diff --git a/_do_not_run.ipynb b/_do_not_run.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..9169bc9f7e096a111860ae07a10777e8c6d008f9
--- /dev/null
+++ b/_do_not_run.ipynb
@@ -0,0 +1,82 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "id": "50bf3101-58e9-46ec-97eb-98c64d6e1d73",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": ""
+    },
+    "tags": []
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "\n",
+       "<style>\n",
+       "  /* resize the input editor and output area */\n",
+       "  div.jp-Editor div { font-size: 25px; }\n",
+       "  div.jp-OutputArea-output pre { font-size: 25px; }\n",
+       "\n",
+       "  /* resize the markdown output */\n",
+       "  div.jp-MarkdownOutput { font-size: 25px; }\n",
+       "</style>\n"
+      ],
+      "text/plain": [
+       "<IPython.core.display.HTML object>"
+      ]
+     },
+     "execution_count": 1,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "import IPython.core.display\n",
+    "\n",
+    "IPython.core.display.HTML(\"\"\"\n",
+    "<style>\n",
+    "  /* resize the input editor and output area */\n",
+    "  div.jp-Editor div { font-size: 25px; }\n",
+    "  div.jp-OutputArea-output pre { font-size: 25px; }\n",
+    "\n",
+    "  /* resize the markdown output */\n",
+    "  div.jp-MarkdownOutput { font-size: 25px; }\n",
+    "</style>\n",
+    "\"\"\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "c54e9d21-73ae-44c5-a6e9-9ada1085bbf1",
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.11.9"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/exercises/09_data.txt b/exercises/09_data.txt
new file mode 100644
index 0000000000000000000000000000000000000000..b02dd532025610d95b369312348dd448704ee358
--- /dev/null
+++ b/exercises/09_data.txt
@@ -0,0 +1,306 @@
+5	0			
+2	1			
+0	1			
+0	3			
+0	1			
+2	2			
+4	0			
+2	1			
+1	3			
+1	1			
+1	1			
+1	1			
+1	1			
+0	1			
+1	2			
+3	2			
+0	4			
+1	2			
+3	0			
+1	4			
+0	1			
+2	1			
+3	0			
+0	0			
+3	0			
+3	1			
+2	1			
+0	3			
+2	1			
+0	1			
+2	4			
+2	1			
+0	0			
+6	2			
+1	3			
+2	1			
+3	1			
+2	0			
+0	0			
+0	1			
+1	0			
+0	3			
+0	1			
+3	0			
+2	0			
+5	1			
+2	0			
+0	1			
+2	1			
+2	0			
+1	0			
+4	2			
+1	3			
+1	1			
+1	1			
+1	1			
+1	3			
+1	3			
+0	3			
+0	3			
+0	1			
+1	1			
+2	2			
+2	3			
+2	0			
+1	0			
+3	0			
+2	2			
+2	0			
+0	3			
+5	1			
+1	1			
+0	2			
+2	1			
+4	2			
+0	0			
+0	2			
+0	1			
+1	5			
+0	1			
+1	0			
+0	1			
+4	0			
+4	3			
+1	2			
+1	3			
+0	1			
+0	1			
+5	1			
+3	1			
+0	0			
+1	1			
+3	3			
+1	3			
+0	0			
+1	4			
+2	1			
+2	0			
+1	2			
+1	3			
+4	0			
+1	2			
+0	0			
+0	0			
+2	0			
+1	1			
+3	2			
+1	2			
+3	1			
+2	1			
+6	0			
+1	3			
+0	0			
+0	4			
+1	3			
+1	0			
+3	1			
+0	0			
+2	0			
+1	3			
+4	0			
+3	3			
+2	1			
+4	1			
+1	1			
+0	0			
+3	1			
+3	1			
+1	3			
+0	1			
+2	1			
+1	1			
+1	2			
+1	1			
+0	1			
+0	0			
+2	0			
+1	1			
+1	1			
+1	0			
+0	4			
+5	0			
+2	1			
+4	1			
+1	0			
+0	1			
+2	1			
+2	1			
+0	1			
+0	1			
+3	1			
+2	0			
+3	2			
+1	2			
+1	3			
+1	2			
+0	0			
+1	1			
+1	0			
+1	3			
+3	2			
+1	3			
+1	0			
+2	0			
+3	0			
+0	0			
+3	3			
+0	2			
+2	1			
+1	1			
+2	0			
+5	1			
+3	0			
+2	4			
+0	1			
+0	0			
+2	1			
+0	0			
+1	1			
+0	2			
+2	1			
+1	0			
+2	0			
+2	0			
+1	1			
+1	2			
+3	1			
+3	2			
+1	3			
+0	0			
+3	1			
+1	0			
+1	1			
+3	2			
+2	0			
+0	1			
+1	1			
+0	1			
+0	1			
+0	2			
+1	1			
+1	2			
+2	2			
+2	2			
+3	1			
+3	1			
+0	0			
+0	4			
+1	1			
+1	2			
+3	2			
+1	4			
+4	0			
+2	0			
+2	1			
+0	2			
+2	1			
+5	1			
+3	3			
+4	1			
+1	1			
+1	3			
+0	0			
+0	0			
+2	0			
+2	0			
+3	0			
+0	2			
+1	0			
+3	3			
+2	2			
+5	0			
+1	0			
+2	0			
+2	1			
+1	1			
+1	3			
+1	1			
+0	1			
+2	1			
+1	0			
+0	2			
+1	3			
+3	0			
+1	0			
+0	3			
+4	2			
+3	0			
+2	2			
+3	2			
+5	0			
+1	1			
+2	2			
+1	2			
+1	3			
+1	2			
+0	2			
+1	0			
+1	1			
+2	2			
+0	2			
+2	0			
+3	0			
+1	0			
+3	2			
+2	1			
+2	0			
+3	0			
+3	0			
+2	3			
+2	1			
+0	2			
+0	3			
+4	1			
+0	2			
+2	2			
+2	3			
+3	1			
+2	1			
+0	0			
+1	1			
+5	1			
+1	3			
+2	1			
+0	0			
+1	2			
+2	1			
+6	2			
+1	1			
+2	1			
+0	1			
+1	3			
+1	0			
+0	0			
+1	0			
+1	2			
+1	2			
+3	1			
+2	2			
+3	2			
+3	1			
+1	3			
+1	0			
+1	4			
+0	0			
+0	2			
\ No newline at end of file
diff --git a/figures/08/Conditional_probability.pdf b/figures/08/Conditional_probability.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..bbe3afeb647dae8031a6ca9bc540728d897ba6ee
Binary files /dev/null and b/figures/08/Conditional_probability.pdf differ
diff --git a/figures/08/Summe-von-Gleichverteilungen3.pdf b/figures/08/Summe-von-Gleichverteilungen3.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..354f4ed1f505f9aef7c4851f444c753ab99d287d
Binary files /dev/null and b/figures/08/Summe-von-Gleichverteilungen3.pdf differ
diff --git a/figures/08/bayes.gif b/figures/08/bayes.gif
new file mode 100644
index 0000000000000000000000000000000000000000..688a6843c54313044d5cd8b1c36c0219c2008faa
Binary files /dev/null and b/figures/08/bayes.gif differ
diff --git a/figures/08/bayes.pdf b/figures/08/bayes.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..5399df6121ffebe9aaf9bba714d56bbeeb305a71
Binary files /dev/null and b/figures/08/bayes.pdf differ
diff --git a/figures/08/binom5.pdf b/figures/08/binom5.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..f7fb37d4a2771d47823a9896b3995a0e1d9262c9
Binary files /dev/null and b/figures/08/binom5.pdf differ
diff --git a/figures/08/binom5.png b/figures/08/binom5.png
new file mode 100644
index 0000000000000000000000000000000000000000..6023bb4bc74b2955503c9ec9d864a70c8152b550
Binary files /dev/null and b/figures/08/binom5.png differ
diff --git a/figures/08/bp.jpg b/figures/08/bp.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..71205abe9c14c31d881b3c49de53bc687cffaa11
Binary files /dev/null and b/figures/08/bp.jpg differ
diff --git a/figures/08/bpg.jpg b/figures/08/bpg.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..891422fd8bc45d5babe5829cba2aedec0743a0b1
Binary files /dev/null and b/figures/08/bpg.jpg differ
diff --git a/figures/08/gauss.jpg b/figures/08/gauss.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..90eb79d75f4126169e4c3e64458eafcfa1d0690d
Binary files /dev/null and b/figures/08/gauss.jpg differ
diff --git a/figures/08/lognormal_cdf.pdf b/figures/08/lognormal_cdf.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..55fa378660680752067e6484149aa150adb22517
Binary files /dev/null and b/figures/08/lognormal_cdf.pdf differ
diff --git a/figures/08/lognormal_cdf.png b/figures/08/lognormal_cdf.png
new file mode 100644
index 0000000000000000000000000000000000000000..9d3f29336a4af7c14aece97ca6b9a2df83d8bac4
Binary files /dev/null and b/figures/08/lognormal_cdf.png differ
diff --git a/figures/08/lognormal_pdf.jpg b/figures/08/lognormal_pdf.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..cfd99ebb1919d1261e26a8087b6289504eedb596
Binary files /dev/null and b/figures/08/lognormal_pdf.jpg differ
diff --git a/figures/08/lognormal_pdf.pdf b/figures/08/lognormal_pdf.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..91f26057d49be1482779b79b920d4ae0c55b8252
Binary files /dev/null and b/figures/08/lognormal_pdf.pdf differ
diff --git a/figures/08/lognormal_pdf.png b/figures/08/lognormal_pdf.png
new file mode 100644
index 0000000000000000000000000000000000000000..f028e55c9d0181e22da17aa8495faab573932717
Binary files /dev/null and b/figures/08/lognormal_pdf.png differ
diff --git a/figures/08/poisson70.pdf b/figures/08/poisson70.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..42fb5b3fd0f6ccd43480a398a7426f7db7bc68f6
Binary files /dev/null and b/figures/08/poisson70.pdf differ
diff --git a/figures/08/poisson70.png b/figures/08/poisson70.png
new file mode 100644
index 0000000000000000000000000000000000000000..12d0a1a358adb1661c31393d5e2f2dcae073831d
Binary files /dev/null and b/figures/08/poisson70.png differ
diff --git a/figures/09/Inverse_transform_sampling.png b/figures/09/Inverse_transform_sampling.png
new file mode 100644
index 0000000000000000000000000000000000000000..ef33570d74c101dfca0253c656d65f6021bb1b85
Binary files /dev/null and b/figures/09/Inverse_transform_sampling.png differ
diff --git a/figures/09/Normalverteilung.png b/figures/09/Normalverteilung.png
new file mode 100644
index 0000000000000000000000000000000000000000..3f7ceb2300a4f7b81c9570bb9e71ddf67db40f68
Binary files /dev/null and b/figures/09/Normalverteilung.png differ
diff --git a/figures/09/W.png b/figures/09/W.png
new file mode 100644
index 0000000000000000000000000000000000000000..26050358377a9d526657bb05a0ae26ce2e3e6cee
Binary files /dev/null and b/figures/09/W.png differ
diff --git a/figures/09/W_top.png b/figures/09/W_top.png
new file mode 100644
index 0000000000000000000000000000000000000000..f7874047117afe71263ae535ebd5d3be97458f9f
Binary files /dev/null and b/figures/09/W_top.png differ
diff --git a/figures/09/gleichtest.pdf b/figures/09/gleichtest.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..69d2b4c7b9e5cbfc791f634fb53fba393c89cb80
Binary files /dev/null and b/figures/09/gleichtest.pdf differ
diff --git a/figures/09/gleichtest.png b/figures/09/gleichtest.png
new file mode 100644
index 0000000000000000000000000000000000000000..6294db6d9be686399bb47d5d63de684ed9866604
Binary files /dev/null and b/figures/09/gleichtest.png differ
diff --git a/figures/09/koltest.pdf b/figures/09/koltest.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..1db0fc2f64a4761d2260c5b2cbba9ccdd5200191
Binary files /dev/null and b/figures/09/koltest.pdf differ
diff --git a/figures/09/koltest.png b/figures/09/koltest.png
new file mode 100644
index 0000000000000000000000000000000000000000..df1bfe9fdffe18e9914b6390f5e863cd18ebec5c
Binary files /dev/null and b/figures/09/koltest.png differ
diff --git a/figures/09/top.png b/figures/09/top.png
new file mode 100644
index 0000000000000000000000000000000000000000..16e05ab3b8be3e42ef28440bb15e069d4f1afc98
Binary files /dev/null and b/figures/09/top.png differ
diff --git a/figures/09/top_cond.png b/figures/09/top_cond.png
new file mode 100644
index 0000000000000000000000000000000000000000..5b5ce5972c0b53c3433a2c92d105a001ead9dd11
Binary files /dev/null and b/figures/09/top_cond.png differ
diff --git a/figures/10/Multivariate_Gaussian.png b/figures/10/Multivariate_Gaussian.png
new file mode 100644
index 0000000000000000000000000000000000000000..e07201b09e7a593928cdbeddea24b32d535bc27a
Binary files /dev/null and b/figures/10/Multivariate_Gaussian.png differ
diff --git a/figures/10/alpha_1d.png b/figures/10/alpha_1d.png
new file mode 100644
index 0000000000000000000000000000000000000000..244d331b1e6162e1abcfac724206fca35bc8b946
Binary files /dev/null and b/figures/10/alpha_1d.png differ
diff --git a/figures/10/chi2.pdf b/figures/10/chi2.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..f30028acca67ea667499ab15f27ca7b17b2e326e
Binary files /dev/null and b/figures/10/chi2.pdf differ
diff --git a/figures/10/chi2.png b/figures/10/chi2.png
new file mode 100644
index 0000000000000000000000000000000000000000..a9eee947b6824789ec5c63a796250e1e49a731e5
Binary files /dev/null and b/figures/10/chi2.png differ
diff --git a/figures/10/cms_strip.jpg b/figures/10/cms_strip.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..0833d9dda6a2bf22db4c0a8a9c5e7d36b7252a7c
Binary files /dev/null and b/figures/10/cms_strip.jpg differ
diff --git a/figures/10/error_elipse.png b/figures/10/error_elipse.png
new file mode 100644
index 0000000000000000000000000000000000000000..8ebeae11993cdb5c0ed79cf31239013866d4b51c
Binary files /dev/null and b/figures/10/error_elipse.png differ
diff --git a/figures/10/error_levels.png b/figures/10/error_levels.png
new file mode 100644
index 0000000000000000000000000000000000000000..1006a5bd82d69aeb24a298b93a5bd17987eb2331
Binary files /dev/null and b/figures/10/error_levels.png differ
diff --git a/figures/10/gauss_alpha.png b/figures/10/gauss_alpha.png
new file mode 100644
index 0000000000000000000000000000000000000000..59f7ce881288b9fd44ddf4aaefb5a677459a1153
Binary files /dev/null and b/figures/10/gauss_alpha.png differ
diff --git a/figures/10/strip.png b/figures/10/strip.png
new file mode 100644
index 0000000000000000000000000000000000000000..5f3b0a9e7ba48a88036b33289f8447d82fa52fa8
Binary files /dev/null and b/figures/10/strip.png differ
diff --git a/figures/11/like_a.png b/figures/11/like_a.png
new file mode 100644
index 0000000000000000000000000000000000000000..1701b64fb084cdbe4dc252de128779d8d27345e0
Binary files /dev/null and b/figures/11/like_a.png differ
diff --git a/figures/11/line.png b/figures/11/line.png
new file mode 100644
index 0000000000000000000000000000000000000000..6acba190929d11de27481a3c00ef278667180e8d
Binary files /dev/null and b/figures/11/line.png differ
diff --git a/figures/11/loglike_a.png b/figures/11/loglike_a.png
new file mode 100644
index 0000000000000000000000000000000000000000..426659b745594f35e18476e10365b32bf935e687
Binary files /dev/null and b/figures/11/loglike_a.png differ
diff --git a/figures/12/ht_bq_1jets_comb_5pc.pdf b/figures/12/ht_bq_1jets_comb_5pc.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..4547a58bae06ce90e635a516bcbe4c3e75fca43e
Binary files /dev/null and b/figures/12/ht_bq_1jets_comb_5pc.pdf differ
diff --git a/figures/12/ht_bq_1jets_comb_5pc.png b/figures/12/ht_bq_1jets_comb_5pc.png
new file mode 100644
index 0000000000000000000000000000000000000000..6f25921004af50701756c6eb7bbd1048d9978a8a
Binary files /dev/null and b/figures/12/ht_bq_1jets_comb_5pc.png differ
diff --git a/lecture_1.css b/lecture_1.css
new file mode 100644
index 0000000000000000000000000000000000000000..52f2af64ec3e4897c4e80e8e2671870f8fbee110
--- /dev/null
+++ b/lecture_1.css
@@ -0,0 +1,22 @@
+div.myheader {
+    position: absolute;
+    margin: 30px;
+    left: 8%;
+    background: blue;
+    font-size: xx-large;
+}
+
+div.myfooter {
+    position: absolute;
+    background: red;
+    font-size: 120%;
+    right: 10%;
+}
+
+.rise-enabled .cm-editor {
+    font-size: 2rem;
+}
+
+.rise-enabled .jp-OutputArea pre {
+    font-size: 2rem;
+}
diff --git a/lecture_1.ipynb b/lecture_1.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..0cae9aee134f224484fae52550552f74f6c7ed8a
--- /dev/null
+++ b/lecture_1.ipynb
@@ -0,0 +1,1122 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "id": "87c9d786-6d5c-4366-9701-5fa127727caa",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "# Lecture 1\n",
+    "\n",
+    "---\n",
+    "\n",
+    "## Basic statistics \n",
+    "\n",
+    "<br>\n",
+    "<br>\n",
+    "\n",
+    " Hartmut Stadie\n",
+    "\n",
+    "hartmut.stadie@uni-hamburg.de"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "9eae9199-9401-40c4-b212-ae57f1ccab38",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "## Samples\n",
+    "\n",
+    "---\n",
+    "\n",
+    "Sample: $X = x_1, x_2,\\dots, x_N$ \n",
+    "\n",
+    "Expectation value: $<f(x)> = \\frac{1}{N}\\sum_i^N f(x_i)$\n",
+    "\n",
+    "Describing samples: minimum, maximum, frequency/histogram, means, variance, standard deviation,....\n",
+    "\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "id": "b44e356e-b829-4879-b5fc-9706fffe873d",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "array([[5., 0.],\n",
+       "       [2., 1.],\n",
+       "       [0., 1.],\n",
+       "       [0., 3.],\n",
+       "       [0., 1.],\n",
+       "       [2., 2.],\n",
+       "       [4., 0.],\n",
+       "       [2., 1.],\n",
+       "       [1., 3.]])"
+      ]
+     },
+     "execution_count": 1,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "import numpy as np\n",
+    "data = np.loadtxt('./exercises/09_data.txt')\n",
+    "\n",
+    "data[0:9]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "id": "2aeacb94-518d-464f-a7ab-5282b97bc225",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "array([5., 2., 0., 0., 0., 2., 4., 2., 1.])"
+      ]
+     },
+     "execution_count": 3,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "data[0:9,0]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "id": "1829fa78-7d7b-4bac-9f24-5129dca63629",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "(np.float64(0.0), np.float64(6.0))"
+      ]
+     },
+     "execution_count": 2,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "np.min(data), np.max(data)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "caa12e94-0b72-4f60-875d-5a306a09d036",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "### Histograms"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "id": "871f915d-09f8-4d14-a79a-8fbd2f16ab75",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "(array([74., 96.,  0., 67.,  0., 43., 13.,  0., 10.,  3.]),\n",
+       " array([0. , 0.6, 1.2, 1.8, 2.4, 3. , 3.6, 4.2, 4.8, 5.4, 6. ]),\n",
+       " <BarContainer object of 10 artists>)"
+      ]
+     },
+     "execution_count": 4,
+     "metadata": {},
+     "output_type": "execute_result"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGfCAYAAAB1KinVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAb8ElEQVR4nO3dcazV9X3/8dct6BXcBYWWe7kT9Xa7ma2odeAIaMVOZXHU1JBVO2zL0i6BgFXKHMrY5rVZ71W6UrZSWa5LLK6h+oeyulgrN2uLbVhTRFkZbbSNVG5ab2660XtRyWXC9/eHP09+V2yF/g49n2sfj+SbcD7ne8998xXl6eece05TVVVVAAAK8rZGDwAA8HoCBQAojkABAIojUACA4ggUAKA4AgUAKI5AAQCKI1AAgOIIFACgOAIFACjO+BP9gieeeCKf+cxnsmvXrrzwwgvZunVrrrvuutr9VVXlzjvvTG9vbw4cOJA5c+bkC1/4Qs4///zaOSMjI7n11lvz5S9/OYcOHcqVV16Ze+65J2edddZxzXD06NH89Kc/TUtLS5qamk70twAANEBVVTl48GDa29vztre9yR5JdYK++tWvVmvXrq0eeuihKkm1devWUfffddddVUtLS/XQQw9Ve/bsqW644YZq+vTp1fDwcO2cZcuWVb/9279d9fX1VU899VT1vve9r7rooouqV1555bhm6O/vr5I4HA6Hw+EYg0d/f/+b/l3fVFW/+ocFNjU1jdpBqaoq7e3tWblyZW677bYkr+6WtLa25u67787SpUszNDSUd7zjHfmXf/mX3HDDDUmSn/70p5kxY0a++tWv5o/+6I/e9PsODQ3ljDPOSH9/fyZNmvSrjg8A/BoNDw9nxowZ+fnPf57Jkyf/0nNP+CmeX2bfvn0ZGBjIggULamvNzc2ZP39+duzYkaVLl2bXrl353//931HntLe3Z+bMmdmxY8cbBsrIyEhGRkZqtw8ePJgkmTRpkkABgDHmeF6eUdcXyQ4MDCRJWltbR623trbW7hsYGMipp56aM8888xee83o9PT2ZPHly7ZgxY0Y9xwYACnNSforn9WVUVdWb1tIvO2fNmjUZGhqqHf39/XWbFQAoT10Dpa2tLUmO2QkZHBys7aq0tbXl8OHDOXDgwC885/Wam5trT+d4WgcA3vrqGigdHR1pa2tLX19fbe3w4cPZvn175s2blySZNWtWTjnllFHnvPDCC/mv//qv2jkAwG+2E36R7Isvvpgf/ehHtdv79u3L7t27M2XKlJx99tlZuXJluru709nZmc7OznR3d2fixIlZvHhxkmTy5Mn5+Mc/nr/4i7/I1KlTM2XKlNx666254IILctVVV9XvdwYAjFknHChPPvlk3ve+99Vur1q1KkmyZMmSfPGLX8zq1atz6NChLF++vPZGbdu2bUtLS0vtaz73uc9l/Pjxuf7662tv1PbFL34x48aNq8NvCQAY6/6/3gelUYaHhzN58uQMDQ15PQoAjBEn8ve3z+IBAIojUACA4ggUAKA4AgUAKI5AAQCKI1AAgOIIFACgOCf8Rm2U6dzbH230CCfsx3ctbPQIABTKDgoAUByBAgAUR6AAAMURKABAcQQKAFAcgQIAFEegAADFESgAQHEECgBQHIECABRHoAAAxREoAEBxBAoAUByBAgAUR6AAAMURKABAcQQKAFAcgQIAFEegAADFESgAQHEECgBQHIECABRHoAAAxREoAEBxBAoAUByBAgAUR6AAAMURKABAcQQKAFAcgQIAFEegAADFESgAQHEECgBQHIECABRHoAAAxREoAEBxBAoAUByBAgAUR6AAAMURKABAcQQKAFAcgQIAFEegAADFESgAQHEECgBQHIECABRHoAAAxREoAEBxBAoAUByBAgAUR6AAAMURKABAcQQKAFAcgQIAFKfugfLKK6/kr//6r9PR0ZEJEybkne98Zz71qU/l6NGjtXOqqkpXV1fa29szYcKEXHHFFdm7d2+9RwEAxqi6B8rdd9+df/qnf8rGjRvzgx/8IOvWrctnPvOZfP7zn6+ds27duqxfvz4bN27Mzp0709bWlquvvjoHDx6s9zgAwBhU90D5j//4j3zgAx/IwoULc+655+ZP/uRPsmDBgjz55JNJXt092bBhQ9auXZtFixZl5syZ2bx5c15++eVs2bKl3uMAAGNQ3QPlsssuy7//+7/n2WefTZL853/+Z7797W/nj//4j5Mk+/bty8DAQBYsWFD7mubm5syfPz87dux4w8ccGRnJ8PDwqAMAeOsaX+8HvO222zI0NJTzzjsv48aNy5EjR/LpT386f/qnf5okGRgYSJK0traO+rrW1tY8//zzb/iYPT09ufPOO+s9KgBQqLrvoDz44IP50pe+lC1btuSpp57K5s2b8/d///fZvHnzqPOamppG3a6q6pi116xZsyZDQ0O1o7+/v95jAwAFqfsOyl/+5V/m9ttvz4c+9KEkyQUXXJDnn38+PT09WbJkSdra2pK8upMyffr02tcNDg4es6vymubm5jQ3N9d7VACgUHXfQXn55ZfztreNfthx48bVfsy4o6MjbW1t6evrq91/+PDhbN++PfPmzav3OADAGFT3HZRrr702n/70p3P22Wfn/PPPz9NPP53169fnYx/7WJJXn9pZuXJluru709nZmc7OznR3d2fixIlZvHhxvccBAMagugfK5z//+fzN3/xNli9fnsHBwbS3t2fp0qX527/929o5q1evzqFDh7J8+fIcOHAgc+bMybZt29LS0lLvcQCAMaipqqqq0UOcqOHh4UyePDlDQ0OZNGlSo8cpwrm3P9roEU7Yj+9a2OgRAPg1OpG/v30WDwBQHIECABRHoAAAxREoAEBxBAoAUByBAgAUR6AAAMURKABAcQQKAFAcgQIAFEegAADFESgAQHEECgBQHIECABRHoAAAxRnf6AFKdO7tjzZ6BAD4jWYHBQAojkABAIojUACA4ggUAKA4AgUAKI5AAQCKI1AAgOIIFACgOAIFACiOQAEAiiNQAIDiCBQAoDgCBQAojkABAIojUACA4ggUAKA4AgUAKI5AAQCKI1AAgOIIFACgOAIFACiOQAEAiiNQAIDiCBQAoDgCBQAozvhGDwBjybm3P9roEU7Yj+9a2OgRAE6YHRQAoDgCBQAojkABAIojUACA4ggUAKA4AgUAKI5AAQCKI1AAgOIIFACgOAIFACiOQAEAiiNQAIDiCBQAoDgCBQAojkABAIojUACA4ggUAKA4AgUAKI5AAQCKI1AAgOIIFACgOCclUH7yk5/kwx/+cKZOnZqJEyfmPe95T3bt2lW7v6qqdHV1pb29PRMmTMgVV1yRvXv3noxRAIAxqO6BcuDAgVx66aU55ZRT8thjj+X73/9+PvvZz+aMM86onbNu3bqsX78+GzduzM6dO9PW1parr746Bw8erPc4AMAYNL7eD3j33XdnxowZue+++2pr5557