filename (opt): file name for the initial grid definitions
(default “Triang.dat”).

Output: p_mesh: grid handle data structure

Description: This subroutine reads the initial grid from a file. It creates all necessary data
structures and refines globally and uniformly up to the coarsest user-given level.
It is called at program start.

grid_readinitial:

Syntax: subroutine grid_readinitial(type(grid_handle) p_mesh, character
c_filename)

Input: p_mesh: grid handle data structure
c_filename (opt): file name for the initial grid definitions
(default “amatos_save.save”).

13

Output: p_mesh: grid handle data structure

Description: This subroutine reads a complete grid from a save set.

grid_terminate:

Syntax: subroutine grid_terminate
Input: none
Output: none

Description: This subroutine destroys all mesh related data structures. It should be called at
program termination.

6.2 Routines for saving and restoring the mesh

grid_writesaveset:

Syntax: subroutine grid_writesaveset(CHARACTER (len=32) c_file,
type(grid_handle) p_handle)

Input: c_file: output file name.
p_mesh: grid handle data structure.

Output: none

Description: This subroutine writes the whole data structure of the mesh including corre-
sponding data to an unformatted file. This serves as a possibility to save (and
restore with grid_readsaveset) break points in a numerical simulation.

Note that some of the mesh information gets lost. For example, no information
about new mesh items can be preserved. Global internal mesh object identifiers
may also change after restoring the mesh.

grid_readsaveset:

Syntax: subroutine grid_readsaveset(CHARACTER (len=32) c_file,
type(grid_handle) p_handle)

Input: c_file: file name from which to read.
p_mesh: grid handle data structure.

Output: p_mesh: updated grid handle data structure

Description: This subroutine reads a previously saved mesh data structure from file c_file.
This serves as a possibility to save and restore break points in a numerical
simulation.

14

6.3 Routines for data retrieval

grid_getinfo:
Syntax: subroutine grid_getinfo(type(grid_handle) p_mesh, LOGICAL
1_finelevel, LOGICAL 1_relative, INTEGER i_arraypoint, INTE-
GER i_femtype, INTEGER i_newsdepth, INTEGER i_nlength, INTE-
GER i_glength, INTEGER i_elength, REAL r_dofcoordinates, REAL
r_dofsphericals, REAL r_dofvalues, INTEGER i_dofboundary, INTEGER
i_dofpatch, REAL r_nodecoordinates, REAL r_nodesphericals, REAL
r_nodevalues, INTEGER i_nodeboundary, INTEGER i_nodepatch, INTEGER
i_nodedofs, INTEGER i_edgedofs, INTEGER i_edgeinnerdofs, INTE-
GER i_edgenodes, INTEGER i_edgeboundary, REAL r_elementwidth,
INTEGER i_elementdofs, INTEGER i_elementinnerdofs, INTEGER
i_elementnodes, INTEGER i_elementstatus, INTEGER i_elementlevel,
INTEGER i_elementmark, INTEGER i_elementproc,)
Input: p_mesh: grid handle data structure
1_finelevel (opt): toggles to finelevel info
1_relative (opt): give index numbers relative to one
(i.e. consecutively numbered).
i_arraypoint (opt): Array of variable identifiers to
be retrieved, variables have to be registered
(preregistered GRID_ucomp, GRID_vcomp, GRID_phi,
GRID_zeta, GRID_tracer).
i_femtype (opt): type of FEM that is considered,
this is required input for r_dofcoordinates,
i_dofboundary, i_dofpatch, i_edgedofs,
i_edgeinnerdofs, i_elementdofs, i_elementinnerdofs,
r_dofsphericals.
i_newsdepth (opt): if given, only those grid items are collected that
have been created int the last i_newsdepth inner iterations.
Length values for the arrays are returned in i_nlength,
i_glength, and i_elength respectively.
Output: r_dofcoordinates (opt): array for coordinates of degrees of freedom (DOF)

DIMENSION(GRID_dimension,i_len), where

i_len = p_mesh%i_unknowns(i_femtype).
r_dofsphericals (opt): array for spherical coords. of DOFs

DIMENSION(GRID_dimension,i_len), where

i_len = p_mesh%i_unknowns(i_femtype) (samatos only).
r_dofvalues (opt): array for values at DOFs DIMENSION(i_point, i_len),

where i_len = p_mesh%i_unknowns(i_femtype);

i_point = size(i_arraypoint), pointers to registered

variables have to be given in i_arraypoint.

i_dofboundary (opt): boundary flags for all DOFs DIMENSION(i_len),
where i_len = p_mesh%i_unknowns(i_femtype).
i_dofpatch (opt): patch element indices for all DOFs

DIMENSION(GRID_patchelements,i_len), where
i_len = p_mesh%i_unknowns(i_femtype).

r_nodecoordinates (opt): array for the nodal coordinates
DIMENSION(GRID_dimension,i_len), where
i_len = p_mesh%i_nnumber.

15

Output
(contd.):

r_nodesphericals (opt):

i_nodeboundary (opt):

i_nodepatch (opt):

i_nodedofs (opt):

i_edgedofs (opt):

i_edgeinnerdofs (opt):

i_edgenodes (opt):

i_edgeboundary (opt):

r_elementwidth (opt):

i_elementdofs (opt):

i_elementinnerdofs (opt):

i_elementnodes (opt):

i_elementstatus (opt):

i_elementlevel (opt):

array for the nodal spherical coordinates
DIMENSION(GRID_dimspherical,i_len), where

i_len = p_mesh%i_nnumber (samatosonly).

boundary flags for all nodes

DIMENSION(i_len), where

i_len = p_mesh%i_nnumber.

patch element indices for all nodes
DIMENSION(GRID_patchelements,i_len), where
i_len = p_mesh%i_nnumber.

DOF indices corresponding to nodes

DIMENSION (i_npoints,i_len), where 1_npoints DOFs
per node, i_len = p_mesh%i_nnumber.

DOF indices corresponding to edges
DIMENSION(i_gpoints,i_len), where 1_gpoints DOFs
per edge, i_len = p_mesh%i_gnumber, or

i_len = p_mesh%i_gnumfine if 1_finelevel = .TRUE.
DOF indices corresponding exclusively to edges
DIMENSION(i_gpoints,i_len), where 1_gpoints DOFs per edge,
i_len = p_mesh%i_gnumber, or

i_len = p_mesh%i_gnumfine if 1_finelevel = .TRUE.
edge’s node indices

DIMENSION(GRID_edgenodes, i_len),

i_len = p_mesh%i_gnumber, or

i_len = p_mesh%i_gnumfine if 1_finelevel = .TRUE.
boundary flags for all edges

DIMENSION(i_len), i_len = p_mesh%i_gnumber, or
i_len = p_mesh%i_gnumfine if 1_finelevel = .TRUE.
mesh width element-wise

DIMENSION(i_len), i_len = p_mesh%i_enumber, or
i_len = p_mesh%i_enumfine if 1_finelevel = .TRUE.
DOF indices corresponding to elements
DIMENSION(i_epoints,i_len), where 1_epoints DOFs
per element, i_len = p_mesh%i_enumber, or

i_len = p_mesh%i_enumfine if 1_finelevel = .TRUE.
DOF indices corresponding exclusively to elements
DIMENSION(i_epoints,i_len), where 1_epoints DOFs per element,
i_len = p_mesh%i_enumber, or

i_len = p_mesh%i_enumfine if 1_finelevel = .TRUE.
element’s node indices
DIMENSION(GRID_elementenodes, i_len),

i_len = p_mesh%i_enumber, or

i_len = p_mesh%i_enumfine if 1_finelevel = .TRUE.
status of each element

DIMENSION(i_len), i_len = p_mesh%i_enumber, or
i_len = p_mesh%i_enumfine if 1_finelevel = .TRUE.
level of refinement of each element
DIMENSION(i_len), i_len = p_mesh%i_enumber, or
i_len = p_mesh%i_enumfine if 1_finelevel = .TRUE.

16

Output
(contd.):

Description:

i_elementmark (opt): marked edge in each element
DIMENSION(i_len), i_len = p_mesh%i_enumber, or
i_len = p_mesh%i_enumfine if 1_finelevel = .TRUE.
i_elementproc (opt): processor number for each element
DIMENSION(i_len), i_len = p_mesh%i_enumber, or
i_len = p_mesh%i_enumfine if 1_finelevel = .TRUE.
(parallel version only).

This subroutine, contained in module FEM_dataretrieve (exported), allows re-
trieval of information from the mesh. It can also be seen as the “gather” operation
of amatos. It gathers information from grid items like nodes, elements, etc. and
returns consecutively filled arrays.

The philosophy behind this procedure is that the numerical parts of the simu-
lation software work on consecutive arrays, while the mesh is built from (mesh)
objects.

In amatos version 1.2 grid_getinfo has substantially been revised. Now, any
number of information can be retrieved in one call to grid_getinfo. For exam-
ple, the following call would be allowed and give proper results (namely an array
of size dim x #mnodes with node coordinates and an array of length #elements
with elements status):

CALL grid_getinfo(p_mesh, 1_finelevel=.TRUE., &

r_nodecoordinates=realarr, i_elementstatus=intarr)

If one likes to retrieve values corresponding to DOFs of all elements, two ar-
rays have to be retrieved by grid_getinfo: The r_dofvalues-array, and the
i_elementdofs index array.

grid_putinfo:

Syntax:

Input:

subroutine grid_putinfo(type(grid_handle) p_mesh, LOGICAL
1_finelevel, INTEGER i_arraypoint, INTEGER i_newsdepth, REAL
r_dofvalues, REAL r_nodevalues, INTEGER i_elementstatus, INTEGER
i_elementproc,)

p_mesh: grid handle data structure

1_finelevel (opt): toggles to finelevel info

i_arraypoint (opt): Array of variable identifiers to
be retrieved, variables have to be registered
(preregistered GRID_ucomp, GRID_vcomp, GRID_phi,
GRID_zeta, GRID_tracer).