bu3XVVVlw4YNWbt2bRYtWpQk2bx5c1pbW7Nly5YsXbr0mMccGRnJyMhI7fbw8HC9xwYAClL3HZRHHnkks2fPzgc/+MFMmzYtF198ce69997a/fv27cvAwEAWLFhQW2tubs78+fOzY8eON3zMnp6eTJ48uXbMmDGj3mMDAAWpe6A899xz2bRpUzo7O/P4449n2bJlufnmm3P//fcnSQYGBpIkra2to76utbW1dt/rrVmzJkNDQ7Wjv7+/3mMDAAWp+1M8R48ezezZs9Pd3Z0kufjii7N3795s2rQpH/3oR2vnNTU1jfq6qqqOWXtNc3Nzmpub6z0qAFCouu+gTJ8+Pe9+97tHrb3rXe/K/v37kyRtbW1JcsxuyeDg4DG7KgDAb6a6B8qll16aZ555ZtTas88+m3POOSdJ0tHRkba2tvT19dXuP3z4cLZv35558+bVexwAYAyq+1M8n/zkJzNv3rx0d3fn+uuvz3e/+9309vamt7c3yatP7axcuTLd3d3p7OxMZ2dnuru7M3HixCxevLje4wAAY1DdA+WSSy7J1q1bs2bNmnzqU59KR0dHNmzYkBtvvLF2zurVq3Po0KEsX748Bw4cyJw5c7Jt27a0tLTUexwAYAyqe6Akyfvf//68//3v/4X3NzU1paurK11dXSfj2wMAY5zP4gEAiiNQAIDiCBQAoDgCBQAojkABAIojUACA4ggUAKA4AgUAKI5AAQCKI1AAgOIIFACgOAIFACiOQAEAiiNQAIDiCBQAoDgCBQAojkABAIojUACA4ggUAKA4AgUAKI5AAQCKI1AAgOIIFACgOAIFACiOQAEAiiNQAIDiCBQAoDgCBQAojkABAIojUACA4ggUAKA4AgUAKI5AAQCKI1AAgOIIFACgOAIFACiOQAEAiiNQAIDiCBQAoDgCBQAojkABAIojUACA4ggUAKA4AgUAKI5AAQCKI1AAgOIIFACgOAIFACiOQAEAiiNQAIDiCBQAoDgCBQAojkABAIojUACA4ggUAKA44xs9AMDrnXv7o40e4YT9+K6FjR4B3lLsoAAAxREoAEBxBAoAUByBAgAUR6AAAMURKABAcU56oPT09KSpqSkrV66srVVVla6urrS3t2fChAm54oorsnfv3pM9CgAwRpzUQNm5c2d6e3tz4YUXjlpft25d1q9fn40bN2bnzp1pa2vL1VdfnYMHD57McQCAMeKkBcqLL76YG2+8Mffee2/OPPPM2npVVdmwYUPWrl2bRYsWZebMmdm8eXNefvnlbNmy5WSNAwCMISctUFasWJGFCxfmqquuGrW+b9++DAwMZMGCBbW15ubmzJ8/Pzt27HjDxxoZGcnw8PCoAwB46zopb3X/wAMP5KmnnsrOnTuPuW9gYCBJ0traOmq9tbU1zz///Bs+Xk9PT+688876DwoAFKnuOyj9/f255ZZb8qUvfSmnnXbaLzyvqalp1O2qqo5Ze82aNWsyNDRUO/r7++s6MwBQlrrvoOzatSuDg4OZNWtWbe3IkSN54oknsnHjxjzzzDNJXt1JmT59eu2cwcHBY3ZVXtPc3Jzm5uZ6jwoAFKruOyhXXnll9uzZk927d9eO2bNn58Ybb8zu3bvzzne+M21tbenr66t9zeHDh7N9+/bMmzev3uMAAGNQ3XdQWlpaMnPmzFFrp59+eqZOnVpbX7lyZbq7u9PZ2ZnOzs50d3dn4sSJWbx4cb3HAQDGoJPyItk3s3r16hw6dCjLly/PgQMHMmfOnGzbti0tLS2NGAcAKMyvJVC++c1vjrrd1NSUrq6udHV1/Tq+PQAwxvgsHgCgOAIFACiOQAEAiiNQAIDiCBQAoDgCBQAojkABAIojUACA4ggUAKA4AgUAKI5AAQCKI1AAgOIIFACgOAIFACiOQAEAiiNQAIDiCBQAoDgCBQAojkABAIojUACA4ggUAKA4AgUAKI5AAQCKI1AAgOIIFACgOAIFACiOQAEAiiNQAIDiCBQAoDgCBQAojkABAIojUACA4ggUAKA4AgUAKI5AAQCKI1AAgOIIFACgOAIFACiOQAEAiiNQAIDiCBQAoDgCBQAojkABAIojUACA4ggUAKA4AgUAKI5AAQCKI1AAgOIIFACgOAIFACiOQAEAiiNQAIDiCBQAoDgCBQAojkABAIojUACA4ggUAKA4AgUAKI5AAQCKI1AAgOIIFACgOAIFAChO3QOlp6cnl1xySVpaWjJt2rRcd911eeaZZ0adU1VVurq60t7engkTJuSKK67I3r176z0KADBG1T1Qtm/fnhUrVuQ73/lO+vr68sorr2TBggV56aWXauesW7cu69evz8aNG7Nz5860tbXl6quvzsGDB+s9DgAwBo2v9wN+7WtfG3X7vvvuy7Rp07Jr165cfvnlqaoqGzZsyNq1a7No0aIkyebNm9Pa2potW7Zk6dKl9R4JABhjTvprUIaGhpIkU6ZMSZLs27cvAwMDWbBgQe2c5ubmzJ8/Pzt27HjDxxgZGcnw8PCoAwB46zqpgVJVVVatWpXLLrssM2fOTJIMDAwkSVpbW0ed29raWrvv9Xp6ejJ58uTaMWPGjJM5NgDQYCc1UG666aZ873vfy5e//OVj7mtqahp1u6qqY9Zes2bNmgwNDdWO/v7+kzIvAFCGur8G5TWf+MQn8sgjj+SJJ57IWWedVVtva2tL8upOyvTp02vrg4ODx+yqvKa5uTnNzc0na1QAoDB130Gpqio33XRTHn744Xz9619PR0fHqPs7OjrS1taWvr6+2trhw4ezffv2zJs3r97jAABjUN13UFasWJEtW7bkK1/5SlpaWmqvK5k8eXImTJiQpqamrFy5Mt3d3ens7ExnZ2e6u7szceLELF68uN7jAABjUN0DZdOmTUmSK664YtT6fffdlz/7sz9LkqxevTqHDh3K8uXLc+DAgcyZMyfbtm1LS0tLvccBAMagugdKVVVvek5TU1O6urrS1dVV728PALwF+CweAKA4AgUAKI5AAQCKI1AAgOIIFACgOAIFACiOQAEAiiNQAIDiCBQAoDgCBQAojkABAIojUACA4ggUAKA4AgUAKI5AAQCKI1AAgOIIFACgOAIFACiOQAEAijO+0QMAvBWce/ujjR7hV/LjuxY2egR4Q3ZQAIDiCBQAoDgCBQAojkABAIojUACA4ggUAKA4AgUAKI5AAQCKI1AAgOIIFACgON7qHoAxZSx+rICPFDhxdlAAgOIIFACgOAIFACiOQAEAiiNQAIDiCBQAoDgCBQAojkABAIojUACA4ggUAKA4AgUAKI5AAQCKI1AAgOIIFACgOAIFACiOQAEAiiNQAIDiCBQAoDgCBQAojkABAIojUACA4ggUAKA4AgUAKI5AAQCKM77RAwDAW925tz/a6BFO2I/vWtjQ728HBQAojkABAIojUACA4ggUAKA4AgUAKI5AAQCKI1AAgOI0NFDuueeedHR05LTTTsusWbPyrW99q5HjAACFaFigPPjgg1m5cmXWrl2bp59+Ou9973tzzTXXZP/+/Y0aCQAoRMPeSXb9+vX5+Mc/nj//8z9PkmzYsCGPP/54Nm3alJ6enlHnjoyMZGRkpHZ7aGgoSTI8PHxSZjs68vJJeVxGO1n//E6msfhnw3Xml/Hng1/kZPzZeO0xq6p685OrBhgZGanGjRtXPfzww6PWb7755uryyy8/5vw77rijSuJwOBwOh+MtcPT3979pKzRkB+VnP/tZjhw5ktbW1lHrra2tGRgYOOb8NWvWZNWqVbXbR48ezf/8z/9k6tSpaWpqqutsw8PDmTFjRvr7+zNp0qS6PvZbjWt1/Fyr4+daHT/X6sS4XsfvZF2rqqpy8ODBtLe3v+m5Df2wwNfHRVVVbxgczc3NaW5uHrV2xhlnnMzRMmnSJH+Aj5Nrdfxcq+PnWh0/1+rEuF7H72Rcq8mTJx/XeQ15kezb3/72jBs37pjdksHBwWN2VQCA3zwNCZRTTz01s2bNSl9f36j1vr6+zJs3rxEjAQAFadhTPKtWrcpHPvKRzJ49O3Pnzk1vb2/279+fZcuWNWqkJK8+nXTHHXcc85QSx3Ktjp9rdfxcq+PnWp0Y1+v4lXCtmqrqeH7W5+S45557sm7durzwwguZOXNmPve5z+Xyyy9v1DgAQCEaGigAAG/EZ/EAAMURKABAcQQKAFAcgQIAFEeg/D/uueeedHR05LTTTsusWbPyrW99q9EjFemJJ57Itddem/b29jQ1NeVf//VfGz1SsXp6enLJJZekpaUl06ZNy3XXXZdnnnmm0WMVadOmTbnwwgtr71w5d+7cPPbYY40ea0zo6elJU1NTVq5c2ehRitPV1ZWmpqZRR1tbW6PHKtZPfvKTfPjDH87UqVMzceLEvOc978muXbsaMotA+b8efPDBrFy5MmvXrs3TTz+d9773vbnmmmuyf//+Ro9WnJdeeikXXXRRNm7c2OhRird9+/asWLEi3/nOd9LX15dXXnklCxYsyEsvvdTo0Ypz1lln5a677sqTTz6ZJ598Mn/4h3+YD3zgA9m7d2+jRyvazp0709vbmwsvvLDRoxTr/PPPzwsvvFA79uzZ0+iRinTgwIFceumlOeWUU/LYY4/l+9//fj772c+e9I+W+YXq8OHEbwl/8Ad/UC1btmzU2nnnnVfdfvvtDZpobEhSbd26tdFjjBmDg4NVkmr79u2NHmVMOPPMM6t//ud/bvQYxTp48GDV2dlZ9fX1VfPnz69uueWWRo9UnDvuuKO66KKLGj3GmHDbbbdVl112WaPHqLGDkuTw4cPZtWtXFixYMGp9wYIF2bFjR4Om4q1oaGgoSTJlypQGT1K2I0eO5IEHHshLL72UuXPnNnqcYq1YsSILFy7MVVdd1ehRivbDH/4w7e3t6ejoyIc+9KE899xzjR6pSI888khmz56dD37wg5k2bVouvvji3HvvvQ2bR6Ak+dnPfpYjR44c80GFra2tx3ygIfyqqqrKqlWrctlll2XmzJmNHqdIe/bsyW/91m+lubk5y5Yty9atW/Pud7+70WMV6YEHHshTTz2Vnp6eRo9StDlz5uT+++/P448/nnvvvTcDAwOZN29e/vu//7vRoxXnueeey6ZNm9LZ2ZnHH388y5Yty80335z777+/IfM07LN4StTU1DTqdlVVx6zBr+qmm27K9773vXz7299u9CjF+r3f+73s3r07P//5z/PQQw9lyZIl2b59u0h5nf7+/txyyy3Ztm1bTjvttEaPU7Rrrrmm9usLLrggc+fOze/8zu9k8+bNWbVqVQMnK8/Ro0cze/bsdHd3J0kuvvji7N27N5s2bcpHP/rRX/s8dlCSvP3tb8+4ceOO2S0ZHBw8ZlcFfhWf+MQn8sgjj+Qb3/hGzjrrrEaPU6xTTz01v/u7v5vZs2enp6cnF110Uf7hH/6h0WMVZ9euXRkcHMysWbMyfvz4jB8/Ptu3b88//uM/Zvz48Tly5EijRyzW6aefngsuuCA//OEPGz1KcaZPn37M/wy8613vatgPiwiUvPofxVmzZqWvr2/Uel9fX+bNm9egqXgrqKoqN910Ux5++OF8/etfT0dHR6NHGlOqqsrIyEijxyjOlVdemT179mT37t21Y/bs2bnxxhuze/fujBs3rtEjFmtkZCQ/+MEPMn369EaPUpxLL730mLdBePbZZ3POOec0ZB5P8fxfq1atykc+8pHMnj07c+fOTW9vb/bv359ly5Y1erTivPjii/nRj35Uu71v377s3r07U6ZMydlnn93AycqzYsWKbNmyJV/5ylfS0tJS26WbPHlyJkyY0ODpyvJXf/VXueaaazJjxowcPHgwDzzwQL75zW/ma1/7WqNHK05LS8sxr2M6/fTTM3XqVK9vep1bb7011157bc4+++wMDg7m7/7u7zI8PJwlS5Y0erTifPKTn8y8efPS3d2d66+/Pt/97nfT29ub3t7exgzU2B8iKssXvvCF6pxzzqlOPfXU6vd///f9KOgv8I1vfKNKcsyxZMmSRo9WnDe6Tkmq++67r9GjFedjH/tY7d+/d7zjHdWVV15Zbdu2rdFjjRl+zPiN3XDDDdX06dOrU045pWpvb68WLVpU7d27t9FjFevf/u3fqpkzZ1bNzc3VeeedV/X29jZslqaqqqrGpBEAwBvzGhQAoDgCBQAojkABAIojUACA4ggUAKA4AgUAKI5AAQCKI1AAgOIIFACgOAIFACiOQAEAivN/ANfiin/YLfheAAAAAElFTkSuQmCC",
+      "text/plain": [
+       "<Figure size 640x480 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "import matplotlib.pyplot as plt\n",
+    "\n",
+    "plt.hist(data[:, 0])"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "id": "f8263279-48b5-4421-be05-604ddbfd8d6f",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "Text(0.5, 0, 'k')"
+      ]
+     },
+     "execution_count": 5,
+     "metadata": {},
+     "output_type": "execute_result"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAikAAAGzCAYAAADqhoemAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAdCElEQVR4nO3df3DX9X3A8VcKEsGFKFQSMqOmXVqt+KtgOaIddGp2jnp63KodtmXXbgcHWlPmEMY2ozcTpZOxlcou7o7CehT/sEx39Qe5aWMd6xWjrIz2tD2p5KxZbh1NULkw4bM/en5vMXSF+k2/r9jH4+5zx/fz/Xw/eeVzejx5f39VFUVRBABAMu+p9AAAAMcjUgCAlEQKAJCSSAEAUhIpAEBKIgUASEmkAAApiRQAICWRAgCkJFIAgJQmnuwDnn766fjiF78Yvb298eqrr8aOHTvi+uuvL91fFEXceeed0dXVFQcPHoy5c+fGl7/85bjgggtKxwwPD8dtt90WX/va1+Lw4cNx5ZVXxv333x9nnXXWCc1w7Nix+PGPfxw1NTVRVVV1sr8CAFABRVHEoUOHoqGhId7znhNYJylO0qOPPlqsXbu2eOihh4qIKHbs2DHi/nvuuaeoqakpHnrooWLv3r3FjTfeWMycObMYGhoqHbNs2bLiN3/zN4vu7u7iueeeKz72sY8VF198cfHmm2+e0Ax9fX1FRNhsNpvNZhuHW19f3wn9fV9VFL/8FwxWVVWNWEkpiiIaGhqira0tbr/99oj42apJXV1d3HvvvbF06dIYHByMM888M/7xH/8xbrzxxoiI+PGPfxyNjY3x6KOPxu/+7u/+wp87ODgYp59+evT19cXUqVN/2fEBgF+hoaGhaGxsjJ/+9KdRW1v7C48/6ad7/j/79++P/v7+aG1tLe2rrq6O+fPnx65du2Lp0qXR29sb//M//zPimIaGhpg1a1bs2rXruJEyPDwcw8PDpduHDh2KiIipU6eKFAAYZ070pRplfeFsf39/RETU1dWN2F9XV1e6r7+/PyZNmhRnnHHGzz3m7To7O6O2tra0NTY2lnNsACChMXl3z9sLqSiKX1hN/98xa9asicHBwdLW19dXtlkBgJzKGin19fUREaNWRAYGBkqrK/X19XHkyJE4ePDgzz3m7aqrq0tP7XiKBwB+PZQ1UpqamqK+vj66u7tL+44cORI9PT3R0tISERGzZ8+OU045ZcQxr776avzHf/xH6RgAgJN+4exrr70WP/zhD0u39+/fH3v27Ilp06bF2WefHW1tbdHR0RHNzc3R3NwcHR0dMWXKlFi8eHFERNTW1sbnPve5+JM/+ZOYPn16TJs2LW677ba48MIL46qrrirfbwYAjGsnHSnPPvtsfOxjHyvdXrlyZURELFmyJL7yla/EqlWr4vDhw7F8+fLSh7nt3LkzampqSo/5m7/5m5g4cWLccMMNpQ9z+8pXvhITJkwow68EALwbvKPPSamUoaGhqK2tjcHBQa9PAYBx4mT//vbdPQBASiIFAEhJpAAAKYkUACAlkQIApCRSAICURAoAkJJIAQBSOulPnIX/69zV36j0CMf1o3sWVnoEAN4hKykAQEoiBQBISaQAACmJFAAgJZECAKQkUgCAlEQKAJCSSAEAUhIpAEBKIgUASEmkAAApiRQAICWRAgCkJFIAgJRECgCQkkgBAFISKQBASiIFAEhJpAAAKYkUACAlkQIApCRSAICURAoAkJJIAQBSEikAQEoiBQBISaQAACmJFAAgJZECAKQkUgCAlEQKAJCSSAEAUhIpAEBKIgUASEmkAAApiRQAICWRAgCkJFIAgJRECgCQkkgBAFISKQBASiIFAEhJpAAAKYkUACAlkQIApCRSAICURAoAkJJIAQBSEikAQEoiBQBISaQAACmJFAAgJZECAKRU9kh5880348///M+jqakpJk+eHO973/virrvuimPHjpWOKYoi2tvbo6GhISZPnhwLFiyIffv2lXsUAGAcK3uk3HvvvfH3f//3sXHjxvj+978f69atiy9+8YvxpS99qXTMunXrYv369bFx48bYvXt31NfXx9VXXx2HDh0q9zgAwDhV9kj5t3/7t7juuuti4cKFce6558bv//7vR2trazz77LMR8bNVlA0bNsTatWtj0aJFMWvWrNiyZUu88cYbsW3btnKPAwCMU2WPlCuuuCL+5V/+JV588cWIiPj3f//3eOaZZ+L3fu/3IiJi//790d/fH62traXHVFdXx/z582PXrl3HPefw8HAMDQ2N2ACAd7eJ5T7h7bffHoODg3HeeefFhAkT4ujRo3H33XfHH/zBH0RERH9/f0RE1NXVjXhcXV1dvPzyy8c9Z2dnZ9x5553lHhUASKzsKykPPvhgfPWrX41t27bFc889F1u2bIm//uu/ji1btow4rqqqasTtoihG7XvLmjVrYnBwsLT19fWVe2wAIJmyr6T86Z/+aaxevTo++clPRkTEhRdeGC+//HJ0dnbGkiVLor6+PiJ+tqIyc+bM0uMGBgZGra68pbq6Oqqrq8s9KgCQWNlXUt544414z3tGnnbChAmltyA3NTVFfX19dHd3l+4/cuRI9PT0REtLS7nHAQDGqbKvpFx77bVx9913x9lnnx0XXHBBPP/887F+/fr47Gc/GxE/e5qnra0tOjo6orm5OZqbm6OjoyOmTJkSixcvLvc4AMA4VfZI+dKXvhR/8Rd/EcuXL4+BgYFoaGiIpUuXxl/+5V+Wjlm1alUcPnw4li9fHgcPHoy5c+fGzp07o6amptzjAADjVFVRFEWlhzhZQ0NDUVtbG4ODgzF16tRKj/Nr7dzV36j0CMf1o3sWVnoEAN7mZP/+9t09AEBKIgUASEmkAAApiRQAICWRAgCkJFIAgJRECgCQkkgBAFISKQBASiIFAEhJpAAAKYkUACAlkQIApCRSAICURAoAkNLESg+Q0bmrv1HpEUb50T0LKz0CAPxKWUkBAFISKQBASiIFAEhJpAAAKYkUACAlkQIApCRSAICURAoAkJJIAQBSEikAQEoiBQBISaQAACmJFAAgJZECAKQkUgCAlEQKAJCSSAEAUhIpAEBKIgUASEmkAAApiRQAICWRAgCkJFIAgJRECgCQkkgBAFKaWOkB4NfFuau/UekRjutH9yys9AgAx2UlBQBISaQAACmJFAAgJZECAKQkUgCAlEQKAJCSSAEAUhIpAEBKIgUASEmkAAApiRQAICWRAgCkJFIAgJRECgCQkkgBAFISKQBASiIFAEhJpAAAKYkUACAlkQIApCRSAICUxiRSXnnllfjUpz4V06dPjylTpsQll1wSvb29pfuLooj29vZoaGiIyZMnx4IFC2Lfvn1jMQoAME6VPVIOHjwYl19+eZxyyinx2GOPxfe+972477774vTTTy8ds27duli/fn1s3Lgxdu/eHfX19XH11VfHoUOHyj0OADBOTSz3Ce+9995obGyMzZs3l/ade+65pT8XRREbNmyItWvXxqJFiyIiYsuWLVFXVxfbtm2LpUuXlnskAGAcKvtKyiOPPBJz5syJT3ziEzFjxoy49NJL44EHHijdv3///ujv74/W1tbSvurq6pg/f37s2rXruOccHh6OoaGhERsA8O5W9kh56aWXYtOmTdHc3BxPPPFELFu2LD7/+c/H1q1bIyKiv78/IiLq6upGPK6urq5039t1dnZGbW1taWtsbCz32ABAMmWPlGPHjsWHP/zh6OjoiEsvvTSWLl0af/zHfxybNm0acVxVVdWI20VRjNr3ljVr1sTg4GBp6+vrK/fYAEAyZY+UmTNnxoc+9KER+84///w4cOBARETU19dHRIxaNRkYGBi1uvKW6urqmDp16ogNAHh3K3ukXH755fHCCy+M2Pfiiy/GOeecExERTU1NUV9fH93d3aX7jxw5Ej09PdHS0lLucQCAcars7+75whe+EC0tLdHR0RE33HBDfOc734murq7o6uqKiJ89zdPW1hYdHR3R3Nwczc3N0dHREVOmTInFixeXexwAYJwqe6RcdtllsWPHjlizZk3cdddd0dTUFBs2bIibbrqpdMyqVavi8OHDsXz58jh48GDMnTs3du7cGTU1NeUeBwAYp8oeKRERH//4x+PjH//4z72/qqoq2tvbo729fSx+PADwLuC7ewCAlEQKAJCSSAEAUhIpAEBKIgUASEmkAAApiRQAICWRAgCkJFIAgJRECgCQkkgBAFISKQBASiIFAEhJpAAAKYkUACAlkQIApCRSAICURAoAkJJIAQBSEikAQEoiBQBISaQAACmJFAAgJZECAKQkUgCAlEQKAJCSSAEAUhIpAEBKIgUASEmkAAApiRQAICWRAgCkJFIAgJRECgCQkkgBAFISKQBASiIFAEhJpAAAKYkUACAlkQIApCRSAICURAoAkJJIAQBSEikAQEoiBQBISaQAACmJFAAgJZECAKQkUgCAlEQKAJCSSAEAUhIpAEBKIgUASEmkAAApiRQAIKWJlR4A4O3OXf2NSo9wXD+6Z2GlR4BfK1ZSAICURAoAkJJIAQBSEikAQEoiBQBISaQAACmNeaR0dnZGVVVVtLW1lfYVRRHt7e3R0NAQkydPjgULFsS+ffvGehQAYBwZ00jZvXt3dHV1xUUXXTRi/7p162L9+vWxcePG2L17d9TX18fVV18dhw4dGstxAIBxZMwi5bXXXoubbropHnjggTjjjDNK+4uiiA0bNsTatWtj0aJFMWvWrNiyZUu88cYbsW3btrEaBwAYZ8YsUlasWBELFy6Mq666asT+/fv3R39/f7S2tpb2VVdXx/z582PXrl3HPdfw8HAMDQ2N2ACAd7cx+Vj87du3x3PPPRe7d+8edV9/f39ERNTV1Y3YX1dXFy+//PJxz9fZ2Rl33nln+QcFANIq+0pKX19f3HrrrfHVr341Tj311J97XFVV1YjbRVGM2veWNWvWxODgYGnr6+sr68wAQD5lX0np7e2NgYGBmD17dmnf0aNH4+mnn46NGzfGCy+8EBE/W1GZOXNm6ZiBgYFRqytvqa6ujurq6nKPCgAkVvaVlCuvvDL27t0be/bsKW1z5syJm266Kfbs2RPve9/7or6+Prq7u0uPOXLkSPT09ERLS0u5xwEAxqmyr6TU1NTErFmzRuw77bTTYvr06aX9bW1t0dHREc3NzdHc3BwdHR0xZcqUWLx4cbnHAQDGqTF54ewvsmrVqjh8+HAsX748Dh48GHPnzo2dO3dGTU1NJcYBABL6lUTKN7/5zRG3q6qqor29Pdrb238VPx4AGId8dw8AkJJIAQBSEikAQEoiBQBISaQAACmJFAAgJZECAKQkUgCAlEQKAJCSSAEAUhIpAEBKIgUASEmkAAApiRQAICWRAgCkJFIAgJRECgCQkkgBAFISKQBASiIFAEhJpAAAKYkUACAlkQIApCRSAICURAoAkJJIAQBSEikAQEoiBQBISaQAACmJFAAgJZECAKQkUgCAlEQKAJCSSAEAUhIpAEBKIgUASEmkAAApiRQAICWRAgCkJFIAgJRECgCQkkgBAFISKQBASiIFAEhJpAAAKYkUACAlkQIApCRSAICURAoAkJJIAQBSEikAQEoiBQBISaQAACmJFAAgJZECAKQkUgCAlEQKAJCSSAEAUhIpAEBKIgUASEmkAAApiRQAIKWyR0pnZ2dcdtllUVNTEzNmzIjrr78+XnjhhRHHFEUR7e3t0dDQEJMnT44FCxbEvn37yj0KADCOlT1Senp6YsWKFfHtb387uru7480334zW1tZ4/fXXS8esW7cu1q9fHxs3bozdu3dHfX19XH311XHo0KFyjwMAjFMTy33Cxx9/fMTtzZs3x4wZM6K3tzd++7d/O4qiiA0bNsTatWtj0aJFERGxZcuWqKuri23btsXSpUvLPRIAMA6N+WtSBgcHIyJi2rRpERGxf//+6O/vj9bW1tIx1dXVMX/+/Ni1a9dxzzE8PBxDQ0MjNgDg3W1MI6Uoili5cmVcccUVMWvWrIiI6O/vj4iIurq6EcfW1dWV7nu7zs7OqK2tLW2NjY1jOTYAkMCYRsrNN98c3/3ud+NrX/vaqPuqqqpG3C6KYtS+t6xZsyYGBwdLW19f35jMCwDkUfbXpLzllltuiUceeSSefvrpOOuss0r76+vrI+JnKyozZ84s7R8YGBi1uvKW6urqqK6uHqtRAYCEyr6SUhRF3HzzzfH1r389nnzyyWhqahpxf1NTU9TX10d3d3dp35EjR6KnpydaWlrKPQ4AME6VfSVlxYoVsW3btnj44Yejpqam9DqT2tramDx5clRVVUVbW1t0dHREc3NzNDc3R0dHR0yZMiUWL15c7nEAgHGq7JGyadOmiIhYsGDBiP2bN2+OP/zDP4yIiFWrVsXhw4dj+fLlcfDgwZg7d27s3Lkzampqyj0OADBOlT1SiqL4hcdUVVVFe3t7tLe3l/vHAwDvEr67BwBISaQAACmJFAAgJZECAKQkUgCAlEQKAJCSSAEAUhIpAEBKIgUASEmkAAApiRQAICWRAgCkJFIAgJRECgCQkkgBAFISKQBASiIFAEhJpAAAKYkUACCliZUeAIBf3rmrv1HpEY7rR/csrPQIvAtYSQEAUhIpAEBKIgUASEmkAAApiRQAICWRAgCkJFIAgJRECgCQkkgBAFISKQBASj4WH4BfGxm/RsBXCPx8VlIAgJRECgCQkkgBAFISKQBASiIFAEhJpAAAKYkUACAlkQIApCRSAICURAoAkJJIAQBSEikAQEoiBQBISaQAACmJFAAgJZECAKQkUgCAlEQKAJCSSAEAUhIpAEBKIgUASEmkAAApiRQAICWRAgCkJFIAgJRECgCQkkgBAFISKQBASiIFAEhJpAAAKYkUACAlkQIApFTRSLn//vujqakpTj311Jg9e3Z861vfquQ4AEAiFYuUBx98MNra2mLt2rXx/PPPx0c/+tG45ppr4sCBA5UaCQBIpGKRsn79+vjc5z4Xf/RHfxTnn39+bNiwIRobG2PTpk2VGgkASGRiJX7okSNHore3N1avXj1if2tra+zatWvU8cPDwzE8PFy6PTg4GBERQ0NDYzLfseE3xuS878RY/a7vVMZrFZHzerlWJ861OnGu1cnJeL2yXqux8NbvWhTFiT2gqIBXXnmliIjiX//1X0fsv/vuu4sPfOADo46/4447ioiw2Ww2m832Ltj6+vpOqBcqspLylqqqqhG3i6IYtS8iYs2aNbFy5crS7WPHjsV///d/x/Tp0497fBZDQ0PR2NgYfX19MXXq1EqPk5prdeJcqxPnWp041+rEuVYn5/9er5qamjh06FA0NDSc0GMrEinvfe97Y8KECdHf3z9i/8DAQNTV1Y06vrq6Oqqrq0fsO/3008dyxLKaOnWq/5BPkGt14lyrE+danTjX6sS5VifnretVW1t7wo+pyAtnJ02aFLNnz47u7u4R+7u7u6OlpaUSIwEAyVTs6Z6VK1fGpz/96ZgzZ07Mmzcvurq64sCBA7Fs2bJKjQQAJFKxSLnxxhvjJz/5Sdx1113x6quvxqxZs+LRRx+Nc845p1IjlV11dXXccccdo56qYjTX6sS5VifOtTpxrtWJc61Ozju5XlVFcaLvAwIA+NXx3T0AQEoiBQBISaQAACmJFAAgJZEyRu6///5oamqKU089NWbPnh3f+ta3Kj1SSk8//XRce+210dDQEFVVVfFP//RPlR4prc7OzrjsssuipqYmZsyYEddff3288MILlR4rpU2bNsVFF11U+vCoefPmxWOPPVbpscaFzs7OqKqqira2tkqPkk57e3tUVVWN2Orr6ys9VlqvvPJKfOpTn4rp06fHlClT4pJLLone3t6TOodIGQMPPvhgtLW1xdq1a+P555+Pj370o3HNNdfEgQMHKj1aOq+//npcfPHFsXHjxkqPkl5PT0+sWLEivv3tb0d3d3e8+eab0draGq+//nqlR0vnrLPOinvuuSeeffbZePbZZ+N3fud34rrrrot9+/ZVerTUdu/eHV1dXXHRRRdVepS0Lrjggnj11VdL2969eys9UkoHDx6Myy+/PE455ZR47LHH4nvf+17cd999J/9p8e/86wJ5u4985CPFsmXLRuw777zzitWrV1doovEhIoodO3ZUeoxxY2BgoIiIoqenp9KjjAtnnHFG8Q//8A+VHiOtQ4cOFc3NzUV3d3cxf/784tZbb630SOnccccdxcUXX1zpMcaF22+/vbjiiive8XmspJTZkSNHore3N1pbW0fsb21tjV27dlVoKt6NBgcHIyJi2rRpFZ4kt6NHj8b27dvj9ddfj3nz5lV6nLRWrFgRCxcujKuuuqrSo6T2gx/8IBoaGqKpqSk++clPxksvvVTpkVJ65JFHYs6cOfGJT3wiZsyYEZdeemk88MADJ30ekVJm//Vf/xVHjx4d9UWJdXV1o75QEX5ZRVHEypUr44orrohZs2ZVepyU9u7dG7/xG78R1dXVsWzZstixY0d86EMfqvRYKW3fvj2ee+656OzsrPQoqc2dOze2bt0aTzzxRDzwwAPR398fLS0t8ZOf/KTSo6Xz0ksvxaZNm6K5uTmeeOKJWLZsWXz+85+PrVu3ntR5Kvax+O92VVVVI24XRTFqH/yybr755vjud78bzzzzTKVHSeuDH/xg7NmzJ37605/GQw89FEuWLImenh6h8jZ9fX1x6623xs6dO+PUU0+t9DipXXPNNaU/X3jhhTFv3rx4//vfH1u2bImVK1dWcLJ8jh07FnPmzImOjo6IiLj00ktj3759sWnTpvjMZz5zwuexklJm733ve2PChAmjVk0GBgZGra7AL+OWW26JRx55JJ566qk466yzKj1OWpMmTYrf+q3fijlz5kRnZ2dcfPHF8bd/+7eVHiud3t7eGBgYiNmzZ8fEiRNj4sSJ0dPTE3/3d38XEydOjKNHj1Z6xLROO+20uPDCC+MHP/hBpUdJZ+bMmaP+QXD++eef9BtIREqZTZo0KWbPnh3d3d0j9nd3d0dLS0uFpuLdoCiKuPnmm+PrX/96PPnkk9HU1FTpkcaVoihieHi40mOkc+WVV8bevXtjz549pW3OnDlx0003xZ49e2LChAmVHjGt4eHh+P73vx8zZ86s9CjpXH755aM+IuHFF1886S8R9nTPGFi5cmV8+tOfjjlz5sS8efOiq6srDhw4EMuWLav0aOm89tpr8cMf/rB0e//+/bFnz56YNm1anH322RWcLJ8VK1bEtm3b4uGHH46amprSal1tbW1Mnjy5wtPl8md/9mdxzTXXRGNjYxw6dCi2b98e3/zmN+Pxxx+v9Gjp1NTUjHpd02mnnRbTp0/3eqe3ue222+Laa6+Ns88+OwYGBuKv/uqvYmhoKJYsWVLp0dL5whe+EC0tLdHR0RE33HBDfOc734murq7o6uo6uRO94/cHcVxf/vKXi3POOaeYNGlS8eEPf9jbRH+Op556qoiIUduSJUsqPVo6x7tOEVFs3ry50qOl89nPfrb0/9+ZZ55ZXHnllcXOnTsrPda44S3Ix3fjjTcWM2fOLE455ZSioaGhWLRoUbFv375Kj5XWP//zPxezZs0qqquri/POO6/o6uo66XNUFUVRlDGeAADKwmtSAICURAoAkJJIAQBSEikAQEoiBQBISaQAACmJFAAgJZECpLFgwYJoa2ur9BhAEiIFAEhJpAAAKYkUIK3HH388amtrY+vWrZUeBagAkQKktH379rjhhhti69at8ZnPfKbS4wAVIFKAdO6///5YtmxZPPzww3HddddVehygQiZWegCA/+uhhx6K//zP/4xnnnkmPvKRj1R6HKCCrKQAqVxyySVx5plnxubNm6MoikqPA1SQSAFSef/73x9PPfVUPPzww3HLLbdUehyggjzdA6TzgQ98IJ566qlYsGBBTJw4MTZs2FDpkYAKEClASh/84AfjySefjAULFsSECRPivvvuq/RIwK9YVeFJXwAgIa9JAQBSEikAQEoiBQBISaQAACmJFAAgJZECAKQkUgCAlEQKAJCSSAEAUhIpAEBKIgUASEmkAAAp/S+yutai6Y48NAAAAABJRU5ErkJggg==",
+      "text/plain": [
+       "<Figure size 640x480 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "plt.hist(data[:, 0], bins=np.arange(-0.25,6.25,0.5))\n",
+    "plt.xlabel(\"k\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "id": "5056a717-6561-41ec-be39-1757984863a9",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": ""
+    },
+    "tags": []
+   },
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGzCAYAAAAFROyYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAdD0lEQVR4nO3dfWydZf348c9xZYcNu8Ima1cprGoVZDy54bKC302BGpwEsijoUGd8yJYNpE4cm1MpRNoxZU6dzBSTuWnm+AMnGJ7WCBZxGkdhOqcBDYM1SG3U2RZYOtnu3x+Ek1/tFMFT7qvj9UquZOc+d08/uwPZO9d5KmRZlgUAQEJel/cAAAD/SqAAAMkRKABAcgQKAJAcgQIAJEegAADJESgAQHIECgCQHIECACRHoAAAyal4uT/wwAMPxFe/+tXo6uqKp59+OrZu3RqXXHJJ6f4sy+K6666L9vb22LdvX8ycOTO+/e1vx6mnnlo6Z3BwMK6++ur44Q9/GPv374/zzjsvbr755jjhhBP+qxkOHToUf/7zn6OysjIKhcLL/SsAADnIsiwGBgaitrY2Xve6l9gjyV6mu+66K1u5cmV22223ZRGRbd26dcj9q1atyiorK7Pbbrst27VrV3bZZZdlU6ZMyfr7+0vnLFq0KHvjG9+YdXR0ZA8//HD27ne/OzvjjDOy559//r+aobu7O4sIy7Isy7JG4eru7n7Jf+sLWfbKvyywUCgM2UHJsixqa2ujubk5rrnmmoh4Ybekuro6brzxxli4cGH09fXF8ccfH9///vfjsssui4iIP//5z1FXVxd33XVXvPe9733J39vX1xfHHntsdHd3x4QJE17p+ADAq6i/vz/q6uriH//4R1RVVf3Hc1/2Uzz/yZ49e6KnpyeamppKx4rFYsyePTu2b98eCxcujK6urvjnP/855Jza2tqYNm1abN++/bCBMjg4GIODg6XbAwMDERExYcIEgQIAo8x/8/KMsr5ItqenJyIiqqurhxyvrq4u3dfT0xNjx46N44477t+e86/a2tqiqqqqtOrq6so5NgCQmBF5F8+/llGWZS9ZS//pnBUrVkRfX19pdXd3l21WACA9ZQ2UmpqaiIhhOyG9vb2lXZWampo4cOBA7Nu379+e86+KxWLp6RxP6wDAka+sgVJfXx81NTXR0dFROnbgwIHo7OyMxsbGiIiYPn16HHXUUUPOefrpp+N3v/td6RwA4LXtZb9I9plnnok//elPpdt79uyJnTt3xsSJE+PEE0+M5ubmaG1tjYaGhmhoaIjW1tYYP358zJ8/PyIiqqqq4pOf/GR87nOfi0mTJsXEiRPj6quvjtNOOy3OP//88v3NAIBR62UHykMPPRTvfve7S7eXLl0aERELFiyI733ve7Fs2bLYv39/LF68uPRBbdu2bYvKysrSz3z961+PioqKuPTSS0sf1Pa9730vxowZU4a/EgAw2v1Pn4OSl/7+/qiqqoq+vj6vRwGAUeLl/Pvtu3gAgOQIFAAgOQIFAEiOQAEAkiNQAIDkCBQAIDkCBQBIjkABAJLzsj9JltemqcvvzHuEkidWzc17BABGmB0UACA5AgUASI5AAQCSI1AAgOQIFAAgOQIFAEiOQAEAkiNQAIDkCBQAIDkCBQBIjkABAJIjUACA5AgUACA5AgUASI5AAQCSI1AAgOQIFAAgOQIFAEiOQAEAkiNQAIDkCBQAIDkCBQBIjkABAJIjUACA5AgUACA5AgUASI5AAQCSI1AAgOQIFAAgOQIFAEiOQAEAkiNQAIDkCBQAIDkCBQBIjkABAJIjUACA5AgUACA5AgUASI5AAQCSI1AAgOQIFAAgOQIFAEiOQAEAkiNQAIDkCBQAIDkCBQBIjkABAJIjUACA5AgUACA5AgUASI5AAQCSI1AAgOQIFAAgOWUPlOeffz6++MUvRn19fYwbNy7e9KY3xfXXXx+HDh0qnZNlWbS0tERtbW2MGzcu5syZE7t37y73KADAKFX2QLnxxhvjO9/5Tqxbty7+8Ic/xOrVq+OrX/1qfOtb3yqds3r16lizZk2sW7cuduzYETU1NXHBBRfEwMBAuccBAEahsgfKL3/5y7j44otj7ty5MXXq1PjABz4QTU1N8dBDD0XEC7sna9eujZUrV8a8efNi2rRpsXHjxnjuuedi8+bN5R4HABiFyh4o5557bvz0pz+Nxx57LCIifvOb38SDDz4Y73vf+yIiYs+ePdHT0xNNTU2lnykWizF79uzYvn37YR9zcHAw+vv7hywA4MhVUe4HvOaaa6Kvry9OPvnkGDNmTBw8eDBuuOGG+PCHPxwRET09PRERUV1dPeTnqqur48knnzzsY7a1tcV1111X7lEBgESVfQfl1ltvjR/84AexefPmePjhh2Pjxo3xta99LTZu3DjkvEKhMOR2lmXDjr1oxYoV0dfXV1rd3d3lHhsASEjZd1A+//nPx/Lly+NDH/pQREScdtpp8eSTT0ZbW1ssWLAgampqIuKFnZQpU6aUfq63t3fYrsqLisViFIvFco8KACSq7Dsozz33XLzudUMfdsyYMaW3GdfX10dNTU10dHSU7j9w4EB0dnZGY2NjuccBAEahsu+gXHTRRXHDDTfEiSeeGKeeemo88sgjsWbNmvjEJz4RES88tdPc3Bytra3R0NAQDQ0N0draGuPHj4/58+eXexwAYBQqe6B861vfii996UuxePHi6O3tjdra2li4cGF8+ctfLp2zbNmy2L9/fyxevDj27dsXM2fOjG3btkVlZWW5xwEARqFClmVZ3kO8XP39/VFVVRV9fX0xYcKEvMd5TZi6/M68Ryh5YtXcvEcA4BV4Of9++y4eACA5AgUASI5AAQCSI1AAgOQIFAAgOQIFAEiOQAEAkiNQAIDkCBQAIDkCBQBIjkABAJIjUACA5AgUACA5AgUASI5AAQCSU5H3ACmauvzOvEcoeWLV3LxHAIBXnR0UACA5AgUASI5AAQCSI1AAgOQIFAAgOQIFAEiOQAEAkiNQAIDkCBQAIDkCBQBIjkABAJIjUACA5AgUACA5AgUASI5AAQCSI1AAgOQIFAAgOQIFAEiOQAEAkiNQAIDkCBQAIDkCBQBIjkABAJIjUACA5AgUACA5FXkPAKPZ1OV35j1CREQ8sWpu3iMAlJUdFAAgOQIFAEiOQAEAkiNQAIDkCBQAIDkCBQBIjkABAJIjUACA5AgUACA5AgUASI5AAQCSI1AAgOQIFAAgOQIFAEiOQAEAkiNQAIDkCBQAIDkCBQBIjkABAJIjUACA5AgUACA5IxIoTz31VHzkIx+JSZMmxfjx4+PMM8+Mrq6u0v1ZlkVLS0vU1tbGuHHjYs6cObF79+6RGAUAGIXKHij79u2Lc845J4466qi4++674/e//33cdNNNceyxx5bOWb16daxZsybWrVsXO3bsiJqamrjgggtiYGCg3OMAAKNQRbkf8MYbb4y6urrYsGFD6djUqVNLf86yLNauXRsrV66MefPmRUTExo0bo7q6OjZv3hwLFy4s90gAwChT9h2UO+64I2bMmBEf/OAHY/LkyXHWWWfFLbfcUrp/z5490dPTE01NTaVjxWIxZs+eHdu3bz/sYw4ODkZ/f/+QBQAcucoeKI8//nisX78+Ghoa4t57741FixbFZz7zmdi0aVNERPT09ERERHV19ZCfq66uLt33r9ra2qKqqqq06urqyj02AJCQsgfKoUOH4h3veEe0trbGWWedFQsXLoxPf/rTsX79+iHnFQqFIbezLBt27EUrVqyIvr6+0uru7i732ABAQsoeKFOmTIm3v/3tQ46dcsopsXfv3oiIqKmpiYgYtlvS29s7bFflRcViMSZMmDBkAQBHrrIHyjnnnBOPPvrokGOPPfZYnHTSSRERUV9fHzU1NdHR0VG6/8CBA9HZ2RmNjY3lHgcAGIXK/i6ez372s9HY2Bitra1x6aWXxq9//etob2+P9vb2iHjhqZ3m5uZobW2NhoaGaGhoiNbW1hg/fnzMnz+/3OMAAKNQ2QPl7LPPjq1bt8aKFSvi+uuvj/r6+li7dm1cfvnlpXOWLVsW+/fvj8WLF8e+ffti5syZsW3btqisrCz3OADAKFT2QImIeP/73x/vf//7/+39hUIhWlpaoqWlZSR+PQAwyvkuHgAgOQIFAEiOQAEAkiNQAIDkCBQAIDkCBQBIjkABAJIjUACA5AgUACA5AgUASI5AAQCSI1AAgOQIFAAgOQIFAEiOQAEAkiNQAIDkCBQAIDkCBQBIjkABAJIjUACA5AgUACA5AgUASI5AAQCSI1AAgOQIFAAgOQIFAEiOQAEAkiNQAIDkCBQAIDkCBQBIjkABAJIjUACA5AgUACA5AgUASI5AAQCSI1AAgOQIFAAgOQIFAEiOQAEAkiNQAIDkCBQAIDkCBQBIjkABAJIjUACA5AgUACA5AgUASI5AAQCSI1AAgOQIFAAgOQIFAEiOQAEAkiNQAIDkCBQAIDkCBQBIjkABAJJTkfcAwJFl6vI78x6h5IlVc/MeAXiF7KAAAMkRKABAcgQKAJAcgQIAJEegAADJESgAQHJGPFDa2tqiUChEc3Nz6ViWZdHS0hK1tbUxbty4mDNnTuzevXukRwEARokRDZQdO3ZEe3t7nH766UOOr169OtasWRPr1q2LHTt2RE1NTVxwwQUxMDAwkuMAAKPEiAXKM888E5dffnnccsstcdxxx5WOZ1kWa9eujZUrV8a8efNi2rRpsXHjxnjuuedi8+bNIzUOADCKjFigLFmyJObOnRvnn3/+kON79uyJnp6eaGpqKh0rFosxe/bs2L59+2Efa3BwMPr7+4csAODINSIfdb9ly5Z4+OGHY8eOHcPu6+npiYiI6urqIcerq6vjySefPOzjtbW1xXXXXVf+QQGAJJV9B6W7uzuuuuqq+MEPfhBHH330vz2vUCgMuZ1l2bBjL1qxYkX09fWVVnd3d1lnBgDSUvYdlK6urujt7Y3p06eXjh08eDAeeOCBWLduXTz66KMR8cJOypQpU0rn9Pb2DttVeVGxWIxisVjuUQGARJV9B+W8886LXbt2xc6dO0trxowZcfnll8fOnTvjTW96U9TU1ERHR0fpZw4cOBCdnZ3R2NhY7nEAgFGo7DsolZWVMW3atCHHjjnmmJg0aVLpeHNzc7S2tkZDQ0M0NDREa2trjB8/PubPn1/ucQCAUWhEXiT7UpYtWxb79++PxYsXx759+2LmzJmxbdu2qKyszGMcACAxr0qg/OxnPxtyu1AoREtLS7S0tLwavx4AGGV8Fw8AkByBAgAkR6AAAMkRKABAcgQKAJAcgQIAJEegAADJESgAQHIECgCQHIECACRHoAAAyREoAEByBAoAkByBAgAkR6AAAMkRKABAcgQKAJAcgQIAJEegAADJESgAQHIECgCQHIECACRHoAAAyREoAEByBAoAkByBAgAkR6AAAMkRKABAcgQKAJAcgQIAJEegAADJESgAQHIECgCQHIECACRHoAAAyREoAEByBAoAkByBAgAkR6AAAMkRKABAcgQKAJAcgQIAJEegAADJESgAQHIECgCQHIECACRHoAAAyREoAEByBAoAkByBAgAkR6AAAMkRKABAcgQKAJAcgQIAJEegAADJESgAQHIECgCQHIECACRHoAAAyREoAEByBAoAkByBAgAkp+yB0tbWFmeffXZUVlbG5MmT45JLLolHH310yDlZlkVLS0vU1tbGuHHjYs6cObF79+5yjwIAjFJlD5TOzs5YsmRJ/OpXv4qOjo54/vnno6mpKZ599tnSOatXr441a9bEunXrYseOHVFTUxMXXHBBDAwMlHscAGAUqij3A95zzz1Dbm/YsCEmT54cXV1d8X//93+RZVmsXbs2Vq5cGfPmzYuIiI0bN0Z1dXVs3rw5Fi5cWO6RAIBRZsRfg9LX1xcRERMnToyIiD179kRPT080NTWVzikWizF79uzYvn37YR9jcHAw+vv7hywA4Mg1ooGSZVksXbo0zj333Jg2bVpERPT09ERERHV19ZBzq6urS/f9q7a2tqiqqiqturq6kRwbAMjZiAbKFVdcEb/97W/jhz/84bD7CoXCkNtZlg079qIVK1ZEX19faXV3d4/IvABAGsr+GpQXXXnllXHHHXfEAw88ECeccELpeE1NTUS8sJMyZcqU0vHe3t5huyovKhaLUSwWR2pUACAxZd9BybIsrrjiivjRj34U9913X9TX1w+5v76+PmpqaqKjo6N07MCBA9HZ2RmNjY3lHgcAGIXKvoOyZMmS2Lx5c9x+++1RWVlZel1JVVVVjBs3LgqFQjQ3N0dra2s0NDREQ0NDtLa2xvjx42P+/PnlHgcAGIXKHijr16+PiIg5c+YMOb5hw4b4+Mc/HhERy5Yti/3798fixYtj3759MXPmzNi2bVtUVlaWexwAYBQqe6BkWfaS5xQKhWhpaYmWlpZy/3oA4Ajgu3gAgOQIFAAgOQIFAEiOQAEAkiNQAIDkCBQAIDkCBQBIjkABAJIjUACA5AgUACA5AgUASI5AAQCSI1AAgOQIFAAgOQIFAEiOQAEAkiNQAIDkCBQAIDkCBQBITkXeAwAc6aYuvzPvEUqeWDU37xHgv2IHBQBIjkABAJIjUACA5AgUACA5AgUASI5AAQCSI1AAgOQIFAAgOQIFAEiOQAEAkuOj7gHIRSpfAeDj/9NkBwUASI5AAQCSI1AAgOQIFAAgOQIFAEiOQAEAkiNQAIDkCBQAIDkCBQBIjkABAJIjUACA5AgUACA5AgUASI5AAQCSI1AAgOQIFAAgOQIFAEiOQAEAkiNQAIDkCBQAIDkCBQBIjkABAJIjUACA5AgUACA5AgUASE5F3gMAAC+YuvzOvEcoeWLV3Fx/vx0UACA5AgUASI5AAQCSI1AAgOQIFAAgOQIFAEhOroFy8803R319fRx99NExffr0+PnPf57nOABAInILlFtvvTWam5tj5cqV8cgjj8S73vWuuPDCC2Pv3r15jQQAJCK3QFmzZk188pOfjE996lNxyimnxNq1a6Ouri7Wr1+f10gAQCJy+STZAwcORFdXVyxfvnzI8aampti+ffuw8wcHB2NwcLB0u6+vLyIi+vv7R2S+Q4PPjcjjvhIj9Xd8uVyTw0vlurgmh5fKdXFNDi+V6+KaHN5IXJcXHzPLspc+OcvBU089lUVE9otf/GLI8RtuuCF761vfOuz8a6+9NosIy7Isy7KOgNXd3f2SrZDrd/EUCoUht7MsG3YsImLFihWxdOnS0u1Dhw7F3//+95g0adJhz89bf39/1NXVRXd3d0yYMCHvcZLhugznmgznmhye6zKcazJc6tcky7IYGBiI2tralzw3l0B5wxveEGPGjImenp4hx3t7e6O6unrY+cViMYrF4pBjxx577EiOWBYTJkxI8j+QvLkuw7kmw7kmh+e6DOeaDJfyNamqqvqvzsvlRbJjx46N6dOnR0dHx5DjHR0d0djYmMdIAEBCcnuKZ+nSpfHRj340ZsyYEbNmzYr29vbYu3dvLFq0KK+RAIBE5BYol112Wfztb3+L66+/Pp5++umYNm1a3HXXXXHSSSflNVLZFIvFuPbaa4c9LfVa57oM55oM55ocnusynGsy3JF0TQpZ9t+81wcA4NXju3gAgOQIFAAgOQIFAEiOQAEAkiNQRsDNN98c9fX1cfTRR8f06dPj5z//ed4j5eqBBx6Iiy66KGpra6NQKMSPf/zjvEfKXVtbW5x99tlRWVkZkydPjksuuSQeffTRvMfK1fr16+P0008vfcDUrFmz4u677857rKS0tbVFoVCI5ubmvEfJVUtLSxQKhSGrpqYm77Fy99RTT8VHPvKRmDRpUowfPz7OPPPM6OrqynusV0yglNmtt94azc3NsXLlynjkkUfiXe96V1x44YWxd+/evEfLzbPPPhtnnHFGrFu3Lu9RktHZ2RlLliyJX/3qV9HR0RHPP/98NDU1xbPPPpv3aLk54YQTYtWqVfHQQw/FQw89FO95z3vi4osvjt27d+c9WhJ27NgR7e3tcfrpp+c9ShJOPfXUePrpp0tr165deY+Uq3379sU555wTRx11VNx9993x+9//Pm666aZR8anr/1ZZvv2Pkne+853ZokWLhhw7+eSTs+XLl+c0UVoiItu6dWveYySnt7c3i4iss7Mz71GSctxxx2Xf/e538x4jdwMDA1lDQ0PW0dGRzZ49O7vqqqvyHilX1157bXbGGWfkPUZSrrnmmuzcc8/Ne4yysoNSRgcOHIiurq5oamoacrypqSm2b9+e01SMBn19fRERMXHixJwnScPBgwdjy5Yt8eyzz8asWbPyHid3S5Ysiblz58b555+f9yjJ+OMf/xi1tbVRX18fH/rQh+Lxxx/Pe6Rc3XHHHTFjxoz44Ac/GJMnT46zzjorbrnllrzH+p8IlDL661//GgcPHhz2hYfV1dXDvhgRXpRlWSxdujTOPffcmDZtWt7j5GrXrl3x+te/PorFYixatCi2bt0ab3/72/MeK1dbtmyJhx9+ONra2vIeJRkzZ86MTZs2xb333hu33HJL9PT0RGNjY/ztb3/Le7TcPP7447F+/fpoaGiIe++9NxYtWhSf+cxnYtOmTXmP9orl9lH3R7JCoTDkdpZlw47Bi6644or47W9/Gw8++GDeo+TubW97W+zcuTP+8Y9/xG233RYLFiyIzs7O12ykdHd3x1VXXRXbtm2Lo48+Ou9xknHhhReW/nzaaafFrFmz4s1vfnNs3Lgxli5dmuNk+Tl06FDMmDEjWltbIyLirLPOit27d8f69evjYx/7WM7TvTJ2UMroDW94Q4wZM2bYbklvb++wXRWIiLjyyivjjjvuiPvvvz9OOOGEvMfJ3dixY+Mtb3lLzJgxI9ra2uKMM86Ib3zjG3mPlZuurq7o7e2N6dOnR0VFRVRUVERnZ2d885vfjIqKijh48GDeIybhmGOOidNOOy3++Mc/5j1KbqZMmTIs5E855ZRR/QYNgVJGY8eOjenTp0dHR8eQ4x0dHdHY2JjTVKQoy7K44oor4kc/+lHcd999UV9fn/dIScqyLAYHB/MeIzfnnXde7Nq1K3bu3FlaM2bMiMsvvzx27twZY8aMyXvEJAwODsYf/vCHmDJlSt6j5Oacc84Z9lEFjz322Kj+Al5P8ZTZ0qVL46Mf/WjMmDEjZs2aFe3t7bF3795YtGhR3qPl5plnnok//elPpdt79uyJnTt3xsSJE+PEE0/McbL8LFmyJDZv3hy33357VFZWlnbdqqqqYty4cTlPl48vfOELceGFF0ZdXV0MDAzEli1b4mc/+1ncc889eY+Wm8rKymGvSzrmmGNi0qRJr+nXK1199dVx0UUXxYknnhi9vb3xla98Jfr7+2PBggV5j5abz372s9HY2Bitra1x6aWXxq9//etob2+P9vb2vEd75fJ9E9GR6dvf/nZ20kknZWPHjs3e8Y53vObfOnr//fdnETFsLViwIO/RcnO46xER2YYNG/IeLTef+MQnSv/fHH/88dl5552Xbdu2Le+xkuNtxll22WWXZVOmTMmOOuqorLa2Nps3b162e/fuvMfK3U9+8pNs2rRpWbFYzE4++eSsvb0975H+J4Usy7Kc2ggA4LC8BgUASI5AAQCSI1AAgOQIFAAgOQIFAEiOQAEAkiNQAIDkCBQgGXPmzInm5ua8xwASIFAAgOQIFAAgOQIFSNY999wTVVVVsWnTprxHAV5lAgVI0pYtW+LSSy+NTZs2xcc+9rG8xwFeZQIFSM7NN98cixYtittvvz0uvvjivMcBclCR9wAA/7/bbrst/vKXv8SDDz4Y73znO/MeB8iJHRQgKWeeeWYcf/zxsWHDhsiyLO9xgJwIFCApb37zm+P++++P22+/Pa688sq8xwFy4ikeIDlvfetb4/777485c+ZERUVFrF27Nu+RgFeZQAGS9La3vS3uu+++mDNnTowZMyZuuummvEcCXkWFzJO8AEBivAYFAEiOQAEAkiNQAIDkCBQAIDkCBQBIjkABAJIjUACA5AgUACA5AgUASI5AAQCSI1AAgOQIFAAgOf8PbK7Sd/HHr84AAAAASUVORK5CYII=",
+      "text/plain": [
+       "<Figure size 640x480 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "Text(0.5, 0, 'l')"
+      ]
+     },
+     "execution_count": 6,
+     "metadata": {},
+     "output_type": "execute_result"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGwCAYAAACD0J42AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAcYElEQVR4nO3df2xd9X3/8ZebgEmYk0IYdiwCuJs3aAOUJiwisCUb4CkLrFW00g7aMbWbiBIobtbRZNmGi4ZNszXL1oxsYRMNQxn8sdIyMUq8tQ1lWdUQmpWFCloRIKNY1rrMDhA5IznfPyquvq7TH9Cbno/Tx0M6Uu7nnnv99hHIT318r29LVVVVAAAK8qa6BwAA+G4CBQAojkABAIojUACA4ggUAKA4AgUAKI5AAQCKM7XuAd6II0eO5Fvf+lba2trS0tJS9zgAwA+hqqocOHAgnZ2dedObvv8eyaQMlG9961uZM2dO3WMAAG/Avn37csYZZ3zfcyZloLS1tSX5zjc4Y8aMmqcBAH4Yo6OjmTNnTuPn+PczKQPltV/rzJgxQ6AAwCTzw7w8w4tkAYDiCBQAoDgCBQAojkABAIojUACA4ggUAKA4AgUAKI5AAQCKI1AAgOIIFACgOAIFACiOQAEAiiNQAIDiCBQAoDgCBQAoztS6B2ByOHv1g3WP0PDs7UvrHgGAY8wOCgBQHIECABRHoAAAxREoAEBxBAoAUByBAgAUR6AAAMURKABAcQQKAFAcgQIAFEegAADFESgAQHEECgBQHIECABRHoAAAxREoAEBxBAoAUByBAgAUR6AAAMURKABAcQQKAFAcgQIAFEegAADFESgAQHEECgBQHIECABRHoAAAxXndgfLII4/kqquuSmdnZ1paWvKZz3xm3P1VVaWvry+dnZ2ZNm1aFi9enD179ow7Z2xsLDfeeGNOO+20nHzyyfn1X//1/Nd//deP9I0AAMeP1x0oL7/8ci644IJs3LjxqPevW7cu69evz8aNG7Nz5850dHTkiiuuyIEDBxrn9Pb25v7778+9996bRx99NC+99FKuvPLKHD58+I1/JwDAcWPq633AkiVLsmTJkqPeV1VVNmzYkLVr12bZsmVJki1btqS9vT1bt27N9ddfn5GRkfzd3/1d/v7v/z6XX355kuSee+7JnDlz8i//8i/51V/91R/h2wEAjgdNfQ3K3r17MzQ0lJ6ensZaa2trFi1alB07diRJdu3alf/7v/8bd05nZ2fmzp3bOOe7jY2NZXR0dNwBABy/mhooQ0NDSZL29vZx6+3t7Y37hoaGcuKJJ+aUU075nud8t4GBgcycObNxzJkzp5ljAwCFOSbv4mlpaRl3u6qqCWvf7fuds2bNmoyMjDSOffv2NW1WAKA8TQ2Ujo6OJJmwEzI8PNzYVeno6MihQ4eyf//+73nOd2ttbc2MGTPGHQDA8aupgdLV1ZWOjo4MDg421g4dOpTt27dn4cKFSZJ58+blhBNOGHfOiy++mP/8z/9snAMA/GR73e/ieemll/LNb36zcXvv3r3ZvXt3Tj311Jx55pnp7e1Nf39/uru7093dnf7+/kyfPj3XXHNNkmTmzJn54Ac/mN/7vd/LrFmzcuqpp+YjH/lIzjvvvMa7egCAn2yvO1Aee+yx/PIv/3Lj9qpVq5Ik1113XT71qU/l5ptvzsGDB7NixYrs378/CxYsyLZt29LW1tZ4zJ//+Z9n6tSpufrqq3Pw4MFcdtll+dSnPpUpU6Y04VsCACa7lqqqqrqHeL1GR0czc+bMjIyMeD3Kj8nZqx+se4SGZ29fWvcIALwBr+fnt8/iAQCKI1AAgOIIFACgOAIFACiOQAEAiiNQAIDiCBQAoDgCBQAojkABAIojUACA4ggUAKA4AgUAKI5AAQCKI1AAgOIIFACgOAIFACiOQAEAiiNQAIDiCBQAoDgCBQAojkABAIojUACA4ggUAKA4AgUAKI5AAQCKI1AAgOIIFACgOAIFACjO1LoHKNHZqx+se4SGZ29fWvcIAPBjZwcFACiOQAEAiiNQAIDiCBQAoDgCBQAojkABAIojUACA4ggUAKA4AgUAKI5AAQCKI1AAgOIIFACgOAIFACiOQAEAiiNQAIDiCBQAoDgCBQAojkABAIojUACA4ggUAKA4AgUAKI5AAQCKI1AAgOIIFACgOE0PlFdffTV/+Id/mK6urkybNi1vectbcuutt+bIkSONc6qqSl9fXzo7OzNt2rQsXrw4e/bsafYoAMAk1fRA+fjHP56//uu/zsaNG/P1r38969aty5/+6Z/mk5/8ZOOcdevWZf369dm4cWN27tyZjo6OXHHFFTlw4ECzxwEAJqGmB8q///u/553vfGeWLl2as88+O7/xG7+Rnp6ePPbYY0m+s3uyYcOGrF27NsuWLcvcuXOzZcuWvPLKK9m6dWuzxwEAJqGmB8qll16af/3Xf83TTz+dJPmP//iPPProo/m1X/u1JMnevXszNDSUnp6exmNaW1uzaNGi7Nix46jPOTY2ltHR0XEHAHD8mtrsJ/zoRz+akZGRnHPOOZkyZUoOHz6c2267Lb/5m7+ZJBkaGkqStLe3j3tce3t7nnvuuaM+58DAQD72sY81e1QAoFBN30G57777cs8992Tr1q15/PHHs2XLlvzZn/1ZtmzZMu68lpaWcberqpqw9po1a9ZkZGSkcezbt6/ZYwMABWn6Dsrv//7vZ/Xq1Xnve9+bJDnvvPPy3HPPZWBgINddd106OjqSfGcnZfbs2Y3HDQ8PT9hVeU1ra2taW1ubPSoAUKim76C88soredObxj/tlClTGm8z7urqSkdHRwYHBxv3Hzp0KNu3b8/ChQubPQ4AMAk1fQflqquuym233ZYzzzwzb3vb2/LVr34169evzwc+8IEk3/nVTm9vb/r7+9Pd3Z3u7u709/dn+vTpueaaa5o9DgAwCTU9UD75yU/mj/7oj7JixYoMDw+ns7Mz119/ff74j/+4cc7NN9+cgwcPZsWKFdm/f38WLFiQbdu2pa2trdnjAACTUEtVVVXdQ7xeo6OjmTlzZkZGRjJjxoymP//Zqx9s+nO+Uc/evrTuEZK4JgD86F7Pz2+fxQMAFEegAADFESgAQHEECgBQHIECABRHoAAAxREoAEBxBAoAUByBAgAUR6AAAMURKABAcQQKAFAcgQIAFEegAADFESgAQHEECgBQHIECABRHoAAAxREoAEBxBAoAUByBAgAUR6AAAMURKABAcQQKAFAcgQIAFEegAADFESgAQHEECgBQHIECABRHoAAAxREoAEBxBAoAUByBAgAUR6AAAMURKABAcQQKAFAcgQIAFEegAADFESgAQHEECgBQHIECABRHoAAAxREoAEBxBAoAUByBAgAUR6AAAMURKABAcQQKAFAcgQIAFEegAADFESgAQHEECgBQHIECABTnmATKCy+8kPe9732ZNWtWpk+fnre//e3ZtWtX4/6qqtLX15fOzs5MmzYtixcvzp49e47FKADAJNT0QNm/f38uueSSnHDCCXnooYfy5JNP5hOf+ETe/OY3N85Zt25d1q9fn40bN2bnzp3p6OjIFVdckQMHDjR7HABgEpra7Cf8+Mc/njlz5uSuu+5qrJ199tmNf1dVlQ0bNmTt2rVZtmxZkmTLli1pb2/P1q1bc/311zd7JABgkmn6DsoDDzyQ+fPn593vfndOP/30XHjhhbnzzjsb9+/duzdDQ0Pp6elprLW2tmbRokXZsWPHUZ9zbGwso6Oj4w4A4PjV9EB55plnsmnTpnR3d+fhhx/O8uXL86EPfSh33313kmRoaChJ0t7ePu5x7e3tjfu+28DAQGbOnNk45syZ0+yxAYCCND1Qjhw5kne84x3p7+/PhRdemOuvvz6/+7u/m02bNo07r6WlZdztqqomrL1mzZo1GRkZaRz79u1r9tgAQEGaHiizZ8/OW9/61nFr5557bp5//vkkSUdHR5JM2C0ZHh6esKvymtbW1syYMWPcAQAcv5oeKJdcckmeeuqpcWtPP/10zjrrrCRJV1dXOjo6Mjg42Lj/0KFD2b59exYuXNjscQCASajp7+L58Ic/nIULF6a/vz9XX311vvKVr2Tz5s3ZvHlzku/8aqe3tzf9/f3p7u5Od3d3+vv7M3369FxzzTXNHgcAmISaHigXXXRR7r///qxZsya33nprurq6smHDhlx77bWNc26++eYcPHgwK1asyP79+7NgwYJs27YtbW1tzR4HAJiEmh4oSXLllVfmyiuv/J73t7S0pK+vL319fcfiywMAk5zP4gEAiiNQAIDiCBQAoDgCBQAojkABAIojUACA4hyTtxnDT4qzVz9Y9whJkmdvX1r3CABNZQcFACiOQAEAiiNQAIDiCBQAoDgCBQAojkABAIojUACA4ggUAKA4AgUAKI5AAQCKI1AAgOIIFACgOAIFACiOQAEAiiNQAIDiCBQAoDgCBQAojkABAIojUACA4ggUAKA4AgUAKI5AAQCKI1AAgOIIFACgOAIFACiOQAEAiiNQAIDiCBQAoDgCBQAojkABAIojUACA4ggUAKA4AgUAKI5AAQCKI1AAgOIIFACgOAIFACiOQAEAiiNQAIDiCBQAoDgCBQAojkABAIojUACA4ggUAKA4AgUAKI5AAQCKc8wDZWBgIC0tLent7W2sVVWVvr6+dHZ2Ztq0aVm8eHH27NlzrEcBACaJYxooO3fuzObNm3P++eePW1+3bl3Wr1+fjRs3ZufOneno6MgVV1yRAwcOHMtxAIBJ4pgFyksvvZRrr702d955Z0455ZTGelVV2bBhQ9auXZtly5Zl7ty52bJlS1555ZVs3br1WI0DAEwixyxQVq5cmaVLl+byyy8ft753794MDQ2lp6ensdba2ppFixZlx44dR32usbGxjI6OjjsAgOPX1GPxpPfee28ef/zx7Ny5c8J9Q0NDSZL29vZx6+3t7XnuueeO+nwDAwP52Mc+1vxBgaY7e/WDdY/Q8OztS+seAXiDmr6Dsm/fvtx000255557ctJJJ33P81paWsbdrqpqwtpr1qxZk5GRkcaxb9++ps4MAJSl6Tsou3btyvDwcObNm9dYO3z4cB555JFs3LgxTz31VJLv7KTMnj27cc7w8PCEXZXXtLa2prW1tdmjAgCFavoOymWXXZYnnngiu3fvbhzz58/Ptddem927d+ctb3lLOjo6Mjg42HjMoUOHsn379ixcuLDZ4wAAk1DTd1Da2toyd+7ccWsnn3xyZs2a1Vjv7e1Nf39/uru7093dnf7+/kyfPj3XXHNNs8cBACahY/Ii2R/k5ptvzsGDB7NixYrs378/CxYsyLZt29LW1lbHOABAYX4sgfLFL35x3O2Wlpb09fWlr6/vx/HlAYBJxmfxAADFESgAQHEECgBQHIECABRHoAAAxREoAEBxBAoAUByBAgAUR6AAAMURKABAcQQKAFAcgQIAFEegAADFESgAQHEECgBQHIECABRHoAAAxREoAEBxBAoAUByBAgAUR6AAAMURKABAcQQKAFAcgQIAFEegAADFESgAQHEECgBQHIECABRHoAAAxREoAEBxBAoAUByBAgAUR6AAAMURKABAcQQKAFAcgQIAFEegAADFESgAQHEECgBQHIECABRHoAAAxREoAEBxBAoAUByBAgAUR6AAAMURKABAcQQKAFAcgQIAFEegAADFESgAQHEECgBQHIECABRHoAAAxWl6oAwMDOSiiy5KW1tbTj/99LzrXe/KU089Ne6cqqrS19eXzs7OTJs2LYsXL86ePXuaPQoAMEk1PVC2b9+elStX5stf/nIGBwfz6quvpqenJy+//HLjnHXr1mX9+vXZuHFjdu7cmY6OjlxxxRU5cOBAs8cBACahqc1+ws997nPjbt911105/fTTs2vXrvzSL/1SqqrKhg0bsnbt2ixbtixJsmXLlrS3t2fr1q25/vrrmz0SADDJHPPXoIyMjCRJTj311CTJ3r17MzQ0lJ6ensY5ra2tWbRoUXbs2HHU5xgbG8vo6Oi4AwA4fh3TQKmqKqtWrcqll16auXPnJkmGhoaSJO3t7ePObW9vb9z33QYGBjJz5szGMWfOnGM5NgBQs2MaKDfccEO+9rWv5R/+4R8m3NfS0jLudlVVE9Zes2bNmoyMjDSOffv2HZN5AYAyNP01KK+58cYb88ADD+SRRx7JGWec0Vjv6OhI8p2dlNmzZzfWh4eHJ+yqvKa1tTWtra3HalQAoDBN30Gpqio33HBDPv3pT+fzn/98urq6xt3f1dWVjo6ODA4ONtYOHTqU7du3Z+HChc0eBwCYhJq+g7Jy5cps3bo1n/3sZ9PW1tZ4XcnMmTMzbdq0tLS0pLe3N/39/enu7k53d3f6+/szffr0XHPNNc0eBwCYhJoeKJs2bUqSLF68eNz6XXfdld/+7d9Oktx88805ePBgVqxYkf3792fBggXZtm1b2tramj0OADAJNT1Qqqr6gee0tLSkr68vfX19zf7yAMBxwGfxAADFESgAQHEECgBQHIECABRHoAAAxREoAEBxBAoAUByBAgAUR6AAAMURKABAcQQKAFAcgQIAFEegAADFESgAQHEECgBQHIECABRHoAAAxREoAEBxBAoAUByBAgAUR6AAAMURKABAcQQKAFAcgQIAFEegAADFmVr3AADHu7NXP1j3CA3P3r607hHgh2IHBQAojkABAIojUACA4ggUAKA4AgUAKI5AAQCKI1AAgOIIFACgOAIFACiOQAEAiiNQAIDiCBQAoDgCBQAojkABAIojUACA4ggUAKA4AgUAKI5AAQCKI1AAgOIIFACgOAIFACiOQAEAiiNQAIDiCBQAoDgCBQAojkABAIojUACA4tQaKHfccUe6urpy0kknZd68efnSl75U5zgAQCGm1vWF77vvvvT29uaOO+7IJZdckr/5m7/JkiVL8uSTT+bMM8+saywAfkzOXv1g3SMkSZ69fWndI3AUte2grF+/Ph/84AfzO7/zOzn33HOzYcOGzJkzJ5s2baprJACgELXsoBw6dCi7du3K6tWrx6339PRkx44dE84fGxvL2NhY4/bIyEiSZHR09JjMd2TslWPyvG/EsfoeXy/X5OhKuS6uydGVcl1ck6Mr5bqUdE2Od69d66qqfvDJVQ1eeOGFKkn1b//2b+PWb7vtturnfu7nJpx/yy23VEkcDofD4XAcB8e+fft+YCvU9hqUJGlpaRl3u6qqCWtJsmbNmqxatapx+8iRI/mf//mfzJo166jn1210dDRz5szJvn37MmPGjLrHKYbrMpFrMpFrcnSuy0SuyUSlX5OqqnLgwIF0dnb+wHNrCZTTTjstU6ZMydDQ0Lj14eHhtLe3Tzi/tbU1ra2t49be/OY3H8sRm2LGjBlF/gdSN9dlItdkItfk6FyXiVyTiUq+JjNnzvyhzqvlRbInnnhi5s2bl8HBwXHrg4ODWbhwYR0jAQAFqe1XPKtWrcr73//+zJ8/PxdffHE2b96c559/PsuXL69rJACgELUFynve8558+9vfzq233poXX3wxc+fOzT//8z/nrLPOqmukpmltbc0tt9wy4ddSP+lcl4lck4lck6NzXSZyTSY6nq5JS1X9MO/1AQD48fFZPABAcQQKAFAcgQIAFEegAADFESjHwB133JGurq6cdNJJmTdvXr70pS/VPVKtHnnkkVx11VXp7OxMS0tLPvOZz9Q9Uu0GBgZy0UUXpa2tLaeffnre9a535amnnqp7rFpt2rQp559/fuMPTF188cV56KGH6h6rKAMDA2lpaUlvb2/do9Sqr68vLS0t446Ojo66x6rdCy+8kPe9732ZNWtWpk+fnre//e3ZtWtX3WO9YQKlye6777709vZm7dq1+epXv5pf/MVfzJIlS/L888/XPVptXn755VxwwQXZuHFj3aMUY/v27Vm5cmW+/OUvZ3BwMK+++mp6enry8ssv1z1abc4444zcfvvteeyxx/LYY4/lV37lV/LOd74ze/bsqXu0IuzcuTObN2/O+eefX/coRXjb296WF198sXE88cQTdY9Uq/379+eSSy7JCSeckIceeihPPvlkPvGJT0yKv7r+PTXl0/9o+IVf+IVq+fLl49bOOeecavXq1TVNVJYk1f3331/3GMUZHh6uklTbt2+ve5SinHLKKdXf/u3f1j1G7Q4cOFB1d3dXg4OD1aJFi6qbbrqp7pFqdcstt1QXXHBB3WMU5aMf/Wh16aWX1j1GU9lBaaJDhw5l165d6enpGbfe09OTHTt21DQVk8HIyEiS5NRTT615kjIcPnw49957b15++eVcfPHFdY9Tu5UrV2bp0qW5/PLL6x6lGN/4xjfS2dmZrq6uvPe9780zzzxT90i1euCBBzJ//vy8+93vzumnn54LL7wwd955Z91j/UgEShP993//dw4fPjzhAw/b29snfDAivKaqqqxatSqXXnpp5s6dW/c4tXriiSfyUz/1U2ltbc3y5ctz//33561vfWvdY9Xq3nvvzeOPP56BgYG6RynGggULcvfdd+fhhx/OnXfemaGhoSxcuDDf/va36x6tNs8880w2bdqU7u7uPPzww1m+fHk+9KEP5e677657tDestj91fzxraWkZd7uqqglr8JobbrghX/va1/Loo4/WPUrtfv7nfz67d+/O//7v/+Yf//Efc91112X79u0/sZGyb9++3HTTTdm2bVtOOumkuscpxpIlSxr/Pu+883LxxRfnZ37mZ7Jly5asWrWqxsnqc+TIkcyfPz/9/f1JkgsvvDB79uzJpk2b8lu/9Vs1T/fG2EFpotNOOy1TpkyZsFsyPDw8YVcFkuTGG2/MAw88kC984Qs544wz6h6ndieeeGJ+9md/NvPnz8/AwEAuuOCC/MVf/EXdY9Vm165dGR4ezrx58zJ16tRMnTo127dvz1/+5V9m6tSpOXz4cN0jFuHkk0/Oeeedl2984xt1j1Kb2bNnTwj5c889d1K/QUOgNNGJJ56YefPmZXBwcNz64OBgFi5cWNNUlKiqqtxwww359Kc/nc9//vPp6uqqe6QiVVWVsbGxuseozWWXXZYnnngiu3fvbhzz58/Ptddem927d2fKlCl1j1iEsbGxfP3rX8/s2bPrHqU2l1xyyYQ/VfD0009P6g/g9SueJlu1alXe//73Z/78+bn44ouzefPmPP/881m+fHndo9XmpZdeyje/+c3G7b1792b37t059dRTc+aZZ9Y4WX1WrlyZrVu35rOf/Wza2toau24zZ87MtGnTap6uHn/wB3+QJUuWZM6cOTlw4EDuvffefPGLX8znPve5ukerTVtb24TXJZ188smZNWvWT/TrlT7ykY/kqquuyplnnpnh4eH8yZ/8SUZHR3PdddfVPVptPvzhD2fhwoXp7+/P1Vdfna985SvZvHlzNm/eXPdob1y9byI6Pv3VX/1VddZZZ1Unnnhi9Y53vOMn/q2jX/jCF6okE47rrruu7tFqc7TrkaS666676h6tNh/4wAca/9/89E//dHXZZZdV27Ztq3us4nibcVW95z3vqWbPnl2dcMIJVWdnZ7Vs2bJqz549dY9Vu3/6p3+q5s6dW7W2tlbnnHNOtXnz5rpH+pG0VFVV1dRGAABH5TUoAEBxBAoAUByBAgAUR6AAAMURKABAcQQKAFAcgQIAFEegAADFEShAcRYvXpze3t66xwBqJFAAgOIIFACgOAIFACiOQAEAiiNQAIDiCBQAoDgCBQAojkABAIojUACA4ggUAKA4LVVVVXUPAQDw/7ODAgAUR6AAAMURKABAcQQKAFAcgQIAFEegAADFESgAQHEECgBQHIECABRHoAAAxREoAEBx/h894AS6MKHZXQAAAABJRU5ErkJggg==",
+      "text/plain": [
+       "<Figure size 640x480 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "plt.hist(data[:, 0], bins=np.arange(-0.25,6.26,0.5))\n",
+    "plt.xlabel(\"k\")\n",
+    "#plt.savefig(\"hist.pdf\")\n",
+    "plt.show()\n",
+    "plt.hist(data[:, 1], bins=np.arange(-0.25,6.26,0.5))\n",
+    "plt.xlabel(\"l\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "4183331e-8a9f-4af5-829f-3fcb9b2abb31",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "### Cumulated Distribution"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 16,
+   "id": "4ecfb198-c621-4ee4-9d24-9f9a8cb8bec7",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": ""
+    },
+    "tags": []
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "median 1.0\n"
+     ]