i_newsdepth (opt): if given, only those grid items are collected that

r_dofvalues (opt):

i_elementstatus (opt):

i_elementproc (opt):

have been created int the last i_newsdepth inner iterations.
Length values for the arrays are returned in i_nlength,
i_glength, and i_elength respectively.

array for values at DOFs DIMENSION(i_point, i_len),
where i_len = p_mesh%i_unknowns(i_femtype);
i_point = size(i_arraypoint), pointers to registered
variables have to be given in i_arraypoint.

status of each element

DIMENSION(i_len), i_len = p_mesh%i_enumber, or
i_len = p_mesh%i_enumfine if 1_finelevel = .TRUE.
processor number for each element

DIMENSION(i_len), i_len = p_mesh%i_enumber, or
i_len = p_mesh%i_enumfine if 1_finelevel = .TRUE.
(parallel version only).

17

Output:

Description:

none

This subroutine, contained in module FEM_dataretrieve (exported), allows to
update information on grid items. In contrast to grid_getinfo it can be seen
as the “scatter” operation of amatos. It scatters information from consecutive
arrays to all grid items like nodes, elements, etc.

CAUTION: The grid should never be changed between a call to grid_getinfo
and a corresponding call to grid_putinfo.

Like grid_getinfo, grid_putinfo has been changed substantially to reflect the
changes in the former routine. One can give any number of update arrays in one
single call.

By specifying i_scatterlength and i_scatterindex the user is able to only
update a specific set of grid items (see description of grid_getinfo).

grid_getiteminfo:

Syntax:

Input:

Output:

Description:

subroutine grid_getiteminfo(INTEGER i_itemindex, CHARACTER
c_itemtype, INTEGER i_arrlen, REAL r_values, REAL r_coordinates,
REAL r_sphericals INTEGER i_nodes, INTEGER i_edges, INTEGER
i_elements, INTEGER i_status, INTEGER i_time, INTEGER i_level,
INTEGER i_patch, INTEGER i_boundary, INTEGER i_femtype, REAL
r_dofcoordinates, REAL r_dofvalarray, INTEGER i_dofvalindex)

i_itemindex: index of mesh item
c_itemtype: 4-character string for item type,
allowed are ’elmt’, ’edge’, ’node’.
i_arrlen (opt): array length.
i_time (opt): time tag for the item status
(default i_futuretime).
i_femtype (opt) : FEM type for DOF retrieval.

i_dofvalindex (opt) : Array with indices (handles)
for registered variables at DOF positions.

r_values: values array.
r_coordinates: nodal coordinates (’node’ only).
r_sphericals: nodal spherical coordinates (*node’ only,
spherical version only).
i_nodes: node indices (’elmt’, ’edge’ only).
i_edges: edge indices (’elmt’ only).
i_elements: element indices (’edge’ only).
i_status: status (*elmt’, ’edge’ only).
i_level: level (Pelmt’, ’edge’ only).
i_boundary: boundary condition (’edge’ only).
i_patch: patch element indices (’node’ only),

i_arrlen returns no. of patch elements.
r_dofcoordinates : coordinates of corresponding DOF's.
r_dofvalues : values at DOFs for registered variables.

This subroutine, contained in module FEM_dataretrieve (exported), allows
to retrieve information from individual grid items. Like grid_getinfo and
grid_putinfo it operates only on the information corresponding to the given
array.

grid_getpolyline:

Syntax:

subroutine grid_getpolyline(type(grid_handle) p_mesh, INTEGER
i_linetype, INTEGER i_arrlen, INTEGER i_efflen, REAL r_vertices)

18

Input: p_mesh: grid handle data structure.
i_linetype: type of polygonal line.
i_arrlen: array length of r_vertices.

Output: i_efflen: fill length of array.
r_vertices: vertices of the polygon
DIMENSION(GRID_dimension, i_arrlen)

Description: This subroutine retrieves the polygonal lines defining the boundary. Either the
boundary defining line can be retrieved (i_linetype= GRID_boundary) or the
line made from the boundary edges (i_linetype= GRID_boundedges).

grid_findelmt:
Syntax: function grid_findelmt (REAL r_coord, type(grid_handle) p_ghand)
result (INTEGER i_found)
Input: r_coord: coordinate array.
DIMENSION(GRID_dimension)
p_ghand: grid handle data structure.
Output: i_found: index of found element.

Description: This function returns the index of an element containing coordinate r_coord.

6.4 Routines supporting FEM variables

grid_registerfemvar:

Syntax: function grid_registerfemvar (INTEGER i_femtype)
result (INTEGER i_varindex)

Input: i_femtype: Finite element type the variable is to
be associated with.

Output: i_varindex: index (handle) for newly registered variable.