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGwCAYAAAB7MGXBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAdY0lEQVR4nO3dcWzX9Z348VeltnWO1hO0wqzYOXXcmDjbk2uRnNOtSzVk5paDxTthmyZrDmXQcxlIMicxq3c5jXMKjil6JG6SnTpdZEqTeYjD5UYP7oySm3e4lWmxKbtrkV3KKN/7w5/Nr9ei/Vbw1cLjkXyTfd98Pt/v6/vNlj73+Xy/n29JoVAoBABAkpOyBwAATmxiBABIJUYAgFRiBABIJUYAgFRiBABIJUYAgFSl2QOMxuHDh+ONN96IyZMnR0lJSfY4AMAoFAqF2L9/f0yfPj1OOunIxz8mRIy88cYbUVNTkz0GADAGe/bsibPPPvuI/z4hYmTy5MkR8faLqaysTJ4GABiNvr6+qKmpGfw7fiQTIkbeOTVTWVkpRgBggnmvj1j4ACsAkEqMAACpxAgAkEqMAACpxAgAkEqMAACpxAgAkEqMAACpxAgAkEqMAACpxAgAkKroGHn++edj/vz5MX369CgpKYkf//jH77nPli1boq6uLioqKuKjH/1o3H///WOZFQA4DhUdIwcOHIjZs2fHvffeO6rtX3vttbjqqqti3rx5sWPHjrjlllti6dKl8dhjjxU9LABw/Cn6V3ubm5ujubl51Nvff//9cc4558Tdd98dEREzZ86M7du3x9///d/HF77whWKfHgA4zhzzz4y8+OKL0dTUNGTtc5/7XGzfvj3+8Ic/jLhPf39/9PX1DbkBAMenoo+MFGvv3r1RXV09ZK26ujoOHToUPT09MW3atGH7tLW1xW233XasRwOAE9K5K54ecv/Xd1ydNMnbPpBv05SUlAy5XygURlx/x8qVK6O3t3fwtmfPnmM+IwCQ45gfGTnrrLNi7969Q9a6u7ujtLQ0pkyZMuI+5eXlUV5efqxHAwDGgWMeIw0NDfGTn/xkyNrmzZujvr4+Tj755GP99ACcgP7vaQjGt6JP07z11luxc+fO2LlzZ0S8/dXdnTt3RmdnZ0S8fYpl0aJFg9u3tLTEb37zm2htbY1du3bF+vXr48EHH4ybb7756LwCAGBCK/rIyPbt2+PTn/704P3W1taIiFi8eHE8/PDD0dXVNRgmERG1tbWxadOmWL58edx3330xffr0uOeee3ytFwCIiIiSwjufJh3H+vr6oqqqKnp7e6OysjJ7HADGOadpinOsvk0z2r/ffpsGAEglRgCAVGIEAEglRgCAVGIEAEglRgCAVGIEAEglRgCAVMf8t2kAeH9cwIvjnSMjAEAqMQIApBIjAEAqMQIApBIjAEAqMQIApBIjAEAqMQIApBIjAEAqMQIApBIjAEAqMQIApBIjAEAqMQIApCrNHgDg3BVPZ48AJHJkBABIJUYAgFRiBABIJUYAgFRiBABIJUYAgFRiBABIJUYAgFRiBABIJUYAgFRiBABIJUYAgFRiBABIJUYAgFRiBABIJUYAgFRiBABIJUYAgFRiBABIJUYAgFRiBABIJUYAgFRiBABIJUYAgFRiBABIJUYAgFRiBABIJUYAgFRiBABIJUYAgFRiBABIJUYAgFRiBABIJUYAgFRiBABIJUYAgFRjipE1a9ZEbW1tVFRURF1dXWzduvVdt3/kkUdi9uzZ8aEPfSimTZsWX/7yl2Pfvn1jGhgAOL4UHSMbN26MZcuWxapVq2LHjh0xb968aG5ujs7OzhG3f+GFF2LRokVx/fXXx8svvxw/+tGP4pe//GXccMMN73t4AGDiKzpG7rrrrrj++uvjhhtuiJkzZ8bdd98dNTU1sXbt2hG3/8UvfhHnnntuLF26NGpra+Oyyy6Lr371q7F9+/YjPkd/f3/09fUNuQEAx6eiYuTgwYPR0dERTU1NQ9abmppi27ZtI+7T2NgYv/3tb2PTpk1RKBTizTffjH/8x3+Mq6+++ojP09bWFlVVVYO3mpqaYsYEACaQomKkp6cnBgYGorq6esh6dXV17N27d8R9Ghsb45FHHomFCxdGWVlZnHXWWXHaaafFd7/73SM+z8qVK6O3t3fwtmfPnmLGBAAmkDF9gLWkpGTI/UKhMGztHa+88kosXbo0vvnNb0ZHR0c888wz8dprr0VLS8sRH7+8vDwqKyuH3ACA41NpMRtPnTo1Jk2aNOwoSHd397CjJe9oa2uLuXPnxte//vWIiLjooovi1FNPjXnz5sXtt98e06ZNG+PoAMDxoKgjI2VlZVFXVxft7e1D1tvb26OxsXHEfX7/+9/HSScNfZpJkyZFxNtHVACAE1vRp2laW1vjgQceiPXr18euXbti+fLl0dnZOXjaZeXKlbFo0aLB7efPnx+PP/54rF27Nnbv3h0///nPY+nSpXHppZfG9OnTj94rAQAmpKJO00RELFy4MPbt2xerV6+Orq6umDVrVmzatClmzJgRERFdXV1DrjnypS99Kfbv3x/33ntv/M3f/E2cdtppccUVV8Tf/u3fHr1XAQBMWCWFCXCupK+vL6qqqqK3t9eHWeE4dO6Kp7NHgBPar+848uU23o/R/v322zQAQKqiT9MA787/ywcojiMjAEAqMQIApBIjAEAqMQIApBIjAEAqMQIApBIjAEAqMQIApBIjAEAqMQIApBIjAEAqMQIApBIjAEAqMQIApBIjAEAqMQIApBIjAEAqMQIApBIjAEAqMQIApBIjAEAqMQIApBIjAEAqMQIApBIjAEAqMQIApBIjAEAqMQIApBIjAEAqMQIApBIjAEAqMQIApBIjAEAqMQIApBIjAEAqMQIApBIjAEAqMQIApBIjAEAqMQIApBIjAEAqMQIApBIjAEAqMQIApBIjAEAqMQIApBIjAEAqMQIApBIjAEAqMQIApBIjAEAqMQIApBIjAEAqMQIApBIjAEAqMQIApBIjAECqMcXImjVrora2NioqKqKuri62bt36rtv39/fHqlWrYsaMGVFeXh7nnXderF+/fkwDAwDHl9Jid9i4cWMsW7Ys1qxZE3Pnzo3vfe970dzcHK+88kqcc845I+6zYMGCePPNN+PBBx+Mj33sY9Hd3R2HDh1638MDABNfSaFQKBSzw5w5c+KSSy6JtWvXDq7NnDkzrrnmmmhraxu2/TPPPBNf/OIXY/fu3XH66aePaci+vr6oqqqK3t7eqKysHNNjwAfl3BVPZ48AUJRf33H1MXnc0f79Luo0zcGDB6OjoyOampqGrDc1NcW2bdtG3Oepp56K+vr6+Lu/+7v4yEc+EhdccEHcfPPN8T//8z9HfJ7+/v7o6+sbcgMAjk9Fnabp6emJgYGBqK6uHrJeXV0de/fuHXGf3bt3xwsvvBAVFRXxxBNPRE9PT/z1X/91/O53vzvi50ba2tritttuK2Y0AGCCGtMHWEtKSobcLxQKw9becfjw4SgpKYlHHnkkLr300rjqqqvirrvuiocffviIR0dWrlwZvb29g7c9e/aMZUwAYAIo6sjI1KlTY9KkScOOgnR3dw87WvKOadOmxUc+8pGoqqoaXJs5c2YUCoX47W9/G+eff/6wfcrLy6O8vLyY0QCACaqoIyNlZWVRV1cX7e3tQ9bb29ujsbFxxH3mzp0bb7zxRrz11luDa7/61a/ipJNOirPPPnsMIwMAx5OiT9O0trbGAw88EOvXr49du3bF8uXLo7OzM1paWiLi7VMsixYtGtz+2muvjSlTpsSXv/zleOWVV+L555+Pr3/96/GVr3wlTjnllKP3SgCACano64wsXLgw9u3bF6tXr46urq6YNWtWbNq0KWbMmBEREV1dXdHZ2Tm4/Yc//OFob2+Pm266Kerr62PKlCmxYMGCuP3224/eqwAAJqyirzOSwXVGmEhcZwSYaCbUdUYAAI42MQIApBIjAEAqMQIApBIjAEAqMQIApBIjAEAqMQIApCr6CqyceFzEC4BjyZERACCVGAEAUokRACCVGAEAUokRACCVGAEAUokRACCVGAEAUokRACCVGAEAUokRACCVGAEAUokRACCVGAEAUokRACCVGAEAUokRACCVGAEAUokRACCVGAEAUokRACCVGAEAUokRACCVGAEAUokRACCVGAEAUokRACCVGAEAUokRACCVGAEAUokRACCVGAEAUokRACCVGAEAUokRACCVGAEAUokRACCVGAEAUokRACCVGAEAUokRACCVGAEAUokRACCVGAEAUokRACCVGAEAUokRACCVGAEAUokRACCVGAEAUo0pRtasWRO1tbVRUVERdXV1sXXr1lHt9/Of/zxKS0vj4osvHsvTAgDHoaJjZOPGjbFs2bJYtWpV7NixI+bNmxfNzc3R2dn5rvv19vbGokWL4sorrxzzsADA8afoGLnrrrvi+uuvjxtuuCFmzpwZd999d9TU1MTatWvfdb+vfvWrce2110ZDQ8OYhwUAjj9FxcjBgwejo6Mjmpqahqw3NTXFtm3bjrjfQw89FP/5n/8Zt95666iep7+/P/r6+obcAIDjU1Ex0tPTEwMDA1FdXT1kvbq6Ovbu3TviPq+++mqsWLEiHnnkkSgtLR3V87S1tUVVVdXgraamppgxAYAJZEwfYC0pKRlyv1AoDFuLiBgYGIhrr702brvttrjgggtG/fgrV66M3t7ewduePXvGMiYAMAGM7lDF/zN16tSYNGnSsKMg3d3dw46WRETs378/tm/fHjt27Igbb7wxIiIOHz4chUIhSktLY/PmzXHFFVcM26+8vDzKy8uLGQ0AmKCKOjJSVlYWdXV10d7ePmS9vb09Ghsbh21fWVkZL730UuzcuXPw1tLSEhdeeGHs3Lkz5syZ8/6mBwAmvKKOjEREtLa2xnXXXRf19fXR0NAQ69ati87OzmhpaYmIt0+xvP7667Fhw4Y46aSTYtasWUP2P/PMM6OiomLYOgBwYio6RhYuXBj79u2L1atXR1dXV8yaNSs2bdoUM2bMiIiIrq6u97zmCADAO0oKhUIhe4j30tfXF1VVVdHb2xuVlZXZ45xwzl3xdPYIABxDv77j6mPyuKP9++23aQCAVGIEAEglRgCAVGIEAEglRgCAVGIEAEglRgCAVGIEAEglRgCAVGIEAEglRgCAVGIEAEglRgCAVGIEAEglRgCAVGIEAEglRgCAVGIEAEglRgCAVGIEAEglRgCAVGIEAEglRgCAVGIEAEglRgCAVGIEAEglRgCAVGIEAEglRgCAVGIEAEglRgCAVGIEAEglRgCAVGIEAEglRgCAVGIEAEglRgCAVGIEAEglRgCAVGIEAEglRgCAVGIEAEglRgCAVGIEAEglRgCAVGIEAEglRgCAVGIEAEglRgCAVKXZA2Q7d8XT2SMAwAnNkREAIJUYAQBSiREAIJUYAQBSiREAIJUYAQBSiREAIJUYAQBSiREAIJUYAQBSjSlG1qxZE7W1tVFRURF1dXWxdevWI277+OOPx2c/+9k444wzorKyMhoaGuLZZ58d88AAwPGl6BjZuHFjLFu2LFatWhU7duyIefPmRXNzc3R2do64/fPPPx+f/exnY9OmTdHR0RGf/vSnY/78+bFjx473PTwAMPGVFAqFQjE7zJkzJy655JJYu3bt4NrMmTPjmmuuiba2tlE9xic+8YlYuHBhfPOb3xzx3/v7+6O/v3/wfl9fX9TU1ERvb29UVlYWM+578kN5AJzofn3H1cfkcfv6+qKqquo9/34XdWTk4MGD0dHREU1NTUPWm5qaYtu2baN6jMOHD8f+/fvj9NNPP+I2bW1tUVVVNXirqakpZkwAYAIpKkZ6enpiYGAgqqurh6xXV1fH3r17R/UYd955Zxw4cCAWLFhwxG1WrlwZvb29g7c9e/YUMyYAMIGUjmWnkpKSIfcLhcKwtZH88Ic/jG9961vx5JNPxplnnnnE7crLy6O8vHwsowEAE0xRMTJ16tSYNGnSsKMg3d3dw46W/F8bN26M66+/Pn70ox/FZz7zmeInBQCOS0WdpikrK4u6urpob28fst7e3h6NjY1H3O+HP/xhfOlLX4of/OAHcfXVx+ZDMgDAxFT0aZrW1ta47rrror6+PhoaGmLdunXR2dkZLS0tEfH25z1ef/312LBhQ0S8HSKLFi2K73znO/Gnf/qng0dVTjnllKiqqjqKLwUAmIiKjpGFCxfGvn37YvXq1dHV1RWzZs2KTZs2xYwZMyIioqura8g1R773ve/FoUOHYsmSJbFkyZLB9cWLF8fDDz/8/l8BADChFX2dkQyj/Z7yWLjOCAAnugl1nREAgKNNjAAAqcQIAJBKjAAAqcQIAJBKjAAAqcQIAJBKjAAAqcQIAJBKjAAAqcQIAJBKjAAAqcQIAJBKjAAAqcQIAJBKjAAAqcQIAJBKjAAAqcQIAJBKjAAAqcQIAJBKjAAAqcQIAJBKjAAAqcQIAJBKjAAAqcQIAJBKjAAAqcQIAJBKjAAAqcQIAJBKjAAAqcQIAJBKjAAAqcQIAJBKjAAAqcQIAJBKjAAAqcQIAJBKjAAAqcQIAJBKjAAAqcQIAJBKjAAAqcQIAJBKjAAAqcQIAJBKjAAAqcQIAJBKjAAAqcQIAJBKjAAAqcQIAJBKjAAAqcQIAJBKjAAAqcQIAJBKjAAAqcQIAJBqTDGyZs2aqK2tjYqKiqirq4utW7e+6/ZbtmyJurq6qKioiI9+9KNx//33j2lYAOD4U3SMbNy4MZYtWxarVq2KHTt2xLx586K5uTk6OztH3P61116Lq666KubNmxc7duyIW265JZYuXRqPPfbY+x4eAJj4SgqFQqGYHebMmROXXHJJrF27dnBt5syZcc0110RbW9uw7b/xjW/EU089Fbt27Rpca2lpiX/913+NF198cVTP2dfXF1VVVdHb2xuVlZXFjPuezl3x9FF9PACYaH59x9XH5HFH+/e7tJgHPXjwYHR0dMSKFSuGrDc1NcW2bdtG3OfFF1+MpqamIWuf+9zn4sEHH4w//OEPcfLJJw/bp7+/P/r7+wfv9/b2RsTbL+poO9z/+6P+mAAwkRyLv6///+O+13GPomKkp6cnBgYGorq6esh6dXV17N27d8R99u7dO+L2hw4dip6enpg2bdqwfdra2uK2224btl5TU1PMuADAKFTdfWwff//+/VFVVXXEfy8qRt5RUlIy5H6hUBi29l7bj7T+jpUrV0Zra+vg/cOHD8fvfve7mDJlyrs+T7H6+vqipqYm9uzZc9RP/xyPvF+j570aPe/V6HmvRs97NXrH8r0qFAqxf//+mD59+rtuV1SMTJ06NSZNmjTsKEh3d/ewox/vOOuss0bcvrS0NKZMmTLiPuXl5VFeXj5k7bTTTitm1KJUVlb6L2sRvF+j570aPe/V6HmvRs97NXrH6r16tyMi7yjq2zRlZWVRV1cX7e3tQ9bb29ujsbFxxH0aGhqGbb958+aor68f8fMiAMCJpeiv9ra2tsYDDzwQ69evj127dsXy5cujs7MzWlpaIuLtUyyLFi0a3L6lpSV+85vfRGtra+zatSvWr18fDz74YNx8881H71UAABNW0Z8ZWbhwYezbty9Wr14dXV1dMWvWrNi0aVPMmDEjIiK6urqGXHOktrY2Nm3aFMuXL4/77rsvpk+fHvfcc0984QtfOHqvYozKy8vj1ltvHXZKiJF5v0bPezV63qvR816Nnvdq9MbDe1X0dUYAAI4mv00DAKQSIwBAKjECAKQSIwBAqhM6RtasWRO1tbVRUVERdXV1sXXr1uyRxqXnn38+5s+fH9OnT4+SkpL48Y9/nD3SuNTW1hZ/8id/EpMnT44zzzwzrrnmmvj3f//37LHGpbVr18ZFF100eJGlhoaG+OlPf5o91oTQ1tYWJSUlsWzZsuxRxqVvfetbUVJSMuR21llnZY81br3++uvxV3/1VzFlypT40Ic+FBdffHF0dHR84HOcsDGycePGWLZsWaxatSp27NgR8+bNi+bm5iFfS+ZtBw4ciNmzZ8e9996bPcq4tmXLlliyZEn84he/iPb29jh06FA0NTXFgQMHskcbd84+++y44447Yvv27bF9+/a44oor4vOf/3y8/PLL2aONa7/85S9j3bp1cdFFF2WPMq594hOfiK6ursHbSy+9lD3SuPRf//VfMXfu3Dj55JPjpz/9abzyyitx5513HtMrnh9R4QR16aWXFlpaWoasffzjHy+sWLEiaaKJISIKTzzxRPYYE0J3d3chIgpbtmzJHmVC+KM/+qPCAw88kD3GuLV///7C+eefX2hvby/82Z/9WeFrX/ta9kjj0q233lqYPXt29hgTwje+8Y3CZZddlj1GoVAoFE7IIyMHDx6Mjo6OaGpqGrLe1NQU27ZtS5qK401vb29ERJx++unJk4xvAwMD8eijj8aBAweioaEhe5xxa8mSJXH11VfHZz7zmexRxr1XX301pk+fHrW1tfHFL34xdu/enT3SuPTUU09FfX19/MVf/EWceeaZ8alPfSq+//3vp8xyQsZIT09PDAwMDPtxv+rq6mE/6gdjUSgUorW1NS677LKYNWtW9jjj0ksvvRQf/vCHo7y8PFpaWuKJJ56IP/7jP84ea1x69NFH41/+5V+ira0te5Rxb86cObFhw4Z49tln4/vf/37s3bs3GhsbY9++fdmjjTu7d++OtWvXxvnnnx/PPvtstLS0xNKlS2PDhg0f+CxFXw7+eFJSUjLkfqFQGLYGY3HjjTfGv/3bv8ULL7yQPcq4deGFF8bOnTvjv//7v+Oxxx6LxYsXx5YtWwTJ/7Fnz5742te+Fps3b46Kiorscca95ubmwf/8yU9+MhoaGuK8886Lf/iHf4jW1tbEycafw4cPR319fXz729+OiIhPfepT8fLLL8fatWuH/MbcB+GEPDIyderUmDRp0rCjIN3d3cOOlkCxbrrppnjqqafiueeei7PPPjt7nHGrrKwsPvaxj0V9fX20tbXF7Nmz4zvf+U72WONOR0dHdHd3R11dXZSWlkZpaWls2bIl7rnnnigtLY2BgYHsEce1U089NT75yU/Gq6++mj3KuDNt2rRh8T9z5syUL3KckDFSVlYWdXV10d7ePmS9vb09Ghsbk6ZioisUCnHjjTfG448/Hj/72c+itrY2e6QJpVAoRH9/f/YY486VV14ZL730UuzcuXPwVl9fH3/5l38ZO3fujEmTJmWPOK719/fHrl27Ytq0admjjDtz584ddvmBX/3qV4M/fPtBOmFP07S2tsZ1110X9fX10dDQEOvWrYvOzs5oaWnJHm3ceeutt+I//uM/Bu+/9tprsXPnzjj99NPjnHPOSZxsfFmyZEn84Ac/iCeffDImT548eOStqqoqTjnllOTpxpdbbrklmpubo6amJvbv3x+PPvpo/NM//VM888wz2aONO5MnTx72uaNTTz01pkyZ4vNII7j55ptj/vz5cc4550R3d3fcfvvt0dfXF4sXL84ebdxZvnx5NDY2xre//e1YsGBB/PM//3OsW7cu1q1b98EPk/tlnlz33XdfYcaMGYWysrLCJZdc4iuYR/Dcc88VImLYbfHixdmjjSsjvUcRUXjooYeyRxt3vvKVrwz+b++MM84oXHnllYXNmzdnjzVh+GrvkS1cuLAwbdq0wsknn1yYPn164c///M8LL7/8cvZY49ZPfvKTwqxZswrl5eWFj3/844V169alzFFSKBQKH3wCAQC87YT8zAgAMH6IEQAglRgBAFKJEQAglRgBAFKJEQAglRgBAFKJEQAglRgBUlx++eWxbNmy7DGAcUCMAACpxAgAkEqMAOPCM888E1VVVbFhw4bsUYAPmBgB0j366KOxYMGC2LBhQyxatCh7HOADJkaAVGvWrImWlpZ48skn4/Of/3z2OECC0uwBgBPXY489Fm+++Wa88MILcemll2aPAyRxZARIc/HFF8cZZ5wRDz30UBQKhexxgCRiBEhz3nnnxXPPPRdPPvlk3HTTTdnjAEmcpgFSXXDBBfHcc8/F5ZdfHqWlpXH33XdnjwR8wMQIkO7CCy+Mn/3sZ3H55ZfHpEmT4s4778weCfgAlRScqAUAEvnMCACQSowAAKnECACQSowAAKnECACQSowAAKnECACQSowAAKnECACQSowAAKnECACQ6n8BMh3HN5rbMX8AAAAASUVORK5CYII=",
+      "text/plain": [
+       "<Figure size 640x480 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "plt.hist(data[:, 0], bins=100, cumulative=True, density = True, label=\"kumuliert\")\n",
+    "plt.xlabel(\"k\")\n",
+    "#plt.savefig(\"hist2.pdf\")\n",
+    "print(\"median\", np.median(data[:, 0]))"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "d00cadf3-0cfa-4f59-9962-4b9e6b707e0b",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": ""
+    },
+    "tags": []
+   },
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "markdown",
+   "id": "ceb5ca27-a96a-4ee3-967b-5f02efe66540",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "### Means\n",
+    "\n",
+    "---\n",
+    "\n",
+    "different means:\n",
+    " -  arithmetric mean: $ \\overline{x} = \\frac{1}{n}\\sum\\limits_{i=1}^n x_i (= \\mu)$\n",
+    " -  geometric mean: $ \\overline{{x}}_\\mathrm {geom} = \\sqrt[n]{\\prod\\limits_{i=1}^{n}{x_i}}$\n",
+    " -  quadratic mean: $ \\overline{{x}}_\\mathrm{quadr} = \\sqrt {\\frac {1}{n} \\sum\\limits_{i=1}^{n}x_i^2} = \\sqrt{\\overline{x^2}}$\n",
+    "\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "68cea392-8d4f-48d7-aacc-0f10d46af3af",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "### Exercise: Compute mean and variance of $X$"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 13,
+   "id": "76d92d18-1d77-40d2-a910-592183635d3b",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "fragment"
+    },
+    "tags": []
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "mean [1.56535948 1.26470588]\n"
+     ]
+    }
+   ],
+   "source": [
+    "print(\"mean\", np.mean(data, axis=0))"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "id": "5f0f34b4-5bbe-439b-8b4e-fbb05794b790",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": ""
+    },
+    "tags": []
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "variance [1.85357128 1.27306805]\n"
+     ]
+    }
+   ],
+   "source": [
+    "print(\"variance\", np.var(data, axis=0))"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "id": "70a1920f-beda-4154-ad77-22a9ffe2e39f",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": ""
+    },
+    "tags": []
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "standard deviation: [1.36145925 1.12830317]\n"
+     ]
+    }
+   ],
+   "source": [
+    "print(\"standard deviation:\", np.std(data, axis=0))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "b8ab42a5-b7af-4942-9a7a-91b73e0ce625",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "# Probability Density Functions\n",
+    "\n",
+    "\n",
+    "Sie $x$ eine reelle Zahl, die das Ergebnis eines Zufallsexperiments\n",
+    "beschreibt:\n",
+    "\n",
+    "Wahrscheinlichkeitsdichte $f(x)$: (probability density function (pdf))  \n",
+    "\n",
+    "-   Wahrscheinlichkeit, dass x im Intervall $[x, x + dx]$ liegt:\n",
+    "    $f(x)\\,dx$  \n",
+    "\n",
+    "-   Normierung: $$\\int_S  f(x)\\,dx = 1$$\n",
+    "\n",
+    "Kumulierte Dichte $F(x)$: (cumulative density function (cdf);\n",
+    "Mathematik: Verteilungsfunktion)  \n",
+    "Wahrscheinlichkeit, dass x kleiner x ist:\n",
+    "$$F(x) = \\int_{-\\infty}^x  f(x^\\prime)\\,dx^\\prime$$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "13563524-0626-4a69-a6ab-f87d7f19a016",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "### Example\n",
+    "\n",
+    "$$P(a \\le x \\le b) =  \\int_a^b  f(x)\\,dx = F(b) - F(a)$$\n",
+    "\n",
+    "<img src=\"./figures/08/lognormal_pdf.png\"\n",
+    "style=\"width:55%\" /> <img src=\"./figures/08/lognormal_cdf.png\"\n",
+    "style=\"width:41.4%\" /> CC0, via Wikimedia Commons\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "14e4b782-9573-4e87-89d0-901dade25538",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "### Quantiles \n",
+    "\n",
+    "\n",
+    "Quantile $x_\\alpha$ Wert der Zufallsvariable $x$ mit\n",
+    "$$F(x_\\alpha) = \\alpha$$ Also: $$x_\\alpha = F^{-1}(\\alpha)$$\n",
+    "\n",
+    "Median: $x_{\\sfrac{1}{2}}$  \n",
+    "$$F(x_{\\sfrac{1}{2}}) = 0{,}5$$ $$x_{\\sfrac{1}{2}} = F^{-1}(0{,}5)$$\n",
+    "\n",
+    "<img src=\"./figures/09/Normalverteilung.png\" alt=\"image\" />"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "8e74c511-b730-4781-a751-e1895983cc4c",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "### Mehrdimensionale Wahrscheinlichkeitsdichten \n",
+    "\n",
+    "Beispiel: Es werden zwei Größen auf einmal gemessen mit Zufallsvektor:\n",
+    "$x,y$.  \n",
+    "Ereignis A: $x$ innerhalb $[x, x + dx]$, y beliebig  \n",
+    "Ereignis B: $y$ innerhalb $[y, y + dy]$, x beliebig\n",
+    "$$P(A \\cap B) = \\text{W. für $x$ in $[x, x + dx]$ und $y$ in $[y, y + dy]$} = f(x, y)\\,dxdy$$\n",
+    "\n",
+    "\n",
+    "Randverteilung: $$f_x(x) =  \\int_{-\\infty}^\\infty f(x,y)\\,dy$$\n",
+    "$$f_y(y) =  \\int_{-\\infty}^\\infty f(x,y)\\,dx$$\n",
+    "\n",
+    "<img src=\"./figures/09/W_top.png\" alt=\"image\" />"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "7624d391-9fd5-4567-bf84-632eead1bb20",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "### Randverteilungen \n",
+    "\n",
+    "<img src=\"./figures/09/W.png\" style=\"width:47.0%\"\n",
+    "alt=\"image\" />\n",
+    "<img src=\"./figures/09/top.png\" style=\"width:47.0%\"\n",
+    "alt=\"image\" />\n",
+    "\n",
+    "\n",
+    "Bedingte Verteilung: $$g(x|y) = \\frac{f(x,y)}{f_y(y)}$$\n",
+    "$$h(y|x) = \\frac{f(x,y)}{f_x(x)}$$\n",
+    "\n",
+    "<img src=\"./figures/09/top_cond.png\" style=\"width:96.0%\"\n",
+    "alt=\"image\" />"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "ba8fae9b-636b-4b7e-a36d-3be582c000f5",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "### Satz von Bayes \n",
+    "\n",
+    "$g(x|y) = \\frac{f(x,y)}{f_y(y)}$ und\n",
+    "$h(y|x) = \\frac{f(x,y)}{f_x(x)}$\n",
+    "\n",
+    "Satz: $$g(x|y) = \\frac{h(y|x) f_x(x)}{f_y(y)}$$\n",
+    "\n",
+    "Mit $f(x,y) = h(y|x) f_x(x) = g(x|y) f_y(y)$:\n",
+    "$$f_x(x) =  \\int_{-\\infty}^\\infty g(x|y) f_y(y)\\,dy$$\n",
+    "$$f_y(y) =  \\int_{-\\infty}^\\infty h(y|x) f_x(x)\\,dy$$\n",
+    "\n",
+    "<img src=\"./figures/08/bayes.gif\" style=\"width:80.0%\" />\n",
+    "höchstwahrscheinlich nicht Bayes"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "fdd11743-1e7b-48b6-9e9b-41bee7d4f23b",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "## Funktionen von Zufallsvariablen\n",
+    "\n",
+    "### Funktionen von Zufallsvariablen \n",
+    "\n",
+    "Sei $x$ eine Zufallsvariable, $f(x)$ ihre Wahrscheinlichkeitsdichte und\n",
+    "$a(x)$ eine stetige Funktion:  \n",
+    "\n",
+    "Was ist die Wahrscheinlichkeitsdichte $g(a)$? gleiche Wahrscheinlichkeit\n",
+    "für $x$ in $[x, x+dx]$ und $a$ in $[a, a+da]$:\n",
+    "$$g(a) da = \\int_{dS} f(x)\\,dx$$ Wenn die Umkehrfunktion $x(a)$\n",
+    "existiert:\n",
+    "$$g(a) da = \\left| \\int_{x(a)}^{x(a +da)} f(x^\\prime)\\,dx^\\prime \\right| = \\int_{x(a)}^{x(a) + |\\frac{dx}{da}|da} f(x^\\prime)\\,dx^\\prime$$\n",
+    "oder $$g(a) = f(x(a)) \\left|\\frac{dx}{da}\\right|$$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "525847ad-2ddf-468c-883f-35bc853bac8c",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "### Beispiel: \n",
+    "\n",
+    "Beispiel 1: $a(x) = \\sqrt{x}$, $x(a) = a^2$ Für $x$ gleichverteilt\n",
+    "zwischen 0 und 1, also $u(x) = 1$, ist die Wahrscheinlichkeitsdichte\n",
+    "$g(a)$:\n",
+    "$$g(a) =  u(x(a)) \\left|\\frac{dx}{da}\\right| = 1 \\cdot   \\left|\\frac{da^2}{da}\\right| = 2a \\text{ (linear verteilt)}$$\n",
+    "\n",
+    "Beispiel 1: $a(x) = F^{-1}(x)$, $x(a) = F(a)$ Für $x$ gleich verteilt\n",
+    "zwischen 0 und 1, also $u(x) = 1$, ist die Wahrscheinlichkeitsdichte\n",
+    "$g(a)$:\n",
+    "$$g(a) =  u(x(a)) \\left|\\frac{dx}{da}\\right| = 1 \\cdot   \\left|\\frac{dF(a)}{da}\\right| = f(a) \\text{ (qed).}$$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "0c669bab-6c81-45fb-a506-8ef709cd4687",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "### Funktionen von Zufallsvektoren \n",
+    "\n",
+    "Sei $\\vec x$ ein Zufallsvektor, $f(\\vec x)$ seine\n",
+    "Wahrscheinlichkeitsdichte und $\\vec a(\\vec x)$ eine stetige Funktion:  \n",
+    "\n",
+    "Was ist die Wahrscheinlichkeitsdichte $g(\\vec a)$?\n",
+    "$$g(\\vec a) = f(\\vec x) \\left| J \\right| \\text{mit } J = \n",
+    "\\begin{array}{rrrr} \n",
+    "\\frac{\\partial x_1}{\\partial a_1} &   \\frac{\\partial x_1}{\\partial a_2}  & \\dots  & \\frac{\\partial x_1}{\\partial a_m} \\\\[6pt]\n",
+    "\\frac{\\partial x_2}{\\partial a_1} &   \\frac{\\partial x_2}{\\partial a_2}  & \\dots &  \\frac{\\partial x_2}{\\partial a_m} \\\\[6pt]\n",
+    "\\vdots                & \\vdots & \\ddots & \\vdots \\\\[6pt]\n",
+    "\\frac{\\partial x_n}{\\partial a_1} &    \\frac{\\partial x_n}{\\partial a_2}  &  \\dots &  \\frac{\\partial x_n}{\\partial a_m} \\\\[6pt]\n",
+    "\\end{array}$$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "4b7f6667-c019-4b23-83fd-a1758d748762",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "## Grundbegriffe\n",
+    "\n",
+    "### Grundbegriffe \n",
+    "\n",
+    "Diskrete Zufallsvariable Mittelwert:\n",
+    "$$<r> =  \\bar r = \\sum _{i=1}^N r_i P(r_i)$$\n",
+    "\n",
+    "Kontinuierliche Zufallsvariable Wahrscheinlichkeitsdichte $f(x)$ mit\n",
+    "\n",
+    "-   $P(a \\leq x \\leq b) = \\int_a^b f(x)\\,dx$\n",
+    "\n",
+    "-   $f(x) \\geq 0$\n",
+    "\n",
+    "-   $\\int_{-\\infty}^{\\infty} f(x)\\,dx = 1$\n",
+    "\n",
+    "Mittelwert:\n",
+    "$$<x> = \\bar x = \\int_{-\\infty}^{\\infty} x \\, f(x)\\,dx = \\mu_x$$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "2907584f-bb17-463e-b084-749f2011bd4c",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "## Erwartungswerte und Momente\n",
+    "\n",
+    "### Erwartungswert \n",
+    "\n",
+    "Definition Erwartungswert der Funktion $h(x)$ f\"ur die\n",
+    "Wahrscheinlichkeitsdichte $f(x)$:\n",
+    "$$E[h] = \\int_{-\\infty}^{\\infty} h(x) \\, f(x)\\,dx$$\n",
+    "\n",
+    "Spezialfall $h(x) = x$\n",
+    "$$E[x] = \\int_{-\\infty}^{\\infty} x \\, f(x)\\,dx = <x>$$\n",
+    "\n",
+    "Erwartungswert ist ein linearer Operator\n",
+    "$$E[a\\cdot g(x) + b \\cdot h(x)] = a\\cdot E[g(x)] + b\\cdot E[h(x)]$$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "5cd273e7-3129-454b-a31c-4e91c4316bf4",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "### Varianz und Standardabweichung \n",
+    "\n",
+    "Varianz $V[x]$\n",
+    "\n",
+    "-   ein Maß für die Breite einer Wahrscheinlichkeitsdichte\n",
+    "\n",
+    "-   zweites zentrales Moment\n",
+    "\n",
+    "-   Definition\n",
+    "    $$V[x] =  E[(x - \\mu_x)^2] = \\int_{-\\infty}^{\\infty} (x-\\mu_x)^2 \\, f(x)\\,dx$$\n",
+    "\n",
+    "-   n\"utzliche Formeln:  \n",
+    "    $V[x] = E[x^2] - <x>^2$ und  \n",
+    "    $V[ax] = a^2 V[x]$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "30d01c8b-50a5-4d90-8e0b-89a68f52f9bd",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "### Varianz und Standardabweichung \n",
+    "\n",
+    "Standardabweichung $\\sigma$\n",
+    "\n",
+    "-   ein Maß für die Größe der statistischen Schwankungen der\n",
+    "    Zufallsvariablen um den Mittelwert\n",
+    "\n",
+    "-   in der Physik oft “der Fehler”\n",
+    "\n",
+    "-   Definition $$\\sigma = \\sqrt{V[x]}$$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "ae67472e-f9b2-46fa-9679-15553d31aaaf",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "### Kovarianz \n",
+    "\n",
+    "Kovarianz $V_{xy}$ für zwei Zufallsvariablen $x$ und $y$:\n",
+    "$$V_{xy} =  E[(x - \\mu_x)(y - \\mu_y)] = E[xy] - \\mu_x \\mu_y$$\n",
+    "$$V_{xy} = \\int_{-\\infty}^{\\infty} \\int_{-\\infty}^{\\infty} xy\\, f(x, y)\\,dx \\,dy - \\mu_x\\mu_y$$\n",
+    "\n",
+    "Kovarianz $V_{ab} = \\text{cov}[a, b]$ seien $a$ und $b$ Funktionen des\n",
+    "Zufallsvektors $\\vec x$:\n",
+    "$$\\text{cov}[a, b] =  E[(a - \\mu_a)(b - \\mu_b)] = E[ab] - \\mu_a \\mu_b$$\n",
+    "$$\\text{cov}[a, b]  = \\int_{-\\infty}^{\\infty} \\dots \\int_{-\\infty}^{\\infty} a(x) b(x)\\, f(\\vec x)\\,dx_1 \\dots \\,dx_n - \\mu_a\\mu_b$$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "576b4570-8a06-4224-b867-31459483e6bb",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "### Kovarianzmatrix \n",
+    "\n",
+    "$$C = \\left( \n",
+    "  \\begin{array}{rr} \n",
+    "  V_{xx} & V_{xy} \\\\ \n",
+    "  V_{yx} & V_{yy}\\\\ \n",
+    "  \\end{array} \n",
+    "  \\right)$$\n",
+    "\n",
+    "Anmerkungen:\n",
+    "\n",
+    "-   auch Fehlermatrix genannt\n",
+    "\n",
+    "-   $V_{xy} = V_{yx}$, Matrix symmetrisch\n",
+    "\n",
+    "-   $V_{ii} > 0$ Matrix positiv (semi)definit\n",
+    "\n",
+    "-   Korrelationsmatrix: $$C^\\prime = \\left( \n",
+    "      \\begin{array}{rr} \n",
+    "      V_{xx}/V_{xx} & V_{xy}/\\sqrt{V_{xx}V_{yy}} \\\\ \n",
+    "      V_{xy}/\\sqrt{V_{xx}V_{yy}} & V_{yy}/V_{yy}\\\\ \n",
+    "      \\end{array} \n",
+    "      \\right) = \\left( \n",
+    "      \\begin{array}{rr} \n",
+    "      1 & \\rho_{xy} \\\\ \n",
+    "      \\rho_{xy} & 1\\\\ \n",
+    "      \\end{array} \n",
+    "      \\right)$$\n",
+    "\n",
+    "-   Korrelationskoeffizient:\n",
+    "    $\\rho_{xy} = \\frac{V_{xy}}{\\sqrt{V_{xx}V_{yy}}}$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "ba08bfd1-4c17-4a1d-bdf6-9c517edffdd8",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "# Wahrscheinlichkeitsdichten\n",
+    "\n",
+    "## Diskrete Verteilungen\n",
+    "\n",
+    "### Binomialverteilung \n",
+    "\n",
+    "Binomialverteilung Ist $p$ die Wahrscheinlichkeit f\"ur das Auftreten\n",
+    "eines Ereignisses, so ist die Wahrscheinlichkeit, dass es bei $n$\n",
+    "Versuchen $k$-mal auftritt, gegeben durch die Binomialverteilung:\n",
+    "$$P(k) = {n \\choose k} p^k(1-p)^{n-k} \\text{,  } k = 0,1,2...n$$\n",
+    "\n",
+    "Erwartungswert und Varianz\n",
+    "$$<k> = E[k] = \\sum \\limits_{k = 0}^{n} k P(k) = np$$\n",
+    "$$V[k] = \\sigma^2 = np(1-p)$$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "c1dbdd5b-c1f4-40b3-bad6-d6639a9a635c",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "### Beispiel \n",
+    "\n",
+    "Werfen von fünf Münzen $n = 5$, $p = 0.5$  \n",
+    "\n",
+    "| k    |  0   |  1   |   2   |   3   |  4   |  5   |\n",
+    "|:-----|:----:|:----:|:-----:|:-----:|:----:|:----:|\n",
+    "| P(k) | 1/32 | 5/32 | 10/32 | 10/32 | 5/32 | 1/32 |\n",
+    "\n",
+    "<img src=\"./figures/08/binom5.pdf\" style=\"width:75.0%\" />\n",
+    "\n",
+    "### Beispiel II \n",
+    "\n",
+    "Fehler in der Effizienzbestimmung eines Selektionsschittes Es soll die\n",
+    "Effizienz eines Selektionschnittes und ihr Fehler bestimmt werden, wenn\n",
+    "in einer Stichprobe von $n$ Datenpunkten $k$ Punkte diesen Schnitt\n",
+    "überleben.  \n",
+    "Die Zufallsvariable ist die gefundene Effizienz $h_k = \\frac{k}{n}$.  \n",
+    "Wie groß ist der Fehler?  \n",
+    "Die Zahlen $k$ folgen einer Binomialverteilung mit der\n",
+    "Wahrscheinlichkeit $p_k = E[h_k] = E[\\frac{k}{n}]$: $$\\begin{aligned}\n",
+    "      \\sigma(h_k) &= &\\sqrt{V[\\frac{k}{n}]} = \\sqrt{\\frac{1}{n^2} V[k]} = \\sqrt{\\frac{1}{n^2}\\cdot np_k(1-p_k)}\\\\\n",
+    "      &=& \\sqrt{\\frac{p_k(1-p_k)}{n}}\\\\\n",
+    "    \n",
+    "\\end{aligned}$$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "60849c4a-dad2-4acd-9780-f9560da2ed9b",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "### Poisson-Verteilung \n",
+    "\n",
+    "Poisson-Verteilung Die Possionverteilung gibt die Wahrscheinlichkeit an,\n",
+    "genau $k$ Ereignisse zu erhalten, wenn die Zahl der Versuche $n$ sehr\n",
+    "groß und die Wahrscheinlichkeit $p$ sehr klein ist. Mit $\\mu = np$\n",
+    "$$P(k) = \\frac{\\mu^ke^{-\\mu}}{k!}$$\n",
+    "\n",
+    "Erwartungswert und Varianz\n",
+    "$$E[k] = \\sum \\limits_{k = 1}^{\\infty} k \\frac{e^{-\\mu}\\mu^k}{k!}\n",
+    "      = \\mu \\sum \\limits_{k = 1}^{\\infty} k \\frac{e^{-\\mu}\\mu^{k-1}}{(k-1)! k}\n",
+    "      = \\mu \\sum \\limits_{s = 0}^{\\infty} \\frac{e^{-\\mu}\\mu^{s}}{s!} = \\mu$$\n",
+    "$$V[k] = \\sigma^2 = \\mu$$\n",
+    "\n",
+    "### Poisson- und Binomialverteilung \n",
+    "\n",
+    "Binomialverteilung mit $n= 1000$ und $p = 0.01$  \n",
+    "Poisson-Verteilung mit $\\mu = 10$(schraffiert)  \n",
+    "\n",
+    "<img src=\"./figures/08//bp.jpg\" style=\"width:85.0%\"\n",
+    "alt=\"image\" />"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "7e80723a-ac12-4af1-a43a-70593ef791b8",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "### Beispiel aus vielen alten Statistikbüchern \n",
+    "\n",
+    "Tod durch Pferdetritte in der preußischen Armee\n",
+    "\n",
+    "In der preußischen Armee wurde f\"ur jedes Jahr und jedes Armeekorps die\n",
+    "Anzahl der Todesfälle durch Huftritte registriert. Für 20 Jahre\n",
+    "(1875–1894) und 14 Armeekorps ergibt sich:\n",
+    "\n",
+    "| Anzahl des Todesf\"alle $k$                |   0 |   1 |   2 |   3 |   4 |   5 |   6 |\n",
+    "|:------------------------------------------|----:|----:|----:|----:|----:|----:|----:|\n",
+    "| Zahl der Korps-Jahre mit $k$ Todesf\"allen | 144 |  91 |  32 |  11 |   2 |   0 |   0 |\n",
+    "\n",
+    "<img src=\"./figures/08/poisson70.pdf\" style=\"width:55.0%\" />\n",
+    "\n",
+    "Poisson-Verteilung f\"ur $\\mu = \\frac{196}{280} = 0.70$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "b9772cfd-74fb-4a8b-9c0c-fd2c3554a986",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "# What is meant with error/uncertainty on a measured quantity?"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "42e65c7a-4636-4319-b21a-acc95140c2de",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "fragment"
+    },
+    "tags": []
+   },
+   "source": [
+    "If we quote $a = 1 \\pm 0.5$, we usually mean that the probability for the *true* value of $a$ is Gaussian $G(a, \\mu, \\sigma)$ distributed with $\\mu = 1$ and $\\sigma = 0.5$  "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "4b8a5b72-aa82-4acf-9499-8736ed6246f8",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "# How often can/should the measurement be outside one sigma?"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "1f03bf12-f17b-409d-8932-4e3e24023445",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    },
+    "tags": []
+   },
+   "source": [
+    "Let's use pseudo-experiments/Monte Carlo:\n",
+    "\n",
+    " * generate 10.000 Gaussian distributed measurements\n",
+    " * count how ofter they differ by more than one sigma\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "40541a16-abc8-4f5b-b504-71951aa891f5",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    },
+    "tags": []
+   },
+   "source": [
+    "Relatively easy with *scipy* and *numpy*:\n",
+    " * use [scipy.stats](https://docs.scipy.org/doc/scipy/reference/stats.html)\n",
+    " * use [scipy.stats.norm](https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html) class\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 14,
+   "id": "5e55929e-7028-4ae2-9e05-29812e933733",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    },
+    "tags": []
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "[ 2.04228058  2.0372654   0.16987033 ...  0.95302626  1.32747258\n",
+      " -0.02868072]\n",
+      "[ True  True  True ... False False  True]\n",
+      "fraction outside one sigma: 0.3203\n"
+     ]
+    }
+   ],
+   "source": [
+    "import scipy.stats as stats\n",
+    "import numpy as np\n",
+    "\n",
+    "pseudo_a = stats.norm.rvs(1, 0.5, 10000)\n",
+    "print(pseudo_a)\n",
+    "is_outside = abs(pseudo_a - 1) > 0.5\n",
+    "print(is_outside)\n",
+    "print(\"fraction outside one sigma:\", sum(is_outside)/len(pseudo_a)) "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "8abb14b4-80fd-494a-89a0-310bceb277dc",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "# Why is it a Gaussian"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "85185cef-6b18-4c03-8040-437f1fd40b9e",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    },
+    "tags": []
+   },
+   "source": [
+    "Central limit theorem:\n",
+    "\n",
+    "\"let $X_{1},X_{2},\\dots ,X_{n}$ denote a statistical sample of size $n$  from a population with expected value (average) $\\mu$ and finite positive variance $\\sigma ^{2}$, and let $\\bar {X_{n}}$ denote the sample mean (which is itself a random variable). Then the limit as $n\\to \\infty$ of the distribution of $\\frac {({\\bar {X}}_{n}-\\mu )}{\\frac {\\sigma }{\\sqrt {n}}}$, is a normal distribution with mean 0  and variance 1.\""
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "ac354d95-cede-4215-8138-b0d7c6ae9a5e",
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.11.10"
+  },
+  "rise": {
+   "autolaunch": true,
+   "overlay": "<div class='myheader'><h2>my company</h2></div><div class='myfooter'><h2>the date</h2></div>"
+  },
+  "toc": {
+   "base_numbering": 1
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/lecture_2.ipynb b/lecture_2.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..c87a639d59245872c34e433a461d5118dfa397eb
--- /dev/null
+++ b/lecture_2.ipynb
@@ -0,0 +1,646 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "id": "74976eec-e9a9-46b1-824d-01dad15478bc",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "# Lecture 1\n",
+    "\n",
+    "---\n",
+    "\n",
+    "## Basic statistics \n",
+    "\n",
+    "<br>\n",
+    "<br>\n",
+    "\n",
+    " Hartmut Stadie\n",
+    "\n",
+    "hartmut.stadie@uni-hamburg.de"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "3e407505-a77f-4abf-9312-bbf63543e206",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": ""
+    },
+    "tags": []
+   },
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "markdown",
+   "id": "b3097b69-91ec-413e-935e-e310c96d5c25",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "# Wahrscheinlichkeitsdichten\n",
+    "\n",
+    "## Spezielle Wahrscheinlichkeitsdichten\n",
+    "\n",
+    "### Normalverteilung \n",
+    "\n",
+    "Normal- oder Gauß-Verteilung\n",
+    "$$f(x) = \\frac{1}{\\sqrt{2\\pi}\\sigma}e^{-\\frac{(x-\\mu)^2}{2\\sigma^2}}$$\n",
+    "\n",
+    "Erwartungswert und Varianz $$<x> = E[x] = \\mu$$ $$V[x] = \\sigma^2$$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "f7050597-71f8-45a4-a4ac-64567d17827a",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "### Standardisierte Gauß-Verteilung\n",
+    "\n",
+    "oder Normalverteilung: $\\mu = 0$ und $\\sigma = 1$\n",
+    "\n",
+    "<img src=\"./figures/10/gauss_alpha.png\" style=\"width:60.0%\"\n",
+    "alt=\"image\" />\n",
+    "\n",
+    "Wahrscheinlichkeit einiger Intervalle\n",
+    "\n",
+    "|                       |                                  |             |\n",
+    "|:----------------------|---------------------------------:|------------:|\n",
+    "| $|x-\\mu| \\ge \\sigma$  | (x außerhalb $\\pm 1\\sigma$) ist: | $31{,}74$ % |\n",
+    "| $|x-\\mu| \\ge 2\\sigma$ | (x außerhalb $\\pm 2\\sigma$) ist: |  $4{,}55$ % |\n",
+    "| $|x-\\mu| \\ge 3\\sigma$ | (x außerhalb $\\pm 3\\sigma$) ist: |  $0{,}27$ % |"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "b5910862-3a33-46be-91e0-868a3093cd48",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "### Mehrdimensionale Normalverteilung \n",
+    "\n",
+    "$$f_{X}(\\vec x )= \\frac {1}{\\sqrt {(2\\pi )^{p}\\det({C)}}}\\exp \\left(-{\\frac {1}{2}}(\\vec x- \\vec\\mu)^{\\top}C^{-1}(\\vec x - \\vec \\mu)\\right)$$\n",
+    "\n",
+    "<img src=\"./figures/10/Multivariate_Gaussian.png\"\n",
+    "style=\"width:90.0%\" alt=\"image\" />"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "bf784648-04e4-4d6b-a6d0-e85f4210ee1d",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "### 2-D Normalverteilung \n",
+    "\n",
+    "$$\\vec\\mu = (\\bar x, \\bar y) \\text{ und } C = \\left( \n",
+    "  \\begin{array}{rr} \n",
+    "  \\sigma_x  ^2 & \\rho \\sigma_x \\sigma_y \\\\ \n",
+    "   \\rho \\sigma_x \\sigma_y &  \\sigma_y^2\\\\ \n",
+    "  \\end{array} \\right)$$\n",
+    "\n",
+    "<img src=\"./figures/10/error_elipse.png\" alt=\"image\" />\n",
+    "\n",
+    "### Poisson- Binomial- und Gauß-Verteilung \n",
+    "\n",
+    "Binomialverteilung mit $n= 1000$ und $p = 0.01$  \n",
+    "Poisson-Verteilung mit $\\mu = 10$(schraffiert)  \n",
+    "\n",
+    "<img src=\"./figures/08/bpg.jpg\" style=\"width:85.0%\"\n",
+    "alt=\"image\" />"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "a3b105a2-4332-46f7-a423-df435d4b06e8",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "### Gleichverteilung \n",
+    "\n",
+    "Gleichverteilung Die Wahrscheinlichkeitsdichte f(x) ist konstant\n",
+    "$\\frac{1}{b-a}$ für $a \\leq x \\leq b$ und null außerhalb.\n",
+    "\n",
+    "Erwartungswert und Varianz\n",
+    "$$<x> = E[x] = \\int_a^b \\frac{x}{b-a}\\, dx = \\frac{1}{2(b-a)} [b^2-a^2] = \\frac{a + b}{2}$$\n",
+    "$$\\begin{aligned}\n",
+    "      V[x] & = &\\sigma^2 = E[(x-<x>)^2] = E[x^2] - <x>^2 \\\\\n",
+    "           & = & \\int_a^b \\frac{x^2}{b-a}\\, dx - <x>^2 = \\frac{b^3 - a^3}{3(b-a)} - \\frac{(a+b)^2}{4}\\\\\n",
+    "           & = & \\frac{b^2+ab+a^2}{3}-\\frac{a^2 + 2ab + b^2}{4} = \\frac{(b-a)^2}{12} \\\\\n",
+    "    \n",
+    "\\end{aligned}$$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "2acc164e-255b-43f4-93ee-d569d0bb9e50",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "### Beispiel: Mehrere Streifendetektoren \n",
+    "\n",
+    "<img src=\"./figures/10/cms_strip.jpg\" style=\"width:40.0%\"\n",
+    "alt=\"image\" />\n",
+    "<img src=\"./figures/10/strip.png\" style=\"width:40.0%\"\n",
+    "alt=\"image\" />  \n",
+    "Eine Messung: Signal im Streifen $i$, $p(x)$ Gleichverteilung zwischen\n",
+    "$b_i$ und $a_i$  \n",
+    "\n",
+    "Wie sieht die Verteilung der Kombination mehrerer Ortsmessungen aus?"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "e4d5dad2-983e-4f8f-b305-fb0a787282d6",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "### Zentraler Grenzwertsatz \n",
+    "\n",
+    "Zentraler Grenzwertsatz: Die Wahrscheinlichkeitsdichte der Summe\n",
+    "$\\sum_{i=0}^{n} x_i$ einer Stichprobe aus $n$ unabhängigen\n",
+    "Zufallsvariablen $x_i$ mit einer beliebigen Wahrscheinlichkeitsdichte\n",
+    "mit Mittelwert $<x>$ und Varianz $\\sigma^2$ geht in der Grenze\n",
+    "$n \\to \\infty$ gegen eine Gau\"s-Wahrscheinlichkeitsdichte mit Mittelwert\n",
+    "$\\mu = n \\cdot <x>$ und Varianz $V[w] = n \\cdot \\sigma^2$.\n",
+    "\n",
+    "<embed src=\"./figures/08/Summe-von-Gleichverteilungen3.pdf\"\n",
+    "style=\"width:60.0%\" />  "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "69556eab-a67e-4251-a4b3-0290013aa344",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "# Schätzer\n",
+    "\n",
+    "## Fehlerrechnung\n",
+    "\n",
+    "### Fehlerrechnung: Beispiel I \n",
+    "\n",
+    "Widerstandsmessung: $U = 24$ V und $I = 0{,}6 \\pm 0{,}1$ A  \n",
+    "Annahme: $I$ gaußverteilt $g(I)$ mit $\\mu_I = 0{,}6$ und\n",
+    "$\\sigma_I = 0{,}1$  \n",
+    "Was ist $p(R)$?  \n",
+    "$R = U/I$, $I = U/R$ und $|dI/dR| = U/R^2$  \n",
+    "$$\\begin{aligned}\n",
+    " p(R) & = & U/R^2 g(I(R)) = \\frac{U}{R^2 \\sqrt{2\\pi}\\sigma_I}e^{-\\frac{(U/R-\\mu_I)^2}{2\\sigma_I^2}} \\\\\n",
+    "         & = & \\frac{U}{R^2 \\sqrt{2\\pi}\\sigma_I}e^{-\\frac{(R-U/\\mu_I)^2}{2\\sigma_I^2*R^2/\\mu_I^2}} \\\\\n",
+    "   \n",
+    "\\end{aligned}$$ (show in Jupyter)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "06ff9896-15bc-4404-a789-bbe7557350eb",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "### Fehlerrechnung: Beispiel II \n",
+    "\n",
+    "Spannungsmessung: $R = 40$ $\\Omega$ und $I = 0{,}6 \\pm 0{,}1$ A  \n",
+    "Annahme: $I$ gaußverteilt $g(I)$ mit $\\mu_I = 0{,}6$ und\n",
+    "$\\sigma_I = 0{,}1$  \n",
+    "Was ist $p(U)$?  \n",
+    "$U = RI$, $I = U/R$ und $|dI/dU| = 1/R$  \n",
+    "$$\\begin{aligned}\n",
+    "  p(U) & =  &1/R g(I(R)) = \\frac{1}{R \\sqrt{2\\pi}\\sigma_I}e^{-\\frac{(U/R-\\mu_I)^2}{2\\sigma_I^2}} \\\\\n",
+    "          & = & \\frac{1}{\\sqrt{2\\pi}R\\sigma_I}e^{-\\frac{(U-R\\mu_I)^2}{2R^2\\sigma_I^2}} \\\\\n",
+    "          & = & g(U) \\text{ mit $\\mu_U = R\\mu_I$ und $\\sigma_U = R\\sigma_I$}\\\\\n",
+    "  \n",
+    "\\end{aligned}$$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "0fe93c64-f06b-49ec-addb-22b12cf06ec6",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "### Fehlerrechung: Allgemein \n",
+    "\n",
+    "Gaußsche Fehlerfortpflanzung: Annahme: $x$ gaußverteilt $g(x)$ mit\n",
+    "$\\mu_x$ und $\\sigma_x$  \n",
+    "Was ist $p(y(x))$?  \n",
+    "$y(x) \\approx f(\\mu_x) + \\frac{dy}{dx}\\big|_{x=\\mu_x}(x-\\mu_x)$  \n",
+    "$x - \\mu_x \\approx (y-y(\\mu_x))(\\frac{dy}{dx}\\big|_{\\mu_x})^{-1}$,\n",
+    "$|dx/dy| = |\\frac{dy}{dx}(\\mu_x)|^{-1}$ $$\\begin{aligned}\n",
+    "  p(y) & \\approx  &  |\\frac{dy}{dx}(\\mu_x)|^{-1} g(x(y)) = \\frac{1}{\\frac{dy}{dx}\\big|_{\\mu_x}\\sqrt{2\\pi}\\sigma_x}e^{-\\frac{(x(y)-\\mu_x)^2}{2\\sigma_x^2}} \\\\\n",
+    "          & = & \\frac{1}{\\frac{dy}{dx}\\big|_{\\mu_x}\\sqrt{2\\pi}\\sigma_x}e^{-\\frac{(y-y(\\mu_x))^2}{2(\\frac{dy}{dx}\\big|_{\\mu_x})^2\\sigma_x^2}}\\\\\n",
+    "          & = & g(y) \\text{ mit $\\mu_y = y(\\mu_x)$ und $\\sigma_y = \\frac{dy}{dx}\\Big|_{\\mu_x}\\sigma_x$}\\\\\n",
+    "  \n",
+    "\\end{aligned}$$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "85f35e43-f5cd-4ccf-acd2-cbb5e963ce00",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "### Fehlerrechung: Mehrere Dimensionen \n",
+    "\n",
+    "Gaußsche Fehlerfortpflanzung: Annahme: $\\vec x$ gaußverteilt $g(\\vec x)$\n",
+    "mit $\\vec \\mu$ und Kovarianz $C$  \n",
+    "Was ist $p(\\vec y(\\vec x))$?  \n",
+    "$y_i(\\vec x) \\approx y_i(\\vec \\mu) + \\frac{dy_i}{dx_j}\\big|_{\\vec \\mu} (x_j- \\mu_j)$;\n",
+    "$$\\begin{aligned}\n",
+    "  E([y_i y_j]) \\approx  & y_i(\\vec \\mu)y_j(\\vec \\mu) + y_i(\\vec \\mu)\\frac{dy_j}{dx_k}\\big|_{\\vec \\mu} E[x_k - \\mu_k] + y_j(\\vec \\mu)\\frac{dy_i}{dx_k}\\big|_{\\vec \\mu}E[x_k- \\mu_k] \\\\\n",
+    "  & + \\frac{dy_i}{dx_k}\\big|_{\\vec \\mu}\\frac{dy_j}{dx_l}\\big|_{\\vec \\mu}E[(x_k- \\mu_k) (x_l - \\mu_l)]\\\\\n",
+    "  = & y_i(\\vec \\mu)y_j(\\vec \\mu)  + \\frac{dy_i}{dx_k}\\big|_{\\vec \\mu}\\frac{dy_j}{dx_l}\\big|_{\\vec \\mu}C_{kl} \\text{ und  }V[y_iy_j] = E[y_iy_j] - E[y_i]E[y_j]\n",
+    "    \n",
+    "\\end{aligned}$$ mit $A_{ij} = [ \\frac{dy_i}{dx_j}\\big|_{\\vec \\mu}]$ ist\n",
+    "$\\vec y(\\vec x)$ gaußverteilt mit\n",
+    "$$\\vec \\mu_y = \\vec y(\\vec \\mu_x) \\text{ und Kovarianz } C_{yy} = A C_{xx} A^T$$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "8507d724-f9f8-4d41-a3b0-3ddaf0846dde",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "## Stichproben\n",
+    "\n",
+    "### Schätzer: Mittelwert aus Stichprobe\n",
+    "\n",
+    "Beispiel: Schätze $I$ aus drei Messungen der Stromstärke $I_1$, $I_2$,\n",
+    "$I_3$ mit gleichem $\\sigma_I = 0.1$  A.\n",
+    "\n",
+    "Annahme: Messungen gauß-verteilt um I.  \n",
+    "Schätzer für $\\mu$: Mittelwert: $$\\hat I = 1/3(I_1+I_2+I_3)$$ Fehler für\n",
+    "unkorrellierte Messungen (keine syst. Fehler):  \n",
+    "$$C = \\left( \n",
+    "  \\begin{array}{rrr} \n",
+    "  \\sigma_I^2 &0 & 0 \\\\ \n",
+    "   0 &  \\sigma_I^2 & 0\\\\\n",
+    "   0 & 0 & \\sigma_I^2 \n",
+    "  \\end{array} \\right) \\text{ und } A = \\left(  \\begin{array}{rrr} \n",
+    "  d\\hat I/dI_1 &  d\\hat I/dI_2  & d\\hat I/dI_3\n",
+    "  \\end{array} \\right)$$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "6463365e-354d-4e98-8f63-6903e2dbd6e6",
+   "metadata": {
+    "editable": true,
+    "jp-MarkdownHeadingCollapsed": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "### Beispiel: Fehlerfortpflanzung \n",
+    "\n",
+    "Fehler für unabhängige Messungen (keine syst. Fehler):  \n",
+    "$$C = \\left( \n",
+    "  \\begin{array}{rrr} \n",
+    "  \\sigma_I^2 &0 & 0 \\\\ \n",
+    "   0 &  \\sigma_I^2 & 0\\\\\n",
+    "   0 & 0 & \\sigma_I^2 \n",
+    "  \\end{array} \\right) \\text{ und } A = \\left(  \\begin{array}{rrr} \n",
+    "  1/3 & 1/3 & 1/3\n",
+    "  \\end{array} \\right)$$ Fehlerfortpflanzung: $$\\begin{aligned}\n",
+    "C_{\\hat I} & = & ACA^T = \\left( \n",
+    " \\begin{array}{rrr} \n",
+    "  1/3 & 1/3 & 1/3 \n",
+    "   \\end{array} \n",
+    "\\right) \n",
+    " \\left( \n",
+    "  \\begin{array}{rrr} \n",
+    "  \\sigma_I^2 &0 & 0 \\\\ \n",
+    "   0 &  \\sigma_I^2 & 0\\\\\n",
+    "   0 & 0 & \\sigma_I^2 \n",
+    "  \\end{array} \\right) \n",
+    "   \\left(  \\begin{array}{r} \n",
+    "  1/3 \\\\ 1/3 \\\\ 1/3 \n",
+    "   \\end{array} \n",
+    "\\right)\\\\\n",
+    "& =  & \\left( \n",
+    " \\begin{array}{rrr} \n",
+    "   \\sigma_I^2/3 &  \\sigma_I^2/3 &  \\sigma_I^2/3 \n",
+    "   \\end{array} \n",
+    "\\right) \n",
+    " \\left(  \\begin{array}{r} \n",
+    "  1/3 \\\\ 1/3 \\\\ 1/3 \n",
+    "   \\end{array} \n",
+    "\\right) =  \\sigma_I^2/9 +  \\sigma_I^2/9 +  \\sigma_I^2/9  =  \\sigma_I^2/3 \\\\\n",
+    "\\hat \\sigma_I & =  & \\sigma_I/\\sqrt{3}\n",