Description: This function, contained in module FEM_signature, returns a handle for vari-
ables stored at the DOFs corresponding to the given FEM type (i_femtype).
Each variable that is used by an application has to be registered by this function
to a supported FEM type.
This function has to be called before any grid item is created, so it is best to
call it right after grid_initialize.
There are five (in samatos six) variables pre-registered by default. Handles to
these variables, registered to the default linear element type (see section 3), are
GRID_ucomp, GRID_vcomp, (GRID_wcomp only samatos), GRID_phi, GRID_zeta,
and GRID_tracer.

grid_femtypequery:

Syntax: subroutine grid_femtypequery(INTEGER i_femtype, INTEGER i_order,
CHARACTER c_description, INTEGER i_unknowns)

Input: i_femtype: Finite element type.

Output: i_order (opt): order of FEM.
c_description (opt) : description string of FEM.
i_unknowns (opt) : number of unknowns.

19

Description: Given a supported FEM type, this subroutine (contained in module
FEM_signature) returns information for that particular FEM type. Informa-
tion is returned for each argument specified.

grid_femvarquery:

Syntax: function grid_femvarquery (INTEGER i_varindex)
result (INTEGER i_femtype)

Input: i_varindex: index (handle) for registered variable.
Output: i_femtype: Finite element type the variable is registered.

Description: This function, contained in module FEM_signature, returns the FEM type for
a given variable index (handle).

6.5 Routines for numerical calculation

grid_coordvalue:

Syntax: function grid_coordvalue(type(grid_handle) p_mesh, REAL
r_coordinate, INTEGER i_interpolorder, INTEGER i_valpoint, INTEGER
i_index, INTEGER i_domaincheck)
result (REAL r_value)

Input: p_mesh: grid handle data structure.
r_coordinate: coordinate at which to evaluate
DIMENSION(GRID_dimension).
i_interpolorder: order of interpolation (allowed GRID_loworder
GRID_highorder, GRID_thinplate).
i_valpoint (opt): nodal value to be retrieved

(possible choices GRID_ucomp, GRID_vcomp,

GRID_phi, GRID_zeta, GRID_tracer).
i_domaincheck (opt): value of a previous call to

grid_domaincheck, this prevents a second call

within grid_coordvalue.

Output:
i_index (opt): if given, the index of the fine mesh
element containing r_coordinate is returned.
r_value: interpolated value.

Description: This function evaluates the finite element function corresponding to the tracer,
vorticity, geopot. height, wind components resp. at the position given by
r_coordinate.

Low order (bi-linear), high order (bi-cubic spline), and thin plate spline radial
basis function interpolations are provided.

In default operation, before calculating an interpolation, grid_coordvalue
checks if the requested coordinate lies within the computational domain, i.e.
no extrapolation is performed. If the user is sure that the coordinate value lies
within the domain, i_domaincheck can be specified in the same way as would
be by a call to grid_domaincheck.

grid_coordgradient:

Syntax: function grid_coordgradient(type(grid_handle) p_mesh, REAL
r_coordinate, INTEGER i_interpolorder, INTEGER i_valpoint, INTEGER
i_index, INTEGER i_domaincheck)
result (REAL r_value)

20

Input:

Output:

Description:

p_mesh: grid handle data structure.

r_coordinate: coordinate at which to evaluate
DIMENSION(GRID_dimension).

i_interpolorder: order of interpolation (allowed GRID_loworder
GRID_highorder, GRID_thinplate).

i_valpoint (opt): nodal value to be retrieved

(possible choices GRID_ucomp, GRID_vcomp,

GRID_phi, GRID_zeta, GRID_tracer).
i_domaincheck (opt): value of a previous call to

grid_domaincheck, this prevents a second call

within grid_coordgradient.

i_index (opt): if given, the index of the fine mesh
element containing r_coordinate is returned.
r_value: interpolated value.

This function evaluates the finite element function corresponding to the tracer,
vorticity, geopot. height, wind components resp. at the position given by
r_coordinate and calculates the gradient.

Only low order (bi-linear) gradient estimation is provided in release 1.2.

In default operation, before calculating an interpolation, grid_coordgradient
checks if the requested coordinate lies within the computational domain, i.e. no
extrapolation is performed. If the user is sure that the coordinate value lies
within the domain, i_domaincheck can be specified in the same way as would
be by a call to grid_domaincheck.

grid_integral:

Syntax:

Input:

Output:

Description:

function grid_integral(type(grid_handle) p_mesh, INTEGER
i_valpoint, REAL r_watermark, LOGICAL 1_lowbound)
result (REAL r_value)

p_mesh: grid handle data structure.
i_valpoint: nodal value to be retrieved.
(possible choices GRID_ucomp, GRID_vcomp,
GRID_phi, GRID_zeta, GRID_tracer).
r_watermark: watermark for integration (see below).
1_lowbound: lower/upper bound toggle (see below).

r_value: integral over the domain.