+    "\\end{aligned}$$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "a038c48f-7143-480d-b0ba-817f0e5211c1",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "### Schätzer \n",
+    "\n",
+    "Schätzer $\\hat a$ für $a$ aus Stichprobe $x_1,\\dots x_n$\n",
+    "\n",
+    "Anforderungen:\n",
+    "\n",
+    "-   erwartungstreu:  \n",
+    "    $E[\\hat a]= a$\n",
+    "\n",
+    "-   konsistent:  \n",
+    "    $\\lim_{n\\to \\infty } \\hat a = a$\n",
+    "\n",
+    "-   effizient: $V[\\hat a]$ möglichst klein\n",
+    "\n",
+    "Aufgabe: Schätze Mittelwert $\\mu$ und Varianz $\\sigma^2$ einer\n",
+    "Wahrscheinlichkeitsdichtefunktion $p(x)$ aus einer Stichprobe\n",
+    "$x_1,\\dots,x_n$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "d32672c8-da0b-468b-bf73-df40aef7245a",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "### Schätzer für Mittelwert \n",
+    "\n",
+    "Schätzer für den Mittelwert $\\mu$:\n",
+    "$$\\hat \\mu = \\bar x = \\frac{1}{n}\\sum_{i=1}^n x_i$$\n",
+    "\n",
+    "Tests:\n",
+    "\n",
+    "-   erwartungstreu:\n",
+    "    $$E[\\hat \\mu]= E[ \\frac{1}{n}\\sum_{i=1}^n x_i ] =  \\frac{1}{n} \\sum_{i=1}^n E[x_i] = \\frac{1}{n} \\sum_{i=1}^n \\mu = \\mu$$\n",
+    "\n",
+    "-   konsistent:\n",
+    "    $$\\lim_{n\\to \\infty } \\hat \\mu = \\lim_{n\\to \\infty }  \\frac{1}{n}\\sum_{i=1}^n x_i = \\int x p(x)\\,dx = \\mu$$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "4021d6cd-150e-4a6d-bdc4-ed049fd983d3",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "### Schätzer für Mittelwert \n",
+    "\n",
+    "Schätzer für den Mittelwert $\\mu$:\n",
+    "$$\\hat \\mu = \\bar x = \\frac{1}{n}\\sum_{i=1}^n x_i$$\n",
+    "\n",
+    "Test:\n",
+    "\n",
+    "-   effizient: $V[\\hat a]$ möglichst klein\n",
+    "    $$V[\\hat \\mu] = V[ \\frac{1}{n}\\sum_{i=1}^n x_i ] =   \\frac{1}{n^2} V[ \\sum_{i=1}^n x_i ]  =   \\frac{1}{n^2}  \\sum_{i=1}^n\\sum_{j=1}^n Cov(x_i, x_j)$$\n",
+    "    $$V[\\hat \\mu] =   \\frac{1}{n^2}  \\sum_{i=1}^n Cov(x_i, x_i)=  \\frac{n\\sigma^2}{n^2} =  \\frac{\\sigma^2}{n}$$\n",
+    "    (oder über zentralen Grenzwertsatz)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "4dfd3266-a5a2-4db7-a96b-ef21118bc85e",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "### Schätzer für Varianz \n",
+    "\n",
+    "Schätzer für die Varianz $\\sigma^2$:\n",
+    "$$\\hat \\sigma^2  = V[x] = \\frac{1}{n}\\sum_{i=1}^n (x_i  - <x>)^2$$\n",
+    "\n",
+    "Tests:\n",
+    "\n",
+    "-   erwartungstreu:\n",
+    "    $$E[\\hat {\\sigma^2}]= E[ \\frac{1}{n}\\sum_{i=1}^n (x_i^2 - \\bar x^2)] =  \\frac{1}{n} \\sum_{i=1}^n E[x_i^2-\\bar x^2] = E[x^2] - E[\\bar x^2]$$\n",
+    "    $$E[\\hat{\\sigma^2}]=  E[x^2] - E[x]^2 + E[x]^2  - E[\\bar x^2] =  E[x^2] - E[x]^2   - (E[\\bar x^2] - E[\\bar x]^2)$$\n",
+    "    $$E[\\hat {\\sigma^2}] =  V(x) - V(\\bar x) = \\sigma^2 - \\frac{\\sigma^2}{n} = \\frac{n-1}{n}\\sigma^2 \\ne  \\sigma^2$$\n",
+    "\n",
+    "-   konsistent:\n",
+    "    $\\lim_{n\\to \\infty } \\hat {\\sigma^2} = \\lim_{n\\to \\infty }   \\frac{n-1}{n}\\sigma^2 =\\sigma^2$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "1621af0b-8216-4959-9cc9-8c41cdb8cc79",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "### Stimmt das Modell? \n",
+    "\n",
+    "Der angewandte Schätzer basiert immer auf Annahmen über die analysierte\n",
+    "Stichprobe.  \n",
+    "Der Fehler auf den Schätzwert sagt nichts darüber aus, ob die Annahmen\n",
+    "stimmen."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "8fdd0fc7-af9c-492c-9c7f-5a195ee58c50",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "### Nochmal die Stromstärke \n",
+    "\n",
+    "Stromstärke aus zwei Messreihen, $\\sigma_I = 0.1$  A:  \n",
+    "Reihe 1: $[0.64441099 0.63895571 0.73984042 0.62145699 0.66971489]$  \n",
+    "Reihe 2: $[0.93179978 0.46326547 0.41350898 0.12281948 0.61426579]$  \n",
+    "Schätzer: $I_1 = 0.66 \\pm 0.04$, $I_2 = 0.51 \\pm \\pm 0.04$  \n",
+    "Passen die Daten zur Erwartung?  \n",
+    "\n",
+    "Residuum: $$R_i = \\frac{x_i - \\mu}{\\sigma}$$ ist normal verteilt, wenn\n",
+    "$\\mu$ und $\\sigma$ stimmen.\n",
+    "\n",
+    "(Betrachte Summe der Residuenquadrate $\\sum R_i^2$)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "0c34b270-4e04-40be-82b1-f305eadf82a9",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "### $\\chi^2$-Verteilung\n",
+    "\n",
+    "0.5\n",
+    "\n",
+    "$$\\chi^2 = \\sum_i \\frac{x_i - \\mu_i}{\\sigma_i}$$ Die $p(\\chi^2, n)$ ist\n",
+    "die Wahrscheinlichkeitsdichte für die Summe der Quadrate von $n$\n",
+    "normalverteilten Zufallszahlen.  \n",
+    "Mittelwert: $<\\chi^2> =  n$ Zahl der Freiheitsgrade.\n",
+    "\n",
+    "0.5 <embed src=\"./figures/10/chi2.pdf\" />\n",
+    "\n",
+    "$p$-Wert (Wahrscheinlichkeit für größeres $\\chi^2$):\n",
+    "$$p  = 1- \\int_0^{\\chi   2} p(\\chi^2, n)$$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "3dbe4a35-771e-4129-9529-76f3d38fddae",
+   "metadata": {
+    "editable": true,
+    "jp-MarkdownHeadingCollapsed": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "## Zusammenfassung und Ausblick\n",
+    "\n",
+    "Zusammenfassung\n",
+    "\n",
+    "-   Wahrscheinlichkeitsdichten\n",
+    "\n",
+    "-   Fehlerrechnung (lineare Näherung)\n",
+    "\n",
+    "-   Korrelationen nicht vernachlässigen\n",
+    "\n",
+    "-   Schätzer\n",
+    "\n",
+    "-   p-Wert\n",
+    "\n",
+    "-   Literatur:  \n",
+    "\n",
+    "    -   Glen Cowan, Statistical Data Analysis,\n",
+    "        [pdf](https://www.sherrytowers.com/cowan_statistical_data_analysis.pdf)\n",
+    "\n",
+    "    -   Roger John Barlow, Statistics: A Guide to the Use of Statistical\n",
+    "        Methods in the Physical Sciences,\n",
+    "        [Skript](https://arxiv.org/pdf/1905.12362.pdf)\n",
+    "\n",
+    "    -   Volker Blobel, Erich Lohrmann, Statistische und numerische\n",
+    "        Methoden der Datenanalyse,\n",
+    "        [pdf](https://www.desy.de/~sschmitt/blobel/eBuch.pdf)\n",
+    "\n",
+    "# Bibliography\n",
+    "\n",
+    "Bibliography"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.11.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/lecture_3.ipynb b/lecture_3.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..e7074cfac4704735143d129a2102447413a3bdc7
--- /dev/null
+++ b/lecture_3.ipynb
@@ -0,0 +1,1142 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "id": "977b88f5-3cb7-445b-adac-f44be4d69c90",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "## Wieder einmal Bundesligatore..."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "id": "641ec6cc-6f1a-4399-b652-7e3da333782a",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "subslide"
+    },
+    "tags": []
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(array([24., 45., 66., 67., 58., 25., 18.,  1.,  2.,  0.]), array([-0.5,  0.5,  1.5,  2.5,  3.5,  4.5,  5.5,  6.5,  7.5,  8.5,  9.5]), <BarContainer object of 10 artists>)\n"
+     ]
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAG0CAYAAAAYQdwgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAgPElEQVR4nO3df0yd5f3/8dextaegh+Na7TkQaXt0p/7CaleUlVZhU0iQNBoWnVK1xi1p11aLZKtFlohGD5VPJCxjYmiW2saw+oc/2qWzgtNRDWnEKrNDUzXFljmPRMfOwRYPsVyfP/z2fHuk+2wHDpyrN89Hcic717k5581J3Hnm4j49LmOMEQAAgEXOSvcAAAAA30WgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOskFSgLFy6Uy+Uac6xfv16SZIxRXV2dcnJylJGRoeLiYvX29k7K4AAAwLlmJnNyd3e3Tpw4Eb/9t7/9TSUlJbr11lslSQ0NDWpsbNQzzzyjRYsW6bHHHlNJSYkOHTokj8fzXz3H6Oio/vGPf8jj8cjlciUzHgAASBNjjIaGhpSTk6OzzkrBH2jMBGzcuNFcfPHFZnR01IyOjhq/32+2bNkSv//rr782Xq/XPP300//1Y/b39xtJHBwcHBwcHGfg0d/fP5G0iEtqB+VUIyMjevbZZ1VdXS2Xy6XDhw8rHA6rtLQ0fo7b7VZRUZG6urq0Zs2a0z5OLBZTLBaL3zb/78uV+/v7lZWVNd7xAADAFIpGo8rNzf2v/2Lyn4w7UF566SX961//0j333CNJCofDkiSfz5dwns/n05EjR/7t49TX1+uRRx4Zs56VlUWgAABwhknV5Rnj/iPR73//e5WVlSknJydh/buDGWP+z2FramoUiUTiR39//3hHAgAADjGuHZQjR47o1Vdf1QsvvBBf8/v9kr7dScnOzo6vDwwMjNlVOZXb7Zbb7R7PGAAAwKHGtYOybds2zZs3T+Xl5fG1QCAgv9+vjo6O+NrIyIg6OztVWFg48UkBAMC0kfQOyujoqLZt26bVq1dr5sz//+Mul0tVVVUKhUIKBoMKBoMKhULKzMxUZWVlSocGAADOlnSgvPrqqzp69KjuvffeMfdt2rRJw8PDWrdunQYHB1VQUKD29vaUXdELAACmB5c5+bleS0SjUXm9XkUiET7FAwDAGSLV7998Fw8AALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwzri+zRhwooWb96R7hKR9sqX8P58EAGcgdlAAAIB1CBQAAGAdAgUAAFiHQAEAANbhIllMijPxglMAgD3YQQEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgHQIFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgHQIFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYJ2kA+XTTz/VnXfeqblz5yozM1NXX321Dhw4EL/fGKO6ujrl5OQoIyNDxcXF6u3tTenQAADA2ZIKlMHBQS1fvlxnn322Xn75Zb3//vt68skndd5558XPaWhoUGNjo5qbm9Xd3S2/36+SkhINDQ2lenYAAOBQM5M5+YknnlBubq62bdsWX1u4cGH8fxtj1NTUpNraWlVUVEiStm/fLp/Pp7a2Nq1Zs2bMY8ZiMcVisfjtaDSa7O8AAAAcJqkdlN27dys/P1+33nqr5s2bpyVLlmjr1q3x+/v6+hQOh1VaWhpfc7vdKioqUldX12kfs76+Xl6vN37k5uaO81cBAABOkVSgHD58WC0tLQoGg3rllVe0du1a3X///dqxY4ckKRwOS5J8Pl/Cz/l8vvh931VTU6NIJBI/+vv7x/N7AAAAB0nqTzyjo6PKz89XKBSSJC1ZskS9vb1qaWnR3XffHT/P5XIl/JwxZszaSW63W263O9m5AQCAgyW1g5Kdna3LL788Ye2yyy7T0aNHJUl+v1+SxuyWDAwMjNlVAQAA+HeSCpTly5fr0KFDCWsffvihFixYIEkKBALy+/3q6OiI3z8yMqLOzk4VFhamYFwAADAdJPUnngceeECFhYUKhUK67bbb9NZbb6m1tVWtra2Svv3TTlVVlUKhkILBoILBoEKhkDIzM1VZWTkpvwAAAHCepALlmmuu0Ysvvqiamho9+uijCgQCampq0qpVq+LnbNq0ScPDw1q3bp0GBwdVUFCg9vZ2eTyelA8PAACcyWWMMeke4lTRaFRer1eRSERZWVnpHgfjtHDznnSPMC18sqU83SMAgKTUv3/zXTwAAMA6BAoAALAOgQIAAKyT1EWyAOxyJl7rw3UzAP4b7KAAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrJBUodXV1crlcCYff74/fb4xRXV2dcnJylJGRoeLiYvX29qZ8aAAA4GxJ76BcccUV+uyzz+LHwYMH4/c1NDSosbFRzc3N6u7ult/vV0lJiYaGhlI6NAAAcLakA2XmzJny+/3x44ILLpD07e5JU1OTamtrVVFRoby8PG3fvl3Hjx9XW1tbygcHAADOlXSgfPTRR8rJyVEgENDtt9+uw4cPS5L6+voUDodVWloaP9ftdquoqEhdXV3/9vFisZii0WjCAQAAprekAqWgoEA7duzQK6+8oq1btyocDquwsFBffvmlwuGwJMnn8yX8jM/ni993OvX19fJ6vfEjNzd3HL8GAABwkqQCpaysTD/5yU905ZVX6sYbb9SePXskSdu3b4+f43K5En7GGDNm7VQ1NTWKRCLxo7+/P5mRAACAA03oY8bnnHOOrrzySn300UfxT/N8d7dkYGBgzK7Kqdxut7KyshIOAAAwvU0oUGKxmD744ANlZ2crEAjI7/ero6Mjfv/IyIg6OztVWFg44UEBAMD0MTOZk3/5y19q5cqVmj9/vgYGBvTYY48pGo1q9erVcrlcqqqqUigUUjAYVDAYVCgUUmZmpiorKydrfgAA4EBJBcrf//533XHHHfriiy90wQUX6Ic//KH279+vBQsWSJI2bdqk4eFhrVu3ToODgyooKFB7e7s8Hs+kDA8AAJzJZYwx6R7iVNFoVF6vV5FIhOtRzmALN+9J9wiw1CdbytM9AoBJkOr3b76LBwAAWIdAAQAA1iFQAACAdQgUAABgHQIFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgHQIFAABYh0ABAADWIVAAAIB1ZqZ7APxnCzfvSfcIAABMKXZQAACAdQgUAABgHQIFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgHQIFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYJ0JBUp9fb1cLpeqqqria8YY1dXVKScnRxkZGSouLlZvb+9E5wQAANPIuAOlu7tbra2tWrx4ccJ6Q0ODGhsb1dzcrO7ubvn9fpWUlGhoaGjCwwIAgOlhXIHy1VdfadWqVdq6dau+973vxdeNMWpqalJtba0qKiqUl5en7du36/jx42pra0vZ0AAAwNnGFSjr169XeXm5brzxxoT1vr4+hcNhlZaWxtfcbreKiorU1dV12seKxWKKRqMJBwAAmN5mJvsDO3fu1DvvvKPu7u4x94XDYUmSz+dLWPf5fDpy5MhpH6++vl6PPPJIsmMAAAAHS2oHpb+/Xxs3btSzzz6r2bNn/9vzXC5Xwm1jzJi1k2pqahSJROJHf39/MiMBAAAHSmoH5cCBAxoYGNDSpUvjaydOnNC+ffvU3NysQ4cOSfp2JyU7Ozt+zsDAwJhdlZPcbrfcbvd4ZgcAAA6V1A7KDTfcoIMHD6qnpyd+5Ofna9WqVerp6dFFF10kv9+vjo6O+M+MjIyos7NThYWFKR8eAAA4U1I7KB6PR3l5eQlr55xzjubOnRtfr6qqUigUUjAYVDAYVCgUUmZmpiorK1M3NQAAcLSkL5L9TzZt2qTh4WGtW7dOg4ODKigoUHt7uzweT6qfCgAAOJTLGGPSPcSpotGovF6vIpGIsrKy0j2OFRZu3pPuEYCU+WRLebpHADAJUv3+zXfxAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrJBUoLS0tWrx4sbKyspSVlaVly5bp5Zdfjt9vjFFdXZ1ycnKUkZGh4uJi9fb2pnxoAADgbEkFyoUXXqgtW7bo7bff1ttvv60f//jHuvnmm+MR0tDQoMbGRjU3N6u7u1t+v18lJSUaGhqalOEBAIAzJRUoK1eu1E033aRFixZp0aJFevzxx3Xuuedq//79MsaoqalJtbW1qqioUF5enrZv367jx4+rra1tsuYHAAAONO5rUE6cOKGdO3fq2LFjWrZsmfr6+hQOh1VaWho/x+12q6ioSF1dXf/2cWKxmKLRaMIBAACmt6QD5eDBgzr33HPldru1du1avfjii7r88ssVDoclST6fL+F8n88Xv+906uvr5fV640dubm6yIwEAAIdJOlAuueQS9fT0aP/+/frFL36h1atX6/3334/f73K5Es43xoxZO1VNTY0ikUj86O/vT3YkAADgMDOT/YFZs2bp+9//viQpPz9f3d3d+s1vfqMHH3xQkhQOh5WdnR0/f2BgYMyuyqncbrfcbneyYwAAAAeb8L+DYoxRLBZTIBCQ3+9XR0dH/L6RkRF1dnaqsLBwok8DAACmkaR2UB566CGVlZUpNzdXQ0ND2rlzp/7yl79o7969crlcqqqqUigUUjAYVDAYVCgUUmZmpiorKydrfgAA4EBJBcrnn3+uu+66S5999pm8Xq8WL16svXv3qqSkRJK0adMmDQ8Pa926dRocHFRBQYHa29vl8XgmZXgAAOBMLmOMSfcQp4pGo/J6vYpEIsrKykr3OFZYuHlPukcAUuaTLeXpHgHAJEj1+zffxQMAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOjPTPQCA6WXh5j3pHmFcPtlSnu4RgGmFHRQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYJ1p9ymeM/UTBAAATCfsoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArJNUoNTX1+uaa66Rx+PRvHnzdMstt+jQoUMJ5xhjVFdXp5ycHGVkZKi4uFi9vb0pHRoAADhbUoHS2dmp9evXa//+/ero6NA333yj0tJSHTt2LH5OQ0ODGhsb1dzcrO7ubvn9fpWUlGhoaCjlwwMAAGeamczJe/fuTbi9bds2zZs3TwcOHND1118vY4yamppUW1uriooKSdL27dvl8/nU1tamNWvWpG5yAADgWBO6BiUSiUiS5syZI0nq6+tTOBxWaWlp/By3262ioiJ1dXWd9jFisZii0WjCAQAAprdxB4oxRtXV1VqxYoXy8vIkSeFwWJLk8/kSzvX5fPH7vqu+vl5erzd+5ObmjnckAADgEOMOlA0bNui9997TH/7whzH3uVyuhNvGmDFrJ9XU1CgSicSP/v7+8Y4EAAAcIqlrUE667777tHv3bu3bt08XXnhhfN3v90v6diclOzs7vj4wMDBmV+Ukt9stt9s9njEAAIBDJbWDYozRhg0b9MILL+i1115TIBBIuD8QCMjv96ujoyO+NjIyos7OThUWFqZmYgAA4HhJ7aCsX79ebW1t2rVrlzweT/y6Eq/Xq4yMDLlcLlVVVSkUCikYDCoYDCoUCikzM1OVlZWT8gsAAADnSSpQWlpaJEnFxcUJ69u2bdM999wjSdq0aZOGh4e1bt06DQ4OqqCgQO3t7fJ4PCkZGAAAOF9SgWKM+Y/nuFwu1dXVqa6ubrwzAQCAaY7v4gEAANYhUAAAgHUIFAAAYJ1x/TsoADDdLNy8J90jJO2TLeXpHgEYN3ZQAACAdQgUAABgHQIFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgHQIFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgHQIFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdZIOlH379mnlypXKycmRy+XSSy+9lHC/MUZ1dXXKyclRRkaGiouL1dvbm6p5AQDANJB0oBw7dkxXXXWVmpubT3t/Q0ODGhsb1dzcrO7ubvn9fpWUlGhoaGjCwwIAgOlhZrI/UFZWprKystPeZ4xRU1OTamtrVVFRIUnavn27fD6f2tratGbNmolNCwAApoWUXoPS19encDis0tLS+Jrb7VZRUZG6urpO+zOxWEzRaDThAAAA01tKAyUcDkuSfD5fwrrP54vf91319fXyer3xIzc3N5UjAQCAM9CkfIrH5XIl3DbGjFk7qaamRpFIJH709/dPxkgAAOAMkvQ1KP8Xv98v6dudlOzs7Pj6wMDAmF2Vk9xut9xudyrHAAAAZ7iU7qAEAgH5/X51dHTE10ZGRtTZ2anCwsJUPhUAAHCwpHdQvvrqK3388cfx2319ferp6dGcOXM0f/58VVVVKRQKKRgMKhgMKhQKKTMzU5WVlSkdHAAAOFfSgfL222/rRz/6Ufx2dXW1JGn16tV65plntGnTJg0PD2vdunUaHBxUQUGB2tvb5fF4Ujc1AABwNJcxxqR7iFNFo1F5vV5FIhFlZWWl/PEXbt6T8scEABt9sqU83SNgGkn1+zffxQMAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6M9M9AAAAJy3cvCfdIyTtky3l6R7BkdhBAQAA1iFQAACAdQgUAABgHQIFAABYh4tkAcChzsQLToGT2EEBAADWmbRAeeqppxQIBDR79mwtXbpUb7zxxmQ9FQAAcJhJCZTnnntOVVVVqq2t1bvvvqvrrrtOZWVlOnr06GQ8HQAAcJhJCZTGxkb97Gc/089//nNddtllampqUm5urlpaWibj6QAAgMOk/CLZkZERHThwQJs3b05YLy0tVVdX15jzY7GYYrFY/HYkEpEkRaPRVI8mSRqNHZ+UxwUATE+T9X51pjn5OhhjUvJ4KQ+UL774QidOnJDP50tY9/l8CofDY86vr6/XI488MmY9Nzc31aMBAJBy3qZ0T2CXL7/8Ul6vd8KPM2kfM3a5XAm3jTFj1iSppqZG1dXV8dujo6P65z//qblz5572fFtFo1Hl5uaqv79fWVlZ6R7HsXidpwav89TgdZ4avM5TIxKJaP78+ZozZ05KHi/lgXL++edrxowZY3ZLBgYGxuyqSJLb7Zbb7U5YO++881I91pTJysriP4ApwOs8NXidpwav89TgdZ4aZ52VmstbU36R7KxZs7R06VJ1dHQkrHd0dKiwsDDVTwcAABxoUv7EU11drbvuukv5+flatmyZWltbdfToUa1du3Yyng4AADjMpATKT3/6U3355Zd69NFH9dlnnykvL09/+tOftGDBgsl4Oiu43W49/PDDY/5chdTidZ4avM5Tg9d5avA6T41Uv84uk6rPAwEAAKQI38UDAACsQ6AAAADrECgAAMA6BAoAALAOgZICTz31lAKBgGbPnq2lS5fqjTfeSPdIjlJfX69rrrlGHo9H8+bN0y233KJDhw6leyzHq6+vl8vlUlVVVbpHcaRPP/1Ud955p+bOnavMzExdffXVOnDgQLrHcpRvvvlGv/71rxUIBJSRkaGLLrpIjz76qEZHR9M92hlt3759WrlypXJycuRyufTSSy8l3G+MUV1dnXJycpSRkaHi4mL19vYm/TwEygQ999xzqqqqUm1trd59911dd911Kisr09GjR9M9mmN0dnZq/fr12r9/vzo6OvTNN9+otLRUx44dS/dojtXd3a3W1lYtXrw43aM40uDgoJYvX66zzz5bL7/8st5//309+eSTZ/S/om2jJ554Qk8//bSam5v1wQcfqKGhQf/zP/+j3/72t+ke7Yx27NgxXXXVVWpubj7t/Q0NDWpsbFRzc7O6u7vl9/tVUlKioaGh5J7IYEKuvfZas3bt2oS1Sy+91GzevDlNEznfwMCAkWQ6OzvTPYojDQ0NmWAwaDo6OkxRUZHZuHFjukdynAcffNCsWLEi3WM4Xnl5ubn33nsT1ioqKsydd96ZpomcR5J58cUX47dHR0eN3+83W7Zsia99/fXXxuv1mqeffjqpx2YHZQJGRkZ04MABlZaWJqyXlpaqq6srTVM5XyQSkaSUfSEVEq1fv17l5eW68cYb0z2KY+3evVv5+fm69dZbNW/ePC1ZskRbt25N91iOs2LFCv35z3/Whx9+KEn661//qjfffFM33XRTmidzrr6+PoXD4YT3RbfbraKioqTfFyft24yngy+++EInTpwY8yWIPp9vzJclIjWMMaqurtaKFSuUl5eX7nEcZ+fOnXrnnXfU3d2d7lEc7fDhw2ppaVF1dbUeeughvfXWW7r//vvldrt19913p3s8x3jwwQcViUR06aWXasaMGTpx4oQef/xx3XHHHekezbFOvved7n3xyJEjST0WgZICLpcr4bYxZswaUmPDhg1677339Oabb6Z7FMfp7+/Xxo0b1d7ertmzZ6d7HEcbHR1Vfn6+QqGQJGnJkiXq7e1VS0sLgZJCzz33nJ599lm1tbXpiiuuUE9Pj6qqqpSTk6PVq1enezxHS8X7IoEyAeeff75mzJgxZrdkYGBgTD1i4u677z7t3r1b+/bt04UXXpjucRznwIEDGhgY0NKlS+NrJ06c0L59+9Tc3KxYLKYZM2akcULnyM7O1uWXX56wdtlll+n5559P00TO9Ktf/UqbN2/W7bffLkm68sordeTIEdXX1xMok8Tv90v6diclOzs7vj6e90WuQZmAWbNmaenSpero6EhY7+joUGFhYZqmch5jjDZs2KAXXnhBr732mgKBQLpHcqQbbrhBBw8eVE9PT/zIz8/XqlWr1NPTQ5yk0PLly8d8VP7DDz909BeqpsPx48d11lmJb3MzZszgY8aTKBAIyO/3J7wvjoyMqLOzM+n3RXZQJqi6ulp33XWX8vPztWzZMrW2turo0aNau3ZtukdzjPXr16utrU27du2Sx+OJ71h5vV5lZGSkeTrn8Hg8Y67rOeecczR37lyu90mxBx54QIWFhQqFQrrtttv01ltvqbW1Va2trekezVFWrlypxx9/XPPnz9cVV1yhd999V42Njbr33nvTPdoZ7auvvtLHH38cv93X16eenh7NmTNH8+fPV1VVlUKhkILBoILBoEKhkDIzM1VZWZncE6XiY0bT3e9+9zuzYMECM2vWLPODH/yAj7+mmKTTHtu2bUv3aI7Hx4wnzx//+EeTl5dn3G63ufTSS01ra2u6R3KcaDRqNm7caObPn29mz55tLrroIlNbW2tisVi6Rzujvf7666f9/+TVq1cbY779qPHDDz9s/H6/cbvd5vrrrzcHDx5M+nlcxhiTiqICAABIFa5BAQAA1iFQAACAdQgUAABgHQIFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEwJYqLi1VVVZXuMQCcIQgUAABgHQIFAABYh0ABkBZ79+6V1+vVjh070j0KAAsRKACm3M6dO3Xbbbdpx44duvvuu9M9DgALESgAptRTTz2ltWvXateuXbr55pvTPQ4AS81M9wAApo/nn39en3/+ud58801de+216R4HgMXYQQEwZa6++mpdcMEF2rZtm4wx6R4HgMUIFABT5uKLL9brr7+uXbt26b777kv3OAAsxp94AEypRYsW6fXXX1dxcbFmzpyppqamdI8EwEIECoApd8kll+i1115TcXGxZsyYoSeffDLdIwGwjMvwh2AAAGAZrkEBAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgnf8FQX9AbUh+Cg8AAAAASUVORK5CYII=",
+      "text/plain": [
+       "<Figure size 640x480 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "import numpy as np\n",
+    "import matplotlib.pyplot as plt\n",
+    "\n",
+    "summe = np.loadtxt(\"../summe.txt\")\n",
+    "\n",
+    "\n",
+    "freq = plt.hist(summe, bins=10, range=(-0.5,9.5))\n",
+    "plt.xlabel(\"k\")\n",
+    "print(freq)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "e6bcf92b-386d-492b-9f09-e29118e93505",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "subslide"
+    },
+    "tags": []
+   },
+   "source": [
+    "18-mal fielen sechs Tore. Wie groß ist der Fehler auf die 18? Wie groß ist das 68,27\\%-Konfidenzintervall für das 6-Tore-Bin?"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "8c4a1016-7fc9-4eb6-b515-b51c0d16fed8",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "subslide"
+    },
+    "tags": []
+   },
+   "source": [
+    "naiv: $k=18$, Poisson mit $\\hat \\mu = 18$ und $\\sigma = \\sqrt{\\hat \\mu} = \\sqrt{18}$: $18\\pm 4.12$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "b26cd06e-7700-4011-b5d8-6bf56e22489f",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "## Konfidenz: \n",
+    "$P(x_- \\le x \\le x_+) = \\int_{x_-}^{x^+} P(x) dx$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "1903f299-4d16-41b0-bb48-5f17a07a9006",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "subslide"
+    },
+    "tags": []
+   },
+   "source": [
+    "## Aber was ist hier $x$? $\\mu$ oder $k$???"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "b54b11f9-e897-4d2a-a5df-961c16cdbb3f",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "Konfidenz für $P(k=18) = 1$ (Messung!) \n",
+    "\n",
+    "Suchen Konfidenzintervall in $\\mu$.\n",
+    "\n",
+    "\n",
+    "Also: $P(\\mu_- \\le \\mu \\le\\mu_+) = \\frac{\\int_{\\mu_-}^{\\mu_+} P(k, \\mu) d\\mu}{\\int_{0}^{\\infty} P(k, \\mu) d\\mu}$"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "id": "5052bdb2-6e4b-4ea6-b08e-ba22f2a4a3d2",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "subslide"
+    },
+    "tags": []
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "(1.000000000000001, 4.6105475479254554e-11)"
+      ]
+     },
+     "execution_count": 7,
+     "metadata": {},
+     "output_type": "execute_result"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGxCAYAAABBZ+3pAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABE8ElEQVR4nO3deXyV5Z338e9ZkpM9IQtZIISA7KsEl6C4tBqKHa2tnUHbauep2KG1o8A4rbiMrY7iWMeHOgqMCjN1pqNMXVqfFltiK4gSq0BYRGQNSYCEkEAWsp2cc+7nj5NzICSB7PdZPu/X67wkd+5z8ju3JPlyXb/rui2GYRgCAAAIYFazCwAAALgYAgsAAAh4BBYAABDwCCwAACDgEVgAAEDAI7AAAICAR2ABAAABz252AQPF4/Ho+PHjio+Pl8ViMbscAADQA4ZhqKGhQVlZWbJaux9HCZnAcvz4cWVnZ5tdBgAA6IPy8nKNHDmy28+HTGCJj4+X5H3DCQkJJlcDAAB6or6+XtnZ2f7f490JmcDimwZKSEggsAAAEGQu1s5B0y0AAAh4BBYAABDwCCwAACDgEVgAAEDAI7AAAICAR2ABAAABj8ACAAACHoEFAAAEPAILAAAIeAQWAAAQ8AgsAAAg4BFYAABAwCOwAEGg1eXWifoWtbS5zS4FAEwRMndrBkLRzvJa/dufD+qDAyfldHlksUh5o4Zp4dwxmjcl/aJ3NwWAUEFgAQKQYRh6/k8H9Ys/7ZfH8B6zWCTDkLaWntbW0m36q+mZeuab0xUTybcxgNDHTzogwBiGoSd+t1drPyqRJH1tZpZ+eN0lGp8ep4q6Fv3PX8q0etMh/W5XhcpONel/7rlScQ6+lQGENnpYgACz5sMSf1h54mtT9IvbL9WEjHhZLBZlJUXrgXkT9Pr3r1RybKR2Ha3T91/dKqfLY3LVADC4CCxAAPn0yCktf/cLSdJjN0/Wnfmjuzxv9uhk/ef/uUyxkTZtOVSjZzfsG8IqAWDoEViAANHS5taP39glt8fQrTOz9LdzRl/w/Okjk/TcgpmSpJc+OKxN+08OfpEAYBICCxAgVm08pJLqRg2Pd+iJW6f2aAXQvCkZuis/R5L08Nu71exk2TOA0ERgAQJARV2zVm06JEl67OYpio+K6PFzf/KVicpKjNLR08164f0Dg1UiAJiKwAIEgBf+fFBOl0eXj07WTdMyevXcWIdd/3TzFEnSy5tLdLy2eTBKBABTEVgAk5WfatK6T8slSf9QML5Pm8HNm5KuK3KT5XR59Iv3GGUBEHoILIDJ/uOjI3J5DF19SaquGJPSp9ewWCz68VcmSpJ+va1ch0+eGcgSAcB0BBbARA0tbfrfrd7RlYVzc/v1Wnk5w/SlicPlMbxTQwAQSggsgIne2HZUZ1pdGpsWq2vGpfX79RZdO1aS9Ob2ozrZ0Nrv1wOAQEFgAUzi8Rj65ZYjkqS/vSpXVmv/b2R42ehhmpGdJKfLo1eLjvT79QAgUBBYAJN8XFKjIzVNio+y67ZZIwbkNS0Wi/7umjGSpP/6uJR9WQCEDAILYJK3th+TJN08I2tA77g8b0qGRg6LVm1Tm9bvrhiw1wUAMxFYABM0OV16tz1MfOPSgRld8bFZLbrj8lGSpNc+KRvQ1wYAsxBYABNs2HNCjU63RiXHKC9n2IC//l/njZTNatHW0tPaf6JhwF8fAIYagQUwwZvbj0qSvjFrRJ82iruY4QlRumHScEnS//yFURYAwY/AAgyxU41OfXSwWpL09QGeDjqXb1ro7eJjcro8g/Z1AGAoEFiAIfbe3hPyGNLkzATlpMQO2teZOy5Nw+Mdqmtu08Z9VYP2dQBgKBBYgCH2x88qJUlfmdq7mxz2ls1q0S0zsiRJv91xfFC/FgAMNgILMITOtLq0+YB3OmjelMENLJJ0a/uUU+HeE6pvaRv0rwcAg4XAAgyhjfuq5HR7lJsaq/HpcYP+9aZkJeiS4XFyujz6Q/vIDgAEIwILMIT+uOeEJO/oymCsDjqfxWLRrTO900L/byfTQgCCF4EFGCIut0cf7D8pSbpx8vAh+7pfne4NLEWHalTb5ByyrwsAA4nAAgyRnUfrVNfcpsToCM0YmTRkXzc3NVYTM+Ll8hh6by+rhQAEJwILMEQ2tS8tvnpcquy2of3W8zX4/uEz7i0EIDgRWIAhsql9Oui68WlD/rXnT/MGlg8OVOtMq2vIvz4A9BeBBRgCNWdatetYnSTpWhMCy4T0eI1OiZHT5WETOQBBicACDIHNB6plGNKkzAQNT4ga8q9vsVj0lamZkqR3Wd4MIAgRWIAh4NsszozRFR/fzrobv6hSq8ttWh0A0BcEFmAIfHy4RpI0Z2yKaTVMH5GotHiHGp1ufVJyyrQ6AKAvCCzAICs/1aRjtc2yWy3KyxlmWh1Wq0XXT/CO8Pz5C/pYAAQXAgswyIoOeUdXZmQnKdZhN7WWL030blj3PoEFQJAhsACDzDcdlD/GvOkgn6vHpSnCZtGRmiYdPnnG7HIAoMcILMAgMgxDRe2B5coACCxxDrsuz02WxLQQgOBCYAEGUWlNkyrqWhRhM7d/5VzXT2ifFmI/FgBBhMACDCLfdNDM7CRFR9pMrsbL18fySckpNbS0mVwNAPQMgQUYREUB1L/iMyYtTqNTYtTmNvwNwQAQ6AgswCD6tH2/kysCKLBI0txx3uXNHx6sNrkSAOgZAgswSI7XNut4XYtsVotmZieZXU4HV49LlSR9eIDAAiA4EFiAQbK97LQkaVJmvOn7r5wvf2yKbFaLDlc36lhts9nlAMBFEViAQbKt1BtY8kYFxuqgcyVERWjGyERJ0ocHTppcDQBcHIEFGCTb2wPLrABZzny+q9v7WDYzLQQgCBBYgEHQ7HRrz/F6SQqY/VfOd017H8tHB6vl8RgmVwMAF9anwLJy5Url5uYqKipKeXl52rx58wXP37Rpk/Ly8hQVFaUxY8Zo9erVnc5ZsWKFJkyYoOjoaGVnZ2vJkiVqaWnpS3mA6XYdrZXLYyg9waERSdFml9OlGdlJinPYdbqpzR+uACBQ9TqwrFu3TosXL9bDDz+s4uJizZ07V/Pnz1dZWVmX55eUlOimm27S3LlzVVxcrIceekj33Xef3nzzTf85v/rVr/Tggw/qscce0969e7VmzRqtW7dOy5Yt6/s7A0y0rb3hNi9nmCwWi8nVdC3CZvXfLmDzQfpYAAS2XgeW5557TnfffbcWLlyoSZMmacWKFcrOztaqVau6PH/16tUaNWqUVqxYoUmTJmnhwoX63ve+p2effdZ/TlFRka666ip961vf0ujRo1VQUKA77rhDW7du7fs7A0zk61/Jy0k2uZILm8vyZgBBoleBxel0atu2bSooKOhwvKCgQFu2bOnyOUVFRZ3OnzdvnrZu3aq2Nu+24FdffbW2bdumTz75RJJ0+PBhrV+/Xl/96le7raW1tVX19fUdHkAgMAzj7AqhAO1f8fHtx7K19LRa2twmVwMA3etVYKmurpbb7VZ6enqH4+np6aqsrOzyOZWVlV2e73K5VF3t/Vfd7bffrieeeEJXX321IiIiNHbsWF1//fV68MEHu61l+fLlSkxM9D+ys7N781aAQVNa06TTTW2KtFs1OTPB7HIuaExqrIbHO+R0ebSjvNbscgCgW31quj1/Tt4wjAvO03d1/rnHN27cqCeffFIrV67U9u3b9dZbb+l3v/udnnjiiW5fc9myZaqrq/M/ysvL+/JWgAG361idJGlyZoIi7YG9EM9isfj7WHw3agSAQNSr7TdTU1Nls9k6jaZUVVV1GkXxycjI6PJ8u92ulBTvD8pHH31Ud955pxYuXChJmjZtmhobG/X9739fDz/8sKzWzj/0HQ6HHA5Hb8oHhsSu9pGK6e0bswW6K8ek6J2dx1V0qEaLbzC7GgDoWq/++RcZGam8vDwVFhZ2OF5YWKg5c+Z0+Zz8/PxO52/YsEGzZ89WRESEJKmpqalTKLHZbDIMwz8aAwSLXUe9IyzTRyaZW0gPXTnG2xhcXF5LHwuAgNXr8eqlS5fqlVde0dq1a7V3714tWbJEZWVlWrRokSTvVM1dd93lP3/RokUqLS3V0qVLtXfvXq1du1Zr1qzRAw884D/n5ptv1qpVq/T666+rpKREhYWFevTRR3XLLbfIZrMNwNsEhobbY+iz497AMiNIRlhyz+ljKS6rNbscAOhSr+/ItmDBAtXU1Ojxxx9XRUWFpk6dqvXr1ysnJ0eSVFFR0WFPltzcXK1fv15LlizRiy++qKysLD3//PO67bbb/Oc88sgjslgseuSRR3Ts2DGlpaXp5ptv1pNPPjkAbxEYOodOnlGT062YSJvGpMWZXU6P+PpY3tl5XB8frlH+2BSzSwKATixGiMy51NfXKzExUXV1dUpICOyVGQhdv95arn98Y5cuz03W//5dvtnl9Nj//KVMD729W1fkJmtdENUNIPj19Pd3YC9hAILM7mPBNR3kQx8LgEBHYAEG0M72httpQdJw60MfC4BAR2ABBojT5dHe9psIBtsIC/uxAAh0BBZggOw/0SCn26PE6AiNSo4xu5xeI7AACGQEFmCA7DxaK8m7YVyg3qH5Qvx9LGX0sQAIPAQWYIDsKvdtGBdc00E+uamxSot3yOn2+De/A4BAQWABBohvw7hpI5LMLaSPLBaLLhvtvbv0p0dOmVwNAHREYAEGgNPl0YETZyRJU7KCdx+g2TneaaGtBBYAAYbAAgyAg1Vn5HR7FB9l18hh0WaX02eXjW4PLKWn5fGExJ6SAEIEgQUYAJ9XeJczT85MCMqGW59JmfGKibSpocWl/VUNZpcDAH4EFmAAfN6+/8rkIJ4OkiS7zapZo9r7WEqYFgIQOAgswAD4vMLbcDs5M7gDiyTN9jfenja5EgA4i8AC9JNhGCEzwiKd08dC4y2AAEJgAfrpWG2z6ltcirBZNG54vNnl9Nulo5Jks1p0vK5Fx2qbzS4HACQRWIB+842ujBser0h78H9LxUTaNbV9pIhRFgCBIvh/ugIm868QCoHpIJ/Z7dNCbCAHIFAQWIB+8vevhEDDrY9vx9utNN4CCBAEFqCf9oRQw61PXvuOt/tONKiuqc3kagCAwAL0S11Tm78xdVIIjbCkxTuUmxorw5C2lzHKAsB8BBagH3z9KyOHRSsxOsLkagbW7BzvtNAn9LEACAAEFqAfzt2SP9T49mPZRh8LgABAYAH6IZQ2jDvfrPYRll3HatXm9phcDYBwR2AB+iGUR1jGpMYqMTpCLW0e7W1/nwBgFgIL0Edtbo8Ott/ROJQabn2sVosuHZUkSdpeyrQQAHMRWIA+KqluVJvbUGykTSOHRZtdzqDw3bl5e1mtuYUACHsEFqCP9lV6R1fGZ8TLYrGYXM3gOBtYGGEBYC4CC9BHvsAyMSP4b3jYnRnZibJYpKOnm1VV32J2OQDCGIEF6KN9J9pHWNJDN7DER0VoQvv7Y5QFgJkILEAf+UZYJoTwCIt0dnkzfSwAzERgAfqgyelS2akmSfKPQIQqfx8LK4UAmIjAAvTBgRNnJEmpcQ6lxDlMrmZwzWpf2rzrWJ2cLjaQA2AOAgvQB2eng+JMrmTw5abGalhMhJwuj3+jPAAYagQWoA/CoeHWx2Kx+KeFtjEtBMAkBBagD8JhSfO5zjbeElgAmIPAAvRBOI2wSPJv0V/MCAsAkxBYgF461ejUyYZWSeETWGaMTJLVIh2va1FlHRvIARh6BBagl3zTQdnJ0Yp12E2uZmjEOuyamOG9wSPTQgDMQGABemlfpXelzIT00LtD84Xk5bAfCwDzEFiAXtrXvgdLOCxpPtesnCRJjLAAMAeBBeil/Sd8e7CE1wiLb2nzZ8fq1epym1wNgHBDYAF6wTAM7fdtGhcmDbc+o5JjlBIbKafbo8+OsYEcgKFFYAF64XhdixpaXYqwWZSbGmt2OUPKYrHo0vZRlmKmhQAMMQIL0Au+htsxqXGKtIfft08eG8gBMEn4/cQF+mFfpbfhdnyY7HB7Pv8GcmW1ptYBIPwQWIBeOFDVvsPt8PBaIeQzfWSibFaLKupaVFHXbHY5AMIIgQXohYNV3hGWS8I0sMRE2v33T2KUBcBQIrAAPWQYhg61B5Zx6eEZWKSzy5vZQA7AUCKwAD1UUdeiRqdbdqtFOSnhtULoXP4+lvJaU+sAEF4ILEAP+aaDclJiFGEL328d3wjL7mN1cro8JlcDIFyE709doJfCvX/FJyclRsNiIuR0efR5BRvIARgaBBaghw6eJLBIbCAHwBwEFqCHGGE5a1Z7H8t2VgoBGCIEFqCHfCuELkkLz03jzsUIC4ChRmABeuB0o1M1jU5J0tjh4btCyGdGdpIsFuno6WZVNbSYXQ6AMEBgAXrA178yIilaMZF2k6sxX5zD7r9bNRvIARgKBBagB3z9K2PpX/HzTQtxI0QAQ4HAAvSAv+E2jcDiw40QAQwlAgvQA6wQ6sy3UmjX0Vq53GwgB2BwEViAHiCwdDYmNU4JUXa1tHn0RWWD2eUACHEEFuAimpwuHattlkRgOZfVatFMljcDGCIEFuAiDp9slCQlx0YqOTbS5GoCCxvIARgqfQosK1euVG5urqKiopSXl6fNmzdf8PxNmzYpLy9PUVFRGjNmjFavXt3pnNraWt17773KzMxUVFSUJk2apPXr1/elPGBA0XDbPTaQAzBUeh1Y1q1bp8WLF+vhhx9WcXGx5s6dq/nz56usrKzL80tKSnTTTTdp7ty5Ki4u1kMPPaT77rtPb775pv8cp9OpG2+8UUeOHNEbb7yhffv26eWXX9aIESP6/s6AAcKS5u7NzE6SJB2paVLNmVZziwEQ0nq9A9Zzzz2nu+++WwsXLpQkrVixQn/84x+1atUqLV++vNP5q1ev1qhRo7RixQpJ0qRJk7R161Y9++yzuu222yRJa9eu1alTp7RlyxZFRERIknJycvr6noABdaDK21BK/0pnidERumR4nA5WndGO8lp9eVK62SUBCFG9GmFxOp3atm2bCgoKOhwvKCjQli1bunxOUVFRp/PnzZunrVu3qq2tTZL0zjvvKD8/X/fee6/S09M1depUPfXUU3K73d3W0traqvr6+g4PYDCwQujCLm0fZWEDOQCDqVeBpbq6Wm63W+npHf8VlZ6ersrKyi6fU1lZ2eX5LpdL1dXVkqTDhw/rjTfekNvt1vr16/XII4/oX//1X/Xkk092W8vy5cuVmJjof2RnZ/fmrQA90ub2qLSmSRKBpTuzcnx9LLXmFgIgpPWp6dZisXT42DCMTscudv65xz0ej4YPH66XXnpJeXl5uv322/Xwww9r1apV3b7msmXLVFdX53+Ul5f35a0AF1Ra0yiXx1BMpE1ZiVFmlxOQfDve7iyvldtjmFsMgJDVqx6W1NRU2Wy2TqMpVVVVnUZRfDIyMro83263KyUlRZKUmZmpiIgI2Ww2/zmTJk1SZWWlnE6nIiM7LyV1OBxyOBy9KR/oNX/DbVrcBUN5OBs3PF5xDrvOtLq0/0SDJmUmmF0SgBDUqxGWyMhI5eXlqbCwsMPxwsJCzZkzp8vn5Ofndzp/w4YNmj17tr/B9qqrrtLBgwfl8Zzd3nv//v3KzMzsMqwAQ8UXWMYxHdQtm9WiGdmJkpgWAjB4ej0ltHTpUr3yyitau3at9u7dqyVLlqisrEyLFi2S5J2queuuu/znL1q0SKWlpVq6dKn27t2rtWvXas2aNXrggQf85/zgBz9QTU2N7r//fu3fv1+///3v9dRTT+nee+8dgLcI9B1LmntmFnduBjDIer2secGCBaqpqdHjjz+uiooKTZ06VevXr/cvQ66oqOiwJ0tubq7Wr1+vJUuW6MUXX1RWVpaef/55/5JmScrOztaGDRu0ZMkSTZ8+XSNGjND999+vn/zkJwPwFoG+O3iSFUI9cfbOzQQWAIPDYvg6YINcfX29EhMTVVdXp4QE5tDRfx6PoSmP/VHNbW796R+u1Vh2uu3WqUanZj3hnfrd8U83KimGqVwAPdPT39/cSwjoxvG6ZjW3uRVhsygnOcbscgJacmykclNjJUk7ymvNLQZASCKwAN3w9a+MTomV3ca3ysX4NpCj8RbAYOCnMNANdrjtnUtzaLwFMHgILEA3DtFw2yu+EZYd5bXysIEcgAFGYAG6wQhL70zMiFd0hE0NLS5/2AOAgUJgAbpx7i63uDi7zarpI9lADsDgILAAXag506rTTW2yWAgsvXEpG8gBGCQEFqALvtGVEUnRio60XeRs+MzybyBXa2odAEIPgQXoAjvc9o1vhGV/VYPqW9pMrgZAKCGwAF3wN9wyHdQrafEOZSdHyzCkXeV1ZpcDIIQQWIAusEKo7y7N9o6ycF8hAAOJwAJ0gcDSd74+FhpvAQwkAgtwnjOtLlXUtUgisPSFr4+luLxWIXJvVQABgMACnOdQ++hKalwkdx3ug0mZCXLYraptalNJdaPZ5QAIEQQW4DxsGNc/kXarpo1gAzkAA4vAApyHJc39dyl9LAAGGIEFOA8Nt/03y9fHwggLgAFCYAHO4+thGTc83uRKgpev8faLyno1trpMrgZAKCCwAOdwujwqPdUkiRGW/shIjFJWYpQ8hrTrKBvIAeg/AgtwjiM1jXJ7DMU57EpPcJhdTlA7u7yZPhYA/UdgAc7hXyE0PE4Wi8XkaoKbv/G2tNbUOgCEBgILcA7uITRwfCMsO8pPs4EcgH4jsADnYIXQwJmSlaAIm0XVZ5wqP9VsdjkAghyBBTgHgWXgREXYNCWrfQM5+lgA9BOBBWjn8Rg6XE1gGUhn+1gILAD6h8ACtDtW26yWNo8ibVZlD4s2u5yQMOucGyECQH8QWIB2vumg3NRY2W18awwE3wjL58fr1dLmNrcYAEGNn8pAO/pXBt6IpGgNj3fI5TG0+xgbyAHoOwIL0O7cPVgwMCwWi3+UpZgbIQLoBwIL0O5AVYMkRlgGmm8/FjaQA9AfBBZAkmEYbBo3SHyNt9vL2EAOQN8RWABJJ8+0qr7FJYtFGpMWa3Y5IWXaiETZrRZVNbTqeF2L2eUACFIEFkBn+1eyh8UoKsJmcjWhJTrSpkmZCZLoYwHQdwQWQNIhVggNKm6ECKC/CCyAWNI82M5uIMcIC4C+IbAAkg6epOF2MPlGWPYcq1eriw3kAPQegQUQe7AMtlHJMUqOjZTT7dGe4/VmlwMgCBFYEPbqW9p0or5VElNCg8VisWiWfwO5WlNrARCcCCwIe76G27R4hxKjI0yuJnRdes5+LADQWwQWhD3fdNA4RlcGlX+L/lICC4DeI7Ag7Pkbbgksg2rGyCTZrBYdr2vR8dpms8sBEGQILAh77MEyNGIddk1u30Du0yOnTK4GQLAhsCDscQ+hoXPZ6GRJ0tYjTAsB6B0CC8JaS5tbZaeaJDHCMhQuG+1tvGWEBUBvEVgQ1kqqG+UxpIQou9LiHWaXE/Jmt4+w7DvRoLqmNpOrARBMCCwIawd8K4TS42WxWEyuJvSlxTuUmxorw5C2lTHKAqDnCCwIa/SvDL2z00L0sQDoOQILwtrBqgZJ0rh0AstQ8U0LfVrCCAuAniOwIKxxD6Ghd3l7YNl1tE4tbdwIEUDPEFgQtlxuj0qqGyWxy+1QykmJUWqcQ063R7uO1pldDoAgQWBB2Co91aQ2t6HoCJuyEqPNLidsWCwWXZ7L8mYAvUNgQdg6cOLsDrdWKyuEhpJvAzkCC4CeIrAgbB3iHkKm8QWWbUdOy+0xTK4GQDAgsCBsHTjhXSFEYBl6EzPiFeewq6HVpX2VDWaXAyAIEFgQtrhLs3nsNqsuHZUkiWkhAD1DYEFY8ngM/5JmVgiZ43L6WAD0AoEFYelYbbNa2jyKtFk1KjnG7HLC0uxzAoth0McC4MIILAhLvtGV3NRY2W18G5hhZnaSImwWnahv1dHTzWaXAyDA8ZMaYcl/DyGmg0wTHWnT1BGJkqRP2KYfwEUQWBCWDlSxQigQ+PpYCCwALobAgrDECEtguHJMiiTp45IakysBEOj6FFhWrlyp3NxcRUVFKS8vT5s3b77g+Zs2bVJeXp6ioqI0ZswYrV69uttzX3/9dVksFt166619KQ24KMMwdMC3Qoi7NJtq9uhhslktKq1p0vFa+lgAdK/XgWXdunVavHixHn74YRUXF2vu3LmaP3++ysrKujy/pKREN910k+bOnavi4mI99NBDuu+++/Tmm292Ore0tFQPPPCA5s6d2/t3AvTQyYZWNbS4ZLV4m25hnvioCH8fy18YZQFwAb0OLM8995zuvvtuLVy4UJMmTdKKFSuUnZ2tVatWdXn+6tWrNWrUKK1YsUKTJk3SwoUL9b3vfU/PPvtsh/Pcbre+/e1v62c/+5nGjBlz0TpaW1tVX1/f4QH0hG90JSclVg67zeRqcOUYbx9L0SECC4Du9SqwOJ1Obdu2TQUFBR2OFxQUaMuWLV0+p6ioqNP58+bN09atW9XW1uY/9vjjjystLU133313j2pZvny5EhMT/Y/s7OzevBWEMfpXAou/j+UwjbcAuterwFJdXS2326309PQOx9PT01VZWdnlcyorK7s83+Vyqbq6WpL00Ucfac2aNXr55Zd7XMuyZctUV1fnf5SXl/fmrSCMsUIosMzO8faxlJ1q0jH6WAB0o09NtxaLpcPHhmF0Onax833HGxoa9J3vfEcvv/yyUlNTe1yDw+FQQkJChwfQE2zJH1g69LEcZloIQNfsvTk5NTVVNput02hKVVVVp1EUn4yMjC7Pt9vtSklJ0Z49e3TkyBHdfPPN/s97PB5vcXa79u3bp7Fjx/amTOCCmBIKPPljUrSzvFYfH67RN2aNNLscAAGoVyMskZGRysvLU2FhYYfjhYWFmjNnTpfPyc/P73T+hg0bNHv2bEVERGjixInavXu3duzY4X/ccsstuv7667Vjxw56UzCgTjc6VX3GKUkam0ZgCRS+xlv6WAB0p1cjLJK0dOlS3XnnnZo9e7by8/P10ksvqaysTIsWLZLk7S05duyYXn31VUnSokWL9MILL2jp0qW65557VFRUpDVr1ui1116TJEVFRWnq1KkdvkZSUpIkdToO9NfBk97RlRFJ0Yp19PqvPwbJ7NHJHfpYRiRFm10SgADT65/YCxYsUE1NjR5//HFVVFRo6tSpWr9+vXJyciRJFRUVHfZkyc3N1fr167VkyRK9+OKLysrK0vPPP6/bbrtt4N4F0EP7T9BwG4jiHHZNG5GoHeW1+vhQjW7LY1oIQEcWI0Tu615fX6/ExETV1dXRgItu/fSdPfrPLUf0/WvG6KGbJpldDs7x9LtfaPWmQ/rrvJH6+V/PMLscAEOkp7+/uZcQwsq+Su8Iy/j0eJMrwfnyx3JfIQDdI7AgrPimhMZzD6GA49uPpfxUs46ebjK7HAABhsCCsFF9plU1jU5ZLPSwBKJYh13TR/r2Y2G1EICOCCwIG77RlVHJMYqJZIVQIPJt0//RoWqTKwEQaAgsCBv76V8JeFdf4t3t+qOD1QqR9QAABgiBBWFj3wnvHiz0rwSuvJxhctitOlHfqkPte+YAgERgQRg5cIIRlkAXFWHTZaO9u95+eIBpIQBnEVgQFgzD0L72wDIhg8ASyK5qnxb68CCBBcBZBBaEhcr6FjW0uGS3WjQmlSmhQDZ3nDewfHz4lNrcHpOrARAoCCwIC74N40anxirSzl/7QDY5M0FJMRE60+rSrqO1ZpcDIEDwkxth4UB7w+0E+lcCntVq0VVjvaMsm+ljAdCOwIKwsI+G26By9bizy5sBQCKwIEzs9zfc0r8SDHz7sRSX1epMq8vkagAEAgILQp7HY/inhMYxwhIUspNjNCo5Ri6Pob8c5maIAAgsCANHTzeruc2tSLtVOckxZpeDHmJ5M4BzEVgQ8nz9K5ekxclu4698sPAtb2YDOQASgQVhYD8bxgWl/DEpslikA1VnVFnXYnY5AExGYEHI8wWWcdxDKKgMi43UtBGJkqQP9p80uRoAZiOwIOT5No1jD5bgc934NEnSxv1VJlcCwGwEFoS0NrdHh082SmIPlmB07YThkrwbyLnYph8IawQWhLRDJ8/I6fYo3mHXyGHRZpeDXpqZnaSkmAg1tLi0vazW7HIAmIjAgpC2t6JekjQxM14Wi8XkatBbNqtF14xrnxbax7QQEM4ILAhpX1R4+1cmZSaYXAn66roJvsBC4y0QzggsCGmf+0ZYMggsweqa9sbbzyvqVVXP8mYgXBFYENL2+kdYaLgNVqlxDk0f6V3evJHlzUDYIrAgZJ1saFX1mVZZLGwaF+x8y5s3MS0EhC0CC0LWF5Xe6aDRKbGKibSbXA364+zy5pMsbwbCFIEFIcu3QojpoODnW95c3+JScXmt2eUAMAGBBSHLv0KIhtugd+7y5ve/YHkzEI4ILAhZ/hVCLGkOCb7lze/TxwKEJQILQpLT5dGhk2ckMSUUKq6bMFxWi3eq7+jpJrPLATDECCwISYdOnlGb21B8lF0jktiSPxQkx0Zqdk6yJOlPe5kWAsINgQUhyd9wm5HAlvwh5IbJ3tVChZ+fMLkSAEONwIKQ9EUlG8aFohsnZ0iSPj5co/qWNpOrATCUCCwISXtpuA1JuamxGpsWK5fHYBM5IMwQWBCSzu7BQmAJNTdMTpfEtBAQbggsCDlVDS2qPuP0bsmfzpRQqCloDyzv76tSG7veAmGDwIKQs+eYd3RlbFqcoiNtJleDgTYze5hSYiPV0OLSpyWnzC4HwBAhsCDkfHasTpI0NYvpoFBks1r05Une1UIbmBYCwgaBBSHns+PtgWVEosmVYLDcMOlsH4thGCZXA2AoEFgQcj5rnxIisISuuePSFB1h07HaZv//bwChjcCCkHK60aljtc2SpMlMCYWs6EibvjTROy20/rMKk6sBMBQILAgpvumg0SkxSoiKMLkaDKb507ybyL27u4JpISAMEFgQUnzTA1OYDgp5108YLofdqiM1Tdpb0WB2OQAGGYEFIcU3wjKNwBLyYh12XTchTZL0LtNCQMgjsCCknF3STGAJBzdNy5Qk/Z5pISDkEVgQMuqa21Ra0yRJmkLDbVj40sThirRZdfhko/afOGN2OQAGEYEFIePz497+lRFJ0RoWG2lyNRgK8VERumZ8qiRp/W6mhYBQRmBByNjj3zCO0ZVwMn+qd1qIPhYgtBFYEDJ2H6PhNhzdMDldETaL9p84o/0nWC0EhCoCC0KGL7BMoeE2rCRGR+ja8d5N5H6745jJ1QAYLAQWhIS65jYdPtkoSZo+ksASbr42M0uS9Nsdx1ktBIQoAgtCwq6jtZKkUckxSolzmFsMhtwNk9IVG2nT0dPN2lZ62uxyAAwCAgtCws7yWknSjOwkU+uAOaIjbZo31btV/2+YFgJCEoEFIWFHe2CZSWAJW7fOHCFJ+v2uCrW5PSZXA2CgEVgQ9AzD0I5yb8PtzGz6V8LVnLEpSo1z6HRTmzYfOGl2OQAGGIEFQe9YbbOqz7TKbrWwQiiM2W1W3TzDuyfLb4qPm1wNgIFGYEHQ29k+ujIxM15RETaTq4GZfNNChZ+fUGOry+RqAAwkAguC3s72FUL0r2D6yETlpsaquc3NVv1AiCGwIOjtKKuVJM0YmWRqHTCfxWLRN/NGSpJ+vfWoydUAGEgEFgQ1l9vj3+GWERZI0m2zRspqkT45ckqHT3IHZyBU9CmwrFy5Urm5uYqKilJeXp42b958wfM3bdqkvLw8RUVFacyYMVq9enWHz7/88suaO3euhg0bpmHDhumGG27QJ5980pfSEGb2nzij5ja34hx2jU2LM7scBICMxChdOz5NkvTrbYyyAKGi14Fl3bp1Wrx4sR5++GEVFxdr7ty5mj9/vsrKyro8v6SkRDfddJPmzp2r4uJiPfTQQ7rvvvv05ptv+s/ZuHGj7rjjDr3//vsqKirSqFGjVFBQoGPH2AAKF+brX5k+MlFWq8XcYhAwFlyWLUl6c9tRudiTBQgJFqOXN9644oorNGvWLK1atcp/bNKkSbr11lu1fPnyTuf/5Cc/0TvvvKO9e/f6jy1atEg7d+5UUVFRl1/D7XZr2LBheuGFF3TXXXd1eU5ra6taW1v9H9fX1ys7O1t1dXVKSEjozVtCEPvHX+/Ur7cd1Q+vG6sff2Wi2eUgQDhdHuUv/5NqGp165a7ZumFyutklAehGfX29EhMTL/r7u1cjLE6nU9u2bVNBQUGH4wUFBdqyZUuXzykqKup0/rx587R161a1tbV1+Zympia1tbUpOTm521qWL1+uxMRE/yM7O7s3bwUhYmv7fWNmjx5mciUIJJF2q75+qXeJ8/9uLTe5GgADoVeBpbq6Wm63W+npHf+1kp6ersrKyi6fU1lZ2eX5LpdL1dXVXT7nwQcf1IgRI3TDDTd0W8uyZctUV1fnf5SX80Mp3FSfaVVJtfcOzXmjug+3CE9/0z4t9OcvqnSyofUiZwMIdH1qurVYOvYKGIbR6djFzu/quCQ988wzeu211/TWW28pKiqq29d0OBxKSEjo8EB42XrEO7oyPj1OiTERJleDQDM+PV4zs5Pk8hh6g+ZbIOj1KrCkpqbKZrN1Gk2pqqrqNIrik5GR0eX5drtdKSkpHY4/++yzeuqpp7RhwwZNnz69N6UhDG0rPSVJysthdAVd+9YVoyRJ//1xqdyeXrXrAQgwvQoskZGRysvLU2FhYYfjhYWFmjNnTpfPyc/P73T+hg0bNHv2bEVEnP1X8c9//nM98cQT+sMf/qDZs2f3piyEKV//ymX0r6Abt8zIUlJMhI7VNuv9L6rMLgdAP/R6Smjp0qV65ZVXtHbtWu3du1dLlixRWVmZFi1aJMnbW3Luyp5FixaptLRUS5cu1d69e7V27VqtWbNGDzzwgP+cZ555Ro888ojWrl2r0aNHq7KyUpWVlTpzhk2f0LWWNrc+a98wbjYjLOhGVIRNC2Z7e1l+WXTE3GIA9EuvA8uCBQu0YsUKPf7445o5c6Y++OADrV+/Xjk5OZKkioqKDnuy5Obmav369dq4caNmzpypJ554Qs8//7xuu+02/zkrV66U0+nUN7/5TWVmZvofzz777AC8RYSineW1anMbSot3KDs52uxyEMC+c2WOLBZp84Fqdr4Fgliv92EJVD1dx43Q8OL7B/XzP+7TTdMytPLbeWaXgwB3939+qj99UaXvXZWrf7p5stnlADjHoOzDAgSKrUdouEXP3ZnvHQH+9bZyNTldJlcDoC8ILAg6LrdHn7Yvab58NIEFF3fNuDSNTolRQ4tLbxdzyw8gGBFYEHQ+O16vM60uJUTZNTmL6T9cnNVq0Z35oyVJaz4skYclzkDQIbAg6BQdqpEkXZ6bIhs3PEQPLbgsW/FRdh0+2aj39p4wuxwAvURgQdD5+LA3sOSPTbnImcBZcQ67vnOlt5flpQ8Om1wNgN4isCCotLk9+rS94TZ/DIEFvfN/5oxWpM2qraWn/TslAwgOBBYElV1H69TkdGtYTIQmZsSbXQ6CzPCEKP9dnP99E6MsQDAhsCCo+KaDrshNkZX+FfTBPdeMkSQV7j2hg1VsJAcECwILgoqv4Zb+FfTVJcPjdMOkdBmG9DK9LEDQILAgaLS63Nra3ndAYEF//OA67yjLm9uPqvxUk8nVAOgJAguCxrYjp9XS5lFavEPjhseZXQ6CWF5Osq6+JFUuj6GVGw+aXQ6AHiCwIGhs2n9SknfXUouF/hX0z+IbxkmSfr2VURYgGBBYEDT8gWV8qsmVIBTMHp2sueO8oywvvs8oCxDoCCwICifqW/RFZYMsFmnuuDSzy0GI8I2yvLGNURYg0BFYEBR8oyvTRyQqOTbS5GoQKvJyzo6y/N/C/WaXA+ACCCwICh+0B5ZrxzO6goH1j/MmSJLe3nFMe47XmVwNgO4QWBDw3B5Dmw9US5KuIbBggE0fmaRbZmTJMKSn3/3C7HIAdIPAgoC382it6prbFB9l18zsJLPLQQj6x3kTFGGzaPOBav9oHoDAQmBBwHvv8xOSvMuZ7Tb+ymLgZSfH6M4rR0uSlr/7hTwew9yCAHTCT38EvA3tgaVgSrrJlSCU/f2XLlF8lF17K+r1v1vLzS4HwHkILAhoh0+e0cGqM4qwWXT9xOFml4MQNiw2UotvGC9J+pc/fKHaJqfJFQE4F4EFAa2wfXTlyjEpSoiKMLkahLq78nM0Pj1Op5va9K8bWOYMBBICCwKafzpoMtNBGHwRNqt+dstUSdKv/lKqz46xzBkIFAQWBKyTDa3aXnZaknQDgQVDJH9sim6ekSWPIT3628/kpgEXCAgEFgSs9/aekGFIM0YmKjMx2uxyEEYevmmS4hx2FZfV6tWiI2aXA0AEFgSw3++qkCQVTMkwuRKEm4zEKD04f6Ik6Zk/7OM+Q0AAILAgIFU1tGjLIe/utrfMyDK5GoSjb10+SpfnJqu5za1lb+2WYTA1BJiJwIKA9PtdFfIY0qWjkpSdHGN2OQhDVqtF/3LbdDnsVn14sFqvf8reLICZCCwISL/dcVyS9DVGV2Ci3NRYPVDgvTniE7/7XCXVjSZXBIQvAgsCTmlNo3aU18pqkb46ncACc919da7yx6SoyenW/a8Xy+nymF0SEJYILAg4/2+nd3TlqktSlRbvMLkahDur1aLnFsxQYnSEdh2t0/99jw3lADMQWBBQDMPQW8XHJNFsi8CRmRitf7ltmiRp9aZD3NEZMAGBBQHlk5JTOnyyUTGRNs2flml2OYDfV6Zm6o7LR8kwpPteL2apMzDECCwIKL6VGLfMyFKcw25yNUBHj908WdNHJqq2qU0/+NU2tbS5zS4JCBsEFgSMuqY2rd/t3Szu9stHmVwN0FlUhE2rvpOn5NhIfXasXo/85jP2ZwGGCIEFAePt4qNqdXk0MSNeM0Ymml0O0KURSdF64Y5LZbVIb2w7qlWbDpldEhAWCCwICB6PoVeLSiVJ37pilCwWi8kVAd2bc0mqfnrLFEnerfvfaV/ZBmDwEFgQEDbur9Lh6kbFR9l126yRZpcDXNRd+aO18OpcSdID/7tTfzlcY3JFQGgjsCAgrPmwRJJ0+2XZiqXZFkHioZsm6StTMuR0e7Twl1u162it2SUBIYvAAtN9UVmvjw7WyGqRvjtntNnlAD1mtVq04vaZuiI3WQ2tLt219hN9UVlvdllASCKwwHQvvu9tWvzK1AyNHMaNDhFcoiJsWvO3l+nSUUmqbWrTd175iw6caDC7LCDkEFhgqoNVDfrdLm/D4r3XX2JyNUDfxDns+s//c7mmZCWo+oxTf/3vRdpZXmt2WUBIIbDAVP/254MyDOnGyemaksVSZgSvxOgI/ffdV2hGtnek5Vsvf6wth6rNLgsIGQQWmOZgVYP/Rof3f3mcydUA/TcsNlK/WniF5oxNUaPTrb/9j0/9myEC6B8CC0zz1Pov5DGkgsnpmjqC0RWEhjiHXWv/9jIVTE6X0+XRD3+1XSve2y+Phx1xgf4gsMAUmw+c1J+/qJLdatGD8yeaXQ4woKIibFr57Vn63lXefVpWvHdAP3ptu5qcLpMrA4IXgQVDrs3t0ZO/3yvJu/nWmLQ4kysCBp7dZtU/3TxZz9w2XRE2i9bvrtStL36kfZWsIAL6gsCCIffy5sP6orJBSTERuu/LrAxCaPuby7L12j1XKi3eof0nzuiWFz7Uf31cyk0TgV4isGBIlVQ3asV7ByRJj351spJiIk2uCBh8s0cn69375+q6CWlqdXn06G8+08JfblVFXbPZpQFBg8CCIeNye/TjN3bK6fJo7rhUfWPWCLNLAoZMapxDa797mR79q8mKsFn0py+qdONzH+i/io7QkAv0AIEFQ+YXfzqgT4+cVpzDrqe+Po07MiPsWK0W3X11rn7393N16agknWl16dHf7tE3V29Rcdlps8sDAhqBBUPiwwPVeuH9g5Kkp74xTdnJbMGP8DUhI15vLJqjn90yRbGRNm0vq9XXV27R379WrPJTTWaXBwQkAgsG3cGqBv3wV9tkGNIdl2frlhlZZpcEmM5mtei7c0brzw9cp7/OGymLRfp/O4/rS/+6Ucve2q2yGoILcC6LESKt6vX19UpMTFRdXZ0SEhLMLgftTja06hurPlL5qWbNGpWk/7nnSkVF2MwuCwg4e47X6an1e/XRwRpJ3kDztRlZ+rtrx2pCRrzJ1QGDp6e/vwksGDRVDS361st/0cGqMxqVHKO3fzhHKXEOs8sCAtonJaf0wvsH9cH+k/5jl+cm684rczRvSoYi7QyMI7QQWGCq8lNN+tv/+ESHTjYqMzFKr91zpUanxppdFhA0dh2t1aqNh7Th8xNyt68iSo2L1M0zsnTLjCzNzE6icR0hgcAC02w9ckp/91/bVNPoVFZilF77/pXKSSGsAH1RUdes1z4p1+uflKmqodV/fFRyjG6ekakbJqVr+sgk2ayEFwQnAguGnMvt0aqNh/SLPx2Qy2NoSlaCXvnubGUmRptdGhD02twebdp3Uu/sPK7Cz0+ouc3t/1xybKSuHZ+m6yakKX9MioYnRJlYKdA7BBYMqb8crtETv/9cnx2rlyT91fRMPfPN6YqJtJtcGRB6mpwuvbe3Su/urtCHB6rV0Nrxpoo5KTG6bHSyLhs9TLNGDdOYtDhGYBCwCCwYdIZhaFvpaf37B4dV+PkJSVK8w67Hb52iW2eOYH4dGAJtbo+2lZ7W+/uq9MH+an1RWa/zf6pHRVg1ISNBU7ISNDkzQRMy4pWbGquU2Ei+T2G6QQ0sK1eu1M9//nNVVFRoypQpWrFihebOndvt+Zs2bdLSpUu1Z88eZWVl6cc//rEWLVrU4Zw333xTjz76qA4dOqSxY8fqySef1Ne//vUe10RgGTqVdS1av7tCbxcf0+5jdZIkq0W64/JRWnLjeKWyEggwTX1Lm7aVntbWI6f0aclpfXa8Tk1Od5fnxjvsyk2L1eiUWI1OiVFWUrQyEqOUmej9b0KUnUCDQdfT39+9Hq9ft26dFi9erJUrV+qqq67Sv//7v2v+/Pn6/PPPNWrUqE7nl5SU6KabbtI999yj//7v/9ZHH32kH/7wh0pLS9Ntt90mSSoqKtKCBQv0xBNP6Otf/7refvtt/c3f/I0+/PBDXXHFFb0tEQOo1eXWkeom7TvRoK1HTumTklP6orLB//lIu1VfnzlCC+fmalw6e0UAZkuIitD1E4br+gnDJUluj6HSmkZ9XlGvPcfr9fnxeh2sOqPjdc1qaHVp19E67Tpa1+VrxUTalJEYpdQ4h4bFRCg5NlLDYiKVHBuppJhIJcdGKCEqQrEOu+IcdsU67Ip12OSws9cSBl6vR1iuuOIKzZo1S6tWrfIfmzRpkm699VYtX7680/k/+clP9M4772jv3r3+Y4sWLdLOnTtVVFQkSVqwYIHq6+v17rvv+s/5yle+omHDhum1117rUV2DNcJS1dAip8vTYYjV92dDxnkf+z5vnPex/5ndnN/59br7GgNVg9NlqLnNpWanR01Ol5rb3DrT6lLNGadONrTqZEOrKutbVHaqyb+k8lyXjR6mm6Zl6pYZWeytAgShlja3yk416fDJRh2paVRpTaMq6lpUWdeiyvoW1Ta19fm1I2wWb3iJ9AYZR4RVDrtVDrtNkXbfn63tfz73mE12m0U2q0V2q/e/vofdapHVYmn/vFU2S+fzrBaLrBZJFskiiywWySLJYrnAn6X2j9uPd/dn33ntz7mYnoxM9XTsqieDXD2paiAGy4YnOAY8kA7KCIvT6dS2bdv04IMPdjheUFCgLVu2dPmcoqIiFRQUdDg2b948rVmzRm1tbYqIiFBRUZGWLFnS6ZwVK1Z0W0tra6taW88u8auvr+/NW+mxv/uvbSouqx2U1w4W8Q67xg6P08zsJF2Rm6zLcpOZ9gGCXFSETePT4zW+m5HRZqdblfUtqqhr1qlGp043tel0o7P9z96PTzW2qqHFpcZWl860utTS5pEktbkN1Ta19Sv0IDC99cM5mjVqmClfu1eBpbq6Wm63W+np6R2Op6enq7KyssvnVFZWdnm+y+VSdXW1MjMzuz2nu9eUpOXLl+tnP/tZb8rvk0ibVVER3p0lfQnWl1J9YdWXpP3htbvPX+R5lvNeoPP5vo8v/Ho6//wunmezWhQTaVNMhF3RkTbFRNoUHWlTWpxDafFnH2NS45Se4GAeGwgz0ZE25abGKrcXGz663B41Ot1qbD0bYhpb3XK63Wpt86jV5ZHT5VGry61Wl8f/OPeY223I5THk9njkNuT9r8eQ2+M7fvbPnvOOeQxDhiHvf+UdaTYkyVCHj33n+Uem/ed7R609/s+1n3fuc7sYcT7XRacsLnLCxZ5/sUmRiz//Yl//widYTfxd0Kc1p+f/8jIM44K/0Lo6//zjvX3NZcuWaenSpf6P6+vrlZ2dffHie2nd3+UP+GsCQCiy26xKjLYqMTrC7FIQgnoVWFJTU2Wz2TqNfFRVVXUaIfHJyMjo8ny73a6UlJQLntPda0qSw+GQw8G0BAAA4aBXd9GKjIxUXl6eCgsLOxwvLCzUnDlzunxOfn5+p/M3bNig2bNnKyIi4oLndPeaAAAgvPR6Smjp0qW68847NXv2bOXn5+ull15SWVmZf1+VZcuW6dixY3r11VcleVcEvfDCC1q6dKnuueceFRUVac2aNR1W/9x///265ppr9C//8i/62te+pt/+9rd677339OGHHw7Q2wQAAMGs14FlwYIFqqmp0eOPP66KigpNnTpV69evV05OjiSpoqJCZWVl/vNzc3O1fv16LVmyRC+++KKysrL0/PPP+/dgkaQ5c+bo9ddf1yOPPKJHH31UY8eO1bp169iDBQAASGJrfgAAYKKe/v7uVQ8LAACAGQgsAAAg4BFYAABAwCOwAACAgEdgAQAAAY/AAgAAAh6BBQAABDwCCwAACHgEFgAAEPB6vTV/oPJt2FtfX29yJQAAoKd8v7cvtvF+yASWhoYGSVJ2drbJlQAAgN5qaGhQYmJit58PmXsJeTweHT9+XPHx8bJYLAP2uvX19crOzlZ5eTn3KBpEXOehw7UeGlznocF1HhqDeZ0Nw1BDQ4OysrJktXbfqRIyIyxWq1UjR44ctNdPSEjgm2EIcJ2HDtd6aHCdhwbXeWgM1nW+0MiKD023AAAg4BFYAABAwCOwXITD4dBjjz0mh8Nhdikhjes8dLjWQ4PrPDS4zkMjEK5zyDTdAgCA0MUICwAACHgEFgAAEPAILAAAIOARWAAAQMAjsFzEypUrlZubq6ioKOXl5Wnz5s1mlxTUPvjgA918883KysqSxWLRb37zmw6fNwxDP/3pT5WVlaXo6Ghdd9112rNnjznFBrHly5frsssuU3x8vIYPH65bb71V+/bt63AO17r/Vq1apenTp/s308rPz9e7777r/zzXeHAsX75cFotFixcv9h/jWvffT3/6U1kslg6PjIwM/+fNvsYElgtYt26dFi9erIcffljFxcWaO3eu5s+fr7KyMrNLC1qNjY2aMWOGXnjhhS4//8wzz+i5557TCy+8oE8//VQZGRm68cYb/feKQs9s2rRJ9957rz7++GMVFhbK5XKpoKBAjY2N/nO41v03cuRIPf3009q6dau2bt2qL33pS/ra177m/yHONR54n376qV566SVNnz69w3Gu9cCYMmWKKioq/I/du3f7P2f6NTbQrcsvv9xYtGhRh2MTJ040HnzwQZMqCi2SjLffftv/scfjMTIyMoynn37af6ylpcVITEw0Vq9ebUKFoaOqqsqQZGzatMkwDK71YBo2bJjxyiuvcI0HQUNDgzFu3DijsLDQuPbaa43777/fMAz+Pg+Uxx57zJgxY0aXnwuEa8wISzecTqe2bdumgoKCDscLCgq0ZcsWk6oKbSUlJaqsrOxwzR0Oh6699lqueT/V1dVJkpKTkyVxrQeD2+3W66+/rsbGRuXn53ONB8G9996rr371q7rhhhs6HOdaD5wDBw4oKytLubm5uv3223X48GFJgXGNQ+bmhwOturpabrdb6enpHY6np6ersrLSpKpCm++6dnXNS0tLzSgpJBiGoaVLl+rqq6/W1KlTJXGtB9Lu3buVn5+vlpYWxcXF6e2339bkyZP9P8S5xgPj9ddf1/bt2/Xpp592+hx/nwfGFVdcoVdffVXjx4/XiRMn9M///M+aM2eO9uzZExDXmMByERaLpcPHhmF0OoaBxTUfWD/60Y+0a9cuffjhh50+x7XuvwkTJmjHjh2qra3Vm2++qe9+97vatGmT//Nc4/4rLy/X/fffrw0bNigqKqrb87jW/TN//nz/n6dNm6b8/HyNHTtWv/zlL3XllVdKMvcaMyXUjdTUVNlstk6jKVVVVZ0SJgaGrxudaz5w/v7v/17vvPOO3n//fY0cOdJ/nGs9cCIjI3XJJZdo9uzZWr58uWbMmKFf/OIXXOMBtG3bNlVVVSkvL092u112u12bNm3S888/L7vd7r+eXOuBFRsbq2nTpunAgQMB8feZwNKNyMhI5eXlqbCwsMPxwsJCzZkzx6SqQltubq4yMjI6XHOn06lNmzZxzXvJMAz96Ec/0ltvvaU///nPys3N7fB5rvXgMQxDra2tXOMB9OUvf1m7d+/Wjh07/I/Zs2fr29/+tnbs2KExY8ZwrQdBa2ur9u7dq8zMzMD4+zwkrb1B6vXXXzciIiKMNWvWGJ9//rmxePFiIzY21jhy5IjZpQWthoYGo7i42CguLjYkGc8995xRXFxslJaWGoZhGE8//bSRmJhovPXWW8bu3buNO+64w8jMzDTq6+tNrjy4/OAHPzASExONjRs3GhUVFf5HU1OT/xyudf8tW7bM+OCDD4ySkhJj165dxkMPPWRYrVZjw4YNhmFwjQfTuauEDINrPRD+4R/+wdi4caNx+PBh4+OPPzb+6q/+yoiPj/f/zjP7GhNYLuLFF180cnJyjMjISGPWrFn+ZaHom/fff9+Q1Onx3e9+1zAM79K5xx57zMjIyDAcDodxzTXXGLt37za36CDU1TWWZPzHf/yH/xyudf9973vf8/98SEtLM7785S/7w4phcI0H0/mBhWvdfwsWLDAyMzONiIgIIysry/jGN75h7Nmzx/95s6+xxTAMY2jGcgAAAPqGHhYAABDwCCwAACDgEVgAAEDAI7AAAICAR2ABAAABj8ACAAACHoEFAAAEPAILAAAIeAQWAAAQ8AgsAAAg4BFYAASsDz/8UBEREWptbfUfKykpkcViUWlpqYmVARhqBBYAAWvHjh2aNGmSHA5Hh2NJSUnKyckxsTIAQ43AAiBg7dy5U5deemmHYzt27NCMGTNMqgiAWQgsAALWjh07NHPmzA7HiouLCSxAGCKwAAhIbrdbe/bs6TTCsn379k4hBkDoI7AACEj79u1Tc3OzsrKy/MeKiop07NgxRliAMERgARCQduzYIUn6t3/7Nx04cEDvvvuu7rrrLknqsGoIQHggsAAISDt27NCNN96okpISTZ06VQ899JCefvppJSQk6MUXXzS7PABDzGIYhmF2EQBwvnnz5mnWrFlavny52aUACACMsAAISDt37tT06dPNLgNAgCCwAAg4lZWVOnHiBIEFgB9TQgAAIOAxwgIAAAIegQUAAAQ8AgsAAAh4BBYAABDwCCwAACDgEVgAAEDAI7AAAICAR2ABAAABj8ACAAACHoEFAAAEvP8Pi5AZG0xgAUYAAAAASUVORK5CYII=",