This calculates the (discrete) integral over the domain. It is possible to give
a certain watermark in order to integrate only over those regions, where the
integrated function is above (below) a certain level. r_watermark is used as a
lower bound, if 1_lowbound is true (default), otherwise it is used as an upper
bound.

grid_nodearea:

Syntax:

Input:

subroutine grid_nodearea(type(grid_handle) p_mesh, INTEGER i_siz,
REAL r_area, INTEGER i_selectlength, INTEGER i_selectindex)

p_mesh: grid handle data structure.
i_siz: array size.

i_selectlength (opt.): array size for selection array.
i_selectindex (opt.): index array for selected nodes.

21

Output: i_siz: effective array size.
r_area: array with nodal areas of influence
DIMENSION(i_siz).

Description: This subroutine calculates an area of influence for each node of the grid or —
if i_selectlength and i_selectindex is given — a selection of nodes (this is
calculated by the following formula:

1
a=- |71,
2

where a is the node area, S is the set of surrounding elements, and || denotes
the area of element 7).

grid_polygridintersect:

Syntax: subroutine grid_polygridintersect(type(grid_handle) p_handle,
INTEGER i_vert, REAL r_vertcoo, INTEGER i_len, INTEGER i_triang,
REAL r_area, LOGICAL 1_relative)

Input: p_handle: grid handle data structure.
i_vert: number of vertices of polygon.
r_vertcoo: array of vertex coordinates,

DIMENSION(GRID_dimension,i_vert).
1_relative (opt): toggle for absolute and relative indices.

Output: i_len: output array size.
i_triang: array with intersecting mesh elements,
DIMENSION(i_len), POINTER.
r_area (opt): array with intersection areas,
DIMENSION(i_len), POINTER.

Description: This subroutine, contained in module FEM_gridmanag (exported by Klaschka
09/2006), calculates the intersection of a given polygon with the mesh.
The polygon intersection algorithm is taken from Alan Murtas gpc library
(http://www.cs.man.ac.uk/aig/staff/alan/software/).

The (pointer) array i_triang will contain the indices of all elements that have
an intersection with the polygon. r_area (if given) will contain the intersection
area corresponding to each element in i_triang.

Both output arrays, i_triang and r_area, are allocated in
grid_polygridintersect, so they must be deallocated after use!
If1_relative is . TRUE. then a relative indexing scheme is returned in i_triang,
corresponding to the list of nodes retrieved by grid_getinfo.

grid_nodegradient:

Syntax: function grid_nodegradient (INTEGER i_node, INTEGER i_valpoint,
INTEGER i_time)
result (REAL r_deriv)

Input: i_node: node index.
i_valpoint (opt): nodal value to be retrieved
(possible choices GRID_ucomp, GRID_vcomp,
GRID_phi, GRID_zeta, GRID_tracer).
i_time (opt): time tag for the grid.

Output: r_deriv: first derivatives.
DIMENSION (GRID_dimension).

22

Description:

This subroutine, contained in module FEM_interpolation, calculates the nu-
merical gradient of a function defined at the nodes. The calculation is performed
by means of the normal vectors on the triangles (not available in pamatos).

grid_kartgeo:

Syntax:

Input:

Output:

Description:

function grid_kartgeo(REAL r_xyz)
result (REAL r_lamphi)

r_xyz: coordinate in Karthesian geometry.
DIMENSION(GRID_dimension).
r_lamphi: coordinate in geographical (A, ¢) geometry.

DIMENSION(GRID_dimspherical).

This function calculates the geographical coordinates from Karthesian coordi-
nates (only available in samatos).

grid_geokart:

Syntax:

Input:

Output:

Description:

function grid_geokart(REAL r_lamphi)
result (REAL r_xyz)

r_lamphi: coordinate in geographical (A, ¢) geometry.
DIMENSION(GRID_dimspherical).
r_xyz: coordinate in Karthesian geometry.

DIMENSION(GRID_dimension).

This function calculates the Karthesian coordinates from geographical coordi-
nates (only available in samatos).

23

grid_edgelength:

Syntax: subroutine grid_edgelength(type(grid_handle) p_mesh, REAL r_max,
REAL r_min, REAL r_edgelength)

Input: p_mesh: grid handle data structure.
Output: r_max (opt): maximum edge length.
r_min (opt): minimum edge length.

r_edgelength (opt): array of edge lengths.
DIMENSION(p_mesh%i_gnumfine).

Description: This subroutine returns edge lengths of all edges in the mesh.

6.6 Routines for controlling the mesh

grid_adapt:

Syntax: subroutine grid_adapt(type(grid_handle) p_mesh, LOGICAL 1_changed)
Input: p_mesh: grid handle data structure.

Output: p_mesh: grid handle data structure (changed).

1_changed: indicator for performed changes in mesh.

Description: This subroutine adapts the mesh according to given “flags”. The user has to
mark elements for refinement or coarsening, then grid_adapt changes the mesh
and cares for the admissibility, etc.

If 1_changed is true, then the grid has really changed. Otherwise no refinement
or coarsening has been performed.

grid_timeduplicate:

Syntax: subroutine grid_timeduplicate(type(grid_handle) p_gridi,
type(grid_handle) p_grid2)

Input: p_gridl: grid handle data structure (old grid).
p_grid2: grid handle data structure (empty new grid).

Output: p_grid2: grid handle data structure (new duplicate of old grid).

Description: This subroutine, contained in module FEM_gridgen (exported), duplicates a grid.
It takes a grid handle from an existing grid and duplicates it. All necessary grid
items for the new (duplicated) grid are created.

A call to this routine resets the new items counter (see grid_newitems).

grid_timetoggle:

Syntax: subroutine grid_timetoggle
Input: none
Output: none

Description: This subroutine toggles the time tags, i_time — i_futuretime, i_pasttime —
i_time, etc.

24

grid_setparameter:

Syntax: subroutine grid_setparameter (type(grid_handle) p_mesh, INTEGER
i_coarselevel, INTEGER i_finelevel)
Input: p_mesh: grid handle data structure.
i_coarselevel (opt): coarsest level of refinement (upper bound).
i_finelevel (opt): finest level of refinement (lower bound).
Output: p_mesh: grid handle data structure (changed).
Description: This subroutine is an interface to set the coarse and fine level parameters.
grid_sweep:
Syntax: subroutine grid_sweep
Input: none
Output: none
Description: This subroutine removes obsolete data items from the mesh. It should be called

from time to time during the execution (e.g. at the end of each time step).

grid_domaincheck:

Syntax:

Input:

Output:

Description:

function grid_domaincheck(type(grid_handle) p_mesh, REAL
r_coordinate)
result(i_inout)

p_mesh: grid handle data structure.
r_coordinate: coordinate to be checked.

i_inout: indicator for inside/outside.

This checks if a given coordinate is inside or outsinde of the computational
domain. It returns 0 (zero), if the coordinate is inside, -1 otherwise.

grid_boundintersect:

Syntax:

Input:

Output:

Description:

subroutine grid_boundintersect(type(grid_handle) p_mesh, REAL
r_start, REAL r_end, INTEGER i_info)
result (REAL r_intersect)

p_mesh: grid handle data structure.
r_start: coordinate of starting point.
r_end: coordinate of end point.

i_info (opt): information on intersection.
r_intersect: intersection coordinate.

This function calculates the intersection point of a line given by r_start and
r_end with the boundary. The calculated result can only be trusted, if i_info=
0.

25

6.7 Routines for the dual mesh

grid_createdual:

Syntax:

Input:

Output:

Description:

subroutine grid_createdual(type(grid_handle) p_mesh, INTEGER
i_duallen, INTEGER i_dualedge, REAL r_dualcoor, INTEGER
i_selectlength, INTEGER i_selectindex)

p_mesh: grid handle data structure.
i_selectlength (opt): length of selection array.
i_selectindex (opt): selection array for special nodes.
i_duallen: effective length of arrays.

i_dualedge: element-edge-array for the dual grid.
DIMENSION(2, GRID_nodepatch, i_origlen).
r_dualcoor: node coordinates for the dual grid.
DIMENSION (GRID_dimension, i_duallen).

This subroutine calculates information for the dual mesh. i_dualedge stores
two indices (start and endpoint of an edge) for each element in the dual mesh.
The dual mesh has as many elements as the original mesh’s nodes. r_dualcoor
stores the coordinates of the dual nodes, pointed at by i_dualedge.

Both arrays, r_dualcoor and i_dualedge are declared as Fortran 90 pointer
arrays.

grid_destroydual:

Syntax:

Input:

Output:

Description:

subroutine grid_destroydual (INTEGER i_duallen, INTEGER i_dualedge,
REAL r_dualcoor)

i_duallen: array length.
i_dualedge: element-edge array.
r_dualcoor: coordinate array.

none

This subroutine destroys the dual mesh, created by grid_createdual.

6.8 Auxiliary Routines

grid_error:
Syntax: subroutine grid_error(integer i_error, CHARACTER c_error)
Input: i_error (opt): numerical error code.
c_error (opt): character string error code.
Output: none
Description: This subroutine provides a simple error handling interface. It is provided for

convenience and ease of use and may be replaced by the user’s own (and probably
more sophisticated) error handling mechanism.

If i_error is given and less than 20, a warning message is printed and execution
will be continued. Otherwise, an error message is printed and the program is
stopped immediately.

26

7 Initial Triangulation

The initial triangulation — usually consisting of only a few elements — has to be given by the user.
This definition is handed over to amatos by a special input file. This section describes the input
file (by default Triang.dat).

The input file is constructed in a certain way: Keywords precede the values for specified input
parameters, Comments are marked by a ’!” or '#’ in the first column of a line. Each line contains
either a Keyword or a value, never both!

In amatos release 1.2 a new (alternative) file format has been introduced. It is shorter and much
more suitable for large initial triangulations. Instead of giving NODE_*, EDGE_%*, and ELEMENT_x*
keywords (and data), new keywords NODES_DESCRIPTION and ELEMENTS_DESCRIPTION are pro-

vided. Edges are calculated from the information given in these two descriptions.

The following table lists the allowed Keywords:

l Keyword ‘ Description ‘ Range of Values [Default]
GRID_DIMENSION Global parameter defining the grid’s | 1 to 3 [2]
space dimensions.
ELEMENT_VERTICES Global parameter defining the shape of | 3 to 4... [?]
elements. In 2D for example, 3 is tri-
angular mesh, 4 quadrilateral, etc.
NUMBER_OF_NODES This defines the total number of nodes | 1 to integer range [re-
in the inital mesh. quired]
NUMBER_OF_EDGES This defines the total number of edges | 1 to integer range [re-
in the inital mesh. quired]
NUMBER_OF_ELEMENTS This defines the total number of ele- | 1 to integer range [re-
ments in the inital mesh. quired]

DEF_INNERITEM

This global value defines the attribute
value for a grid item within the domain
(no boundary).

- integer range to 0 [re-
quired]

DEF_DIRICHLETBOUNDARY

This global value defines the attribute
value for a grid item on a Dirichlet
boundary section of the domain.

- integer range to 0 [re-
quired]

DEF_NEUMANNBOUNDARY

This global value defines the attribute
value for a grid item on a Neumann
boundary section of the domain. [Note:
periodic boundary conditions are de-
fined by the (positive) index number
of the corresponding periodic partner
item in the grid.]

- integer range to 0 [re-
quired]

NODE_INDEXNUMBER

Defines the (unique) index of a node.
This keyword occurs as often as the
value of NUMBER_OF_NODES indi-
cates.

1 to integer [re-

quired]

range

NODE_COORDINATES

Defines a block of GRID_DIMENSION

- real range to + real range

coordinates of the node. [required]
EDGE_INDEXNUMBER Defines the (unique) index of an edge. | 1 to integer range [re-
This keyword occurs as often as the | quired]
value of NUMBER_OF_EDGES indi-
cates.
EDGE_NODEINDICES Two indices of nodes (defined in the | 1 to integer range [re-
previous section) which span the edge. | quired]

27

Table continued

Keyword

Description

Range of Values [Default]

|

EDGE_ELEMENTINDICES

Two indices of elements adjacent to the
edge. 0 for one side if the edge is at a
(non-periodic) boundary.

1 to integer
quired]

range [re-

EDGE_BOUNDARYCONDITION

Defines the boundary condition ac-
cording to the previosly defined val-
ues for Dirichlet, Neumann, or periodic
boundary conditions.

- integer range to + integer
range [required)]

ELEMENT_INDEXNUMBER Defines the (unique) index of an | 1 to integer range [re-
element. This keyword occurs | quired]
as often as the value of NUM-
BER_OF_ELEMENTS indicates.
ELEMENT_NODEINDICES Three indices of nodes which span the | 1 to integer range [re-
element. quired]
ELEMENT_EDGEINDICES Three indices of edges which span the | 1 to integer range [re-
element. quired]
ELEMENT_MARKEDEDGE The local edge number that is marked | 1 to 3 [required]
for refinement (by bisection).
NODES_DESCRIPTION A list of rows with node descriptions for | 1 to integer range, - real

the short file format. The first entry is
the index, the other two the (floating
point) coordinates

range to + real range [alter-
native]

ELEMENTS_DESCRIPTION

A list of rows with the following inte-
ger values: index, node 1, node 2, node
3, marked edge, boundary condition for
edge 1, edge 2 , edge 3.

1 to integer range (first 4 en-
tries), 1 to 3, - integer range
to + integer range (last 3 en-
tries) [alternative]

A sample triangulation file can be found in the data subdirectory of the amatos distribution.

28

8 Installation and Testing

8.1 Directory Structure

This section describes installation of the amatos software package. amatos is distributed as a
source code tar-file for Unix systems. The installation and execution has been tested on IRIX,
Solaris, and Linux Systems. A current list of tested operating systems can be found in the doc
directory.

When unpacking the tar-archive with the following commands

unix> gunzip amatos2d.tar.gz
unix> tar xvf amatos2d.tar

a new directory is installed named amatos2d with a directory structure as given in Figure 2. In
data some example input files can be found, while doc contains this documentation (as the reader
might have realized by now...). Subdirectories compile contains OS-specific files for building the
executables and libraries for aix, irix, 1inux, and solaris. src contains the Fortran 90 sources.
include and lib contain the libraries and module files necessary for linking the executable.

The sources for amatos are all in subdirectory src/gridgen. In src/test we put the sources for
a test driver. src/system contains some system dependent routines, mainly for command line
input (we provide NAGWare, Posix compliant and Standard variants).

8.2 Building Library and Test Driver
As a preliminary step, build supportive libraries in the 3rdparty directory:

1. If required (i.e. no optimized LAPACK interface is provided on your machine), build the
“poor man’s LAPACK¢t't’, provided for convenience here:

unix> cd amatos2d/3rdparty/poor_mans_lapack/irix_mips
unix> make all

The files 1ibPMLAPACK.a and 1ibPMLAPACK.so should be available in 1ib/irix_mips after per-
forming this step.

Now, the user has to decide whether the spherical version of amatos is required or the pla-
nar version. There are two files called Makefile_*_amatos and Makefile_*_samatos for
building the planar and spherical versions resp. in the compile/Makefiles directory (a file
Makefile_*PML_amatos is provided for illustrative reasons, when linking with 1ibPMLAPACLK. so is
required). In Order to build the software library containing the programming interface to amatos
the following easy procedure has to be taken.

1. Change into the directory corresponding to your target machine’s OS, e.g.
unix> cd amatos2d/compile/irix_mips

2. Copy either Makefile_irix_amatos or Makefile_irix_samatos from the Makefiles direc-
tory to irix_mips, but as default there is already availabe Makefile for samatos in there.

3. Change location specific settings in the Makefile.

29

amatos2d
3rdpart

compile

data
doc
eval
include

1ib

Src

y
poor_mans_lapack

Makefiles
aix_power
irix_mips
linux_ia32
linux_ia64
solaris_sparc

Makefiles
aix_power
irix_mips
linux_ia32
linux_ia64
solaris_sparc

Makefiles
aix_power
irix_mips
linux_ia32
linux_ia64
solaris_sparc

gridgen

system
nag-£90
posix-£90
std-£90

test

timing

Figure 2: Directory structure.

30

4. Type

unix> make 1lib

If everything went right, there should be a files libamatos.a and libamatos.so in the
lib/irix_mips directory and some kind of GRID_api.mod in the include/irix_mips directory.

Now, in order to build the test driver (an executable program, called — guess — AMATOS) some
similarly easy steps have to be taken, while still residing in the compile/irix_mips directory.
Just type

unix> make AMATOS

(for the spherical case type make SAMATOS).

All the above steps (except for building the support libraries) can also be accomplished by just
one command:

unix> make all

8.3 Running the Test Driver

In order to test amatos the executable AMATOS, built in the previous subsection, has to be executed.
AMATOS can be called with several command line options. A complete list of these options can be
obtained by calling

unix> AMATOS -h

Before any useful output from AMATOS can be expected, however, some data files have to be copied
into the right position by typing

unix> make datacopy
After that, a useful output should be obtained by calling

unix> AMATOS -b -f Parameters.dat

8.4 Input Parameters for the Test Driver

Input for the executable AMATOS can be provided interactively or by means of a Parameter file
that can be read by the program in batch mode. The program requires five different pieces of
information:

1. The finest level of refinement (Keyword FINE_GRID_LEVEL).
The coarsest level of refinement (Keyword COARSE_GRID_LEVEL).
MATLAB output option (Keyword MATLAB_PLOTTING).

GMYV output option (Keyword GMV_FILE_PLOTTING).

A e

Filename for initial triangulation (Keyword TRIANG_FILE_NAME).

The file is constructed in the same way as the file defining the initial triangulation (see section 7).

31

A Copyright

COPYRIGHT NOTICE

This software is provided for non-commercial use only. See the
license conditions in file LICENCE and the warranty conditions in
file WARRANTY.

Copyright (c) 1997-2003 Jorn Behrens

B License

LICENSE

The use of amatos is hereby granted free of charge for an unlimited time,
provided the following rules are accepted and applied:

1. You may use or modify this code for your own non commercial and non
violent purposes.

2. The code may not be re-distributed without the consent of the authors.

3. The copyright notice and statement of authorship must appear in all
copies.

4. You accept the warranty conditions (see file WARRANTY).

5. In case you intend to use the code commercially, we oblige you
to sign an according licence agreement with the authors.

C Warranty

WARRANTY

This code has been tested up to a certain level. Defects and weaknesses,
which may be included in the code, do not establish any warranties by
the authors.

The authors do not make any warranty, express or implied, or assume any

liability or responsibility for the use, acquisition or application of
this software.

32

	Introduction
	How to use amatos
	FEM support
	Examples for the signatures
	Registering variables

	Conventions
	Variables and Constants in the GRID Application Programming Interface
	Mesh-Related Constants
	Pysics-Related Constants

	Routines in the GRID Application Programming Interface
	Routines for mesh creation and termination
	Routines for saving and restoring the mesh
	Routines for data retrieval
	Routines supporting FEM variables
	Routines for numerical calculation
	Routines for controlling the mesh
	Routines for the dual mesh
	Auxiliary Routines

	Initial Triangulation
	Installation and Testing
	Directory Structure
	Building Library and Test Driver
	Running the Test Driver
	Input Parameters for the Test Driver

	Copyright
	License
	Warranty