+      "text/plain": [
+       "<Figure size 640x480 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "import scipy\n",
+    "\n",
+    "mus = np.linspace(0,50,1000)\n",
+    "plt.plot(mus, scipy.stats.poisson.pmf(18,mus))\n",
+    "plt.xlabel(r\"$\\mu$\")\n",
+    "scipy.integrate.quad(lambda x: scipy.stats.poisson.pmf(18,x), 0, 100)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "71c0df91-c1e0-4fbf-a94b-fd88f839ef07",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "subslide"
+    },
+    "tags": []
+   },
+   "source": [
+    "Also: $P(\\mu_- \\le \\mu \\le\\mu_+) = \\int_{\\mu_-}^{\\mu_+} P(k, \\mu) d\\mu$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "d278b736-1f45-4b6c-8e1a-c851bb618aeb",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": ""
+    },
+    "tags": []
+   },
+   "source": [
+    "Test der naiven Antwort:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "7c461ddf-0cb8-49b0-adc6-a7ae6f11212b",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": ""
+    },
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "scipy.integrate.quad(lambda x: scipy.stats.poisson.pmf(18,x), 18-np.sqrt(18), 18+np.sqrt(18))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "88f176b2-deb2-4212-b4ba-d86b7964e545",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "## Example from Publication:\n",
+    "\"Search for flavor changing neutral currents in decays of top quarks\" (D0)\n",
+    "\n",
+    "Physics Letters B 701 (2011), pp. 313-320\n",
+    "[https://arxiv.org/abs/1103.4574]\n",
+    "\n",
+    "![wrong](./figures/12/ht_bq_1jets_comb_5pc.png \"Example\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "5135b8e6-711b-440e-8507-f049d017c137",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": ""
+    },
+    "tags": []
+   },
+   "source": [
+    "Hm, ok!\n",
+    "\n",
+    "Nächstes Bin: 1-mal fielen sieben Tore. \n",
+    "\n",
+    "Naives Konfidenzintzervall: $1\\pm 1$\n",
+    "\n",
+    "Test:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "e6102fec-1275-439a-b6b4-8cb1ee4960fc",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": ""
+    },
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "mus = np.linspace(0,10,1000)\n",
+    "plt.plot(mus, scipy.stats.poisson.pmf(1,mus))\n",
+    "plt.xlabel(r\"$\\mu$\")\n",
+    "scipy.integrate.quad(lambda x: scipy.stats.poisson.pmf(1,x), 1-np.sqrt(1), 1+np.sqrt(1))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "3139be1a-8a4d-4ae9-9fa7-aa99d7efffe6",
+   "metadata": {
+    "editable": true,
+    "jupyter": {
+     "source_hidden": true
+    },
+    "slideshow": {
+     "slide_type": ""
+    },
+    "tags": []
+   },
+   "source": [
+    "zu klein!\n",
+    "\n",
+    "Suche Intervall: $[\\mu_-, \\mu_+]$\n",
+    "\n",
+    "hier:\n",
+    "$\\mu_- = 0$"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "630c83e0-2be4-41dd-a124-2ac672a2c507",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def intervall(mu_plus):\n",
+    "    return scipy.integrate.quad(lambda x: scipy.stats.poisson.pmf(1,x), 0, mu_plus)[0]\n",
+    "\n",
+    "mus = np.linspace(0,10,100)\n",
+    "plt.plot(mus, np.vectorize(intervall)(mus))\n",
+    "plt.grid()\n",
+    "plt.xlabel(r\"$\\mu$\")\n",
+    "\n",
+    "scipy.optimize.brentq(lambda x: intervall(x)-0.6827, 0,10)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "1c4ad7b4-bbdb-4f9d-a795-0e2dae39a181",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "Korrektes Intervall: $[0; 2{,}36]$\n",
+    "\n",
+    "\n",
+    "## Was ist denn nun das richtige Intervall für das 6-Tore-Bin?\n",
+    "\n",
+    "Welches?\n",
+    "\n",
+    "\n",
+    "z.B. symmetrisch in der Konfidenz:\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "5fffd76e-14da-4854-8af0-5262e0c3c9a3",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": ""
+    },
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "def intervall_minus(mu):\n",
+    "    return scipy.integrate.quad(lambda x: scipy.stats.poisson.pmf(18,x), mu, 18)[0]\n",
+    "\n",
+    "def intervall_plus(mu):\n",
+    "    return scipy.integrate.quad(lambda x: scipy.stats.poisson.pmf(18,x), 18, mu)[0]\n",
+    "\n",
+    "print(\"naiv:\", 18-np.sqrt(18), 18+np.sqrt(18))\n",
+    "mu_minus = scipy.optimize.brentq(lambda x: intervall_minus(x)-0.6827/2, 0,18)\n",
+    "mu_plus = scipy.optimize.brentq(lambda x: intervall_plus(x)-0.6827/2, 18,40)\n",
+    "print(\"symmetrisch in P:\", mu_minus, mu_plus) \n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "52f8f412-cb94-4c32-95b6-03f178cbcdb6",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "scipy.integrate.quad(lambda x: scipy.stats.poisson.pmf(18,x), mu_minus, mu_plus)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "f7ef04e8-1dc9-4e8b-b597-39d277bde591",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "## Konfidenz-Intervalle: Poisson"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "e0a6084d-dd5d-4ffc-8849-a61a8327fb4e",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": ""
+    },
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "def intervall_minus(k, mu):\n",
+    "    return scipy.integrate.quad(lambda x: scipy.stats.poisson.pmf(k,x), mu, k)[0]\n",
+    "\n",
+    "def intervall_plus(k, mu):\n",
+    "    return scipy.integrate.quad(lambda x: scipy.stats.poisson.pmf(k,x), k, mu)[0]\n",
+    "\n",
+    "def conv_limits(k, c):\n",
+    "    c_low = intervall_minus(k, 0)\n",
+    "    c_up = c / 2\n",
+    "    if c_low < c/2:\n",
+    "        mu_minus = 0\n",
+    "    else:\n",
+    "        c_low = c / 2\n",
+    "        mu_minus = scipy.optimize.brentq(lambda x: intervall_minus(k, x)-c_low, 0,k)\n",
+    "    c_up = c - c_low\n",
+    "    mu_plus = scipy.optimize.brentq(lambda x: intervall_plus(k, x)-c_up, k,  2*k + 20)\n",
+    "    return mu_minus, mu_plus\n",
+    "\n",
+    "conv_limits(3, 0.6827)\n",
+    "\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "382e5a13-5f5f-44e5-90dd-7272fbdb171a",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "ks = np.arange(0, 20)\n",
+    "\n",
+    "limits = np.zeros((len(ks), 2))\n",
+    "for i,k in enumerate(ks):\n",
+    "    limits[i] = conv_limits(k, 0.6827)\n",
+    "#print(limits)\n",
+    "plt.plot(ks, limits[:,0], 'b_')\n",
+    "plt.plot(ks, limits[:,1], 'r_')\n",
+    "plt.plot(ks, ks-np.sqrt(ks), 'b.')\n",
+    "plt.plot(ks, ks+np.sqrt(ks), 'r.')\n",
+    "plt.xlabel(\"$k$\")\n",
+    "plt.ylabel(r\"$\\mu$\")\n",
+    "plt.grid()\n",
+    "\n",
+    "print(limits[2])\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "61d94d51-fc1c-4ddb-9cbc-c416a28158f8",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "## Konfidenzintervall: Gauß"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "cb5826ae-29df-41c3-ad8f-dde61b5d90ba",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def intervall_minus(x, mu, sigma):\n",
+    "    return scipy.integrate.quad(lambda y: scipy.stats.norm.pdf(x,y, sigma), mu, x)[0]\n",
+    "\n",
+    "def intervall_plus(x, mu, sigma):\n",
+    "    return scipy.integrate.quad(lambda y: scipy.stats.norm.pdf(x, y, sigma), x, mu)[0]\n",
+    "\n",
+    "def conv_limits(x, c, sigma):\n",
+    "    c_low = c / 2\n",
+    "    mu_minus = scipy.optimize.brentq(lambda mu: intervall_minus(x, mu, sigma)-c_low,  x - 10*sigma,x)\n",
+    "    c_up = c - c_low\n",
+    "    mu_plus = scipy.optimize.brentq(lambda mu: intervall_plus(x, mu, sigma)-c_up, x,  x + 10*sigma)\n",
+    "    return mu_minus, mu_plus\n",
+    "\n",
+    "conv_limits(3, 0.6827, 1)\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "e87da118-0c11-4345-a656-096de6f980e9",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": ""
+    },
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "xs = np.linspace(0,20,100)\n",
+    "sigma = 1\n",
+    "limits = np.zeros((len(xs), 2))\n",
+    "for i,k in enumerate(xs):\n",
+    "    limits[i] = conv_limits(k, 0.6827, sigma)\n",
+    "#print(limits)\n",
+    "plt.plot(xs, limits[:,0], 'b')\n",
+    "plt.plot(xs, limits[:,1], 'r')\n",
+    "plt.plot(xs, xs-sigma, 'b.')\n",
+    "plt.plot(xs, xs+sigma, 'r.')\n",
+    "plt.xlabel(\"$x$\")\n",
+    "plt.ylabel(r\"$\\mu$\")\n",
+    "plt.grid()\n",
+    "\n",
+    "print(limits[2])"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "202144ae-1057-41fc-8757-7f6f40c75868",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "print(scipy.integrate.quad(lambda y: scipy.stats.norm.pdf(3, y, 1), 2, 3)[0], scipy.integrate.quad(lambda x: scipy.stats.norm.pdf(x, 3, 1), 2,3)[0])"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "24359dd4-7289-4235-872e-1138d5fe0b0b",
+   "metadata": {},
+   "source": [
+    "Für Gauß $G(x, \\mu, \\sigma) = G(\\mu, x, \\sigma)$: $\\int_{\\mu_-}^{\\mu_+} G(x, \\mu, \\sigma) d\\mu = \\int_{\\mu_-}^{\\mu_+} G(\\mu, x, \\sigma) d\\mu$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "10f482d3-6667-4250-aefa-5df896e46936",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "# Konfidenzregionen\n",
+    "\n",
+    "Erst einmal Konfidenzen für Gauß-Verteilung zum Intervall $[\\mu - z\\sigma, \\mu - z\\sigma]$:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "580b83dc-3cb0-40df-bc77-8ad48d90fce5",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def conv_gaus(z):\n",
+    "    return scipy.stats.norm.cdf(z) - scipy.stats.norm.cdf(-z)\n",
+    "\n",
+    "for z in [1,2,3,4,5]:\n",
+    "    print(z, conv_gaus(z))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "3904ad68-2b4d-4207-a7e8-35def0372238",
+   "metadata": {},
+   "source": [
+    "$z$ für 68\\%, 90\\%, 95\\% und 99\\%: "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "5a71ee06-db32-4349-a3da-ae0e394fbd74",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "for c in [0.68, 0.90, 0.95, 0.99]:\n",
+    "    print(c, scipy.optimize.brentq(lambda z: conv_gaus(z)-c,0, 10))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "2d5f1dab-cebd-45fe-934e-36cd06ba2782",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "## Regionen in zwei oder drei Dimensionen:\n",
+    "\n",
+    "$\\vec x^T = (x_1, x_2, \\dots, x_n)$ \n",
+    "\n",
+    "$x_i$ seien unabhängige Zufallsvariablen und Gauß verteilt:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "73c11f8d-c8e4-4dc7-ad37-4ca4a33c55ea",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def conv_gaus_nd(z, n):\n",
+    "    return np.power(scipy.stats.norm.cdf(z) - scipy.stats.norm.cdf(-z),n)\n",
+    "\n",
+    "for z in [1,2,3,4,5]:\n",
+    "    print(z, conv_gaus_nd(z, 1), conv_gaus_nd(z, 2), conv_gaus_nd(z, 3))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "8dd1036c-edf9-40c4-be16-56025f49134b",
+   "metadata": {},
+   "source": [
+    "$z$ für 68\\%, 90\\%, 95\\% und 99\\%: "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "7f14d38e-1e41-460e-9876-2afb62bed08b",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "for c in [0.68, 0.90, 0.95, 0.99]:\n",
+    "    print(c, scipy.optimize.brentq(lambda z: conv_gaus_nd(z, 1)-c,0, 10), scipy.optimize.brentq(lambda z: conv_gaus_nd(z, 2)-c,0, 10), scipy.optimize.brentq(lambda z: conv_gaus_nd(z,3)-c,0, 10))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "9aca662e-bdd6-408e-8f28-852614e51577",
+   "metadata": {},
+   "source": [
+    "1,2,3-$\\sigma$-Äquivalente in zwei und drei Dimensionen:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "702daac8-81e8-406c-b70f-c3146c58a493",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "for k in [1, 2, 3]:\n",
+    "    c = conv_gaus_nd(k, 1)\n",
+    "    print(c, scipy.optimize.brentq(lambda z: conv_gaus_nd(z, 2)-c,0, 10), scipy.optimize.brentq(lambda z: conv_gaus_nd(z,3)-c,0, 10))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "bba9c7fc-9e11-4441-90e0-f1d186a1726e",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "# Hypothesentest\n",
+    "\n",
+    "\n",
+    "Hypothese: \"Die $k_i$ Tore pro Bundesligaspiel $i$ sind Poisson-verteilt mit einem gemeinsamen $\\mu = <k>$.\"\n",
+    "\n",
+    "Benötigt für den Test eine alternative Hypothese: \"Die Tore pro Bundesligaspiel $k_i$ sind Poisson verteilt mit $\\mu_i = ki$.\"\n",
+    "\n",
+    "Fehler 1. und 2. Art\n",
+    "* Fehler 1. Art: Die Hypothese stimmt, wird aber verworfen.\n",
+    "  \n",
+    "  Irrtumswahrscheinlichkeit: $\\alpha$ (Signifikanzniveau, significance)\n",
+    "  \n",
+    "  Spezifität: $1-\\alpha$ (Effizienz) \n",
+    "\n",
+    "\n",
+    "* Fehler 2. Art: Die Hypothese wird angenommen, ist aber falsch (falsch positiv).\n",
+    "\n",
+    "  Wahrscheinlichkeit für Fehler: $\\beta$\n",
+    "  \n",
+    "  Trennschärfe, Sensitivität: $1-\\beta$ (power)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "4e67fff2-211b-4eef-95e2-44e3b363098c",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "## Beispiel:\n",
+    "Gauß verteilte Zufallsvariable $x$ ($\\sigma = 1$)\n",
+    "\n",
+    "Hypothese: $\\mu = 0$\n",
+    "\n",
+    "Für welchen Bereich $x_- < x < x_+$ sollte man die Hypothese annehmen für Fehler 1. Art $\\alpha = 5\\%$?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "fb7d561b-51c8-4857-b0ea-81dec8facbda",
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "85e25147-c902-4434-b3dc-908486408c5b",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": ""
+    },
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "x = np.linspace(-5,5,100)\n",
+    "xout1 = np.linspace(-5, -1.9599639845401602)\n",
+    "xout2 = np.linspace(1.9599639845401602, 5)\n",
+    "plt.plot(x, scipy.stats.norm.pdf(x))\n",
+    "plt.fill_between(xout1, scipy.stats.norm.pdf(xout1), np.zeros_like(xout1),color=\"c\")\n",
+    "plt.fill_between(xout2, scipy.stats.norm.pdf(xout2), np.zeros_like(xout2),color=\"c\")\n",
+    "\n",
+    "plt.xlabel(\"$x$\")\n",
+    "\n",
+    "plt.grid()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "6cbb0d56-981d-4dfa-9a7a-0d6d4a51a357",
+   "metadata": {},
+   "source": [
+    "Fehler 2. Art:?"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "cb79afd6-ba74-448b-9096-05cedeb842a6",
+   "metadata": {},
+   "source": [
+    "Beispiel: wahres $\\mu = 3$:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "603a31e1-1425-4eb6-9b12-c44ba31d06a6",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "x = np.linspace(-5,8,200)\n",
+    "xin = np.linspace(-1.9599639845401602, 1.9599639845401602)\n",
+    "xout1 = np.linspace(-5, -1.9599639845401602)\n",
+    "xout2 = np.linspace(1.9599639845401602, 5)\n",
+    "plt.plot(x, scipy.stats.norm.pdf(x))\n",
+    "plt.fill_between(xout1, scipy.stats.norm.pdf(xout1), np.zeros_like(xout1),color=\"c\")\n",
+    "plt.fill_between(xout2, scipy.stats.norm.pdf(xout2), np.zeros_like(xout2),color=\"c\")\n",
+    "plt.plot(x, scipy.stats.norm.pdf(x, 3))\n",
+    "plt.fill_between(xin, scipy.stats.norm.pdf(xin, 3), np.zeros_like(xin),color=\"orange\")\n",
+    "\n",
+    "plt.xlabel(\"$x$\")\n",
+    "\n",
+    "plt.grid()\n",
+    "print(\"Fehler 2. Art: beta:\", scipy.stats.norm.cdf(1.9599639845401602, 3) - scipy.stats.norm.cdf(-1.9599639845401602, 3))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "f6a454b7-fce4-4dca-ad3c-9e220956706b",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "# Neyman-Pearson Test\n",
+    "\n",
+    "Hypothese: $H$\n",
+    "\n",
+    "Alternative Hypothese: $A$\n",
+    "\n",
+    "Suche Kriterium, das $\\alpha$ und $\\beta$ minimiert. $H$ wird für $x$ im Bereich $V$  verworfen:\n",
+    "\n",
+    "$\\int_{V} P_{H}(x) dx = \\alpha$ (klein)\n",
+    "\n",
+    "$\\int_{V} P_{A}(x) dx = 1 - \\beta$ (groß)\n",
+    "\n",
+    "In $V$ sind die $x$-Werte, für die $\\frac{P_{A}(x)}{P_{H}(x)}$ groß ist.\n",
+    "\n",
+    "Neyman-Pearson-Kriterium:  $\\frac{P_{A}(x)}{P_{H}(x)} > c$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "39da5505-d3e1-4be6-a1b5-ecef10c58bce",
+   "metadata": {},
+   "source": []
+  },
+  {
+   "cell_type": "markdown",
+   "id": "b636ff7e-5ba1-4fc5-bb40-fb29b63ca88c",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "# Endlich: Passt das Modell?\n",
+    "\n",
+    "Hypothese: \"Die $k_i$ Tore pro Bundesligaspiel $i$ sind Poisson-verteilt mit einem gemeinsamen $\\mu = <k>$.\"\n",
+    "\n",
+    "Benötigt für den Test eine alternative Hypothese: \"Die Tore pro Bundesligaspiel $k_i$ sind Poisson verteilt mit $\\mu_i = ki$.\"\n",
+    "\n",
+    "Wie gut unser Modell einer Poissonverteilung für alle Spiele zu den Daten passt, lässt sich durch den Vergleich der log-Likelihood unseres Modells $-lnL(\\mu; \\vec k)$ zur log-Likelihood eines saturierten Modells (je Spiel ein eigener $\\mu$-Parameter mit $\\mu_i = k_i$), also $-ln\\hat L(\\vec k; \\vec k)$, abschätzen.\n",
+    "\n",
+    "$P_{H} (\\vec k) = \\prod_{i} P(k_i,\\mu)$; $P_{A} (\\vec k) = \\prod_{i} P(k_i, k_i)$\n",
+    "\n",
+    "Neyman-Pearson: Likelihoodquotient: $\\frac{P_{A}(x)}{P_{H}(x)} = \\frac{\\hat L(\\vec k; \\vec k)}{L(\\mu; \\vec k)} > c$\n",
+    "\n",
+    "$d = \\ln \\frac{P_{A}(\\vec k)}{P_{H}(\\vec k)} = -\\ln \\frac{P_{H}(\\vec k)}{P_{A}(\\vec k)} = -\\ln L(\\mu; \\vec k)-(-\\ln\\hat L(\\vec k; \\vec k))$\n",
+    "\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "75234801-341f-4474-a2bf-93aafe9add77",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "mu = np.mean(summe)\n",
+    "\n",
+    "print(\"mu:\", mu)\n",
+    "\n",
+    "print(\"P(H):\", np.prod(scipy.stats.poisson.pmf(summe,mu)))\n",
+    "print(\"P(A):\",  np.prod(scipy.stats.poisson.pmf(summe,summe)))\n",
+    "print(\"-ln P(H):\", -np.sum(scipy.stats.poisson.logpmf(summe,mu)))\n",
+    "print(\"-ln P(A):\", -np.sum(scipy.stats.poisson.logpmf(summe,summe)))\n",
+    "print(\"d:\", -np.sum(scipy.stats.poisson.logpmf(summe,mu)) + np.sum(scipy.stats.poisson.logpmf(summe,summe)))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "e840a509-4f5b-48ef-9594-eb1dc0bbdc4a",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "Ist das gut?\n",
+    "\n",
+    "Wie sieht die Verteilung von d aus, wenn das Modell stimmt und $\\mu=<k>$?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "90e27f87-36fd-4b11-add1-c82a4eeb79dd",
+   "metadata": {
+    "editable": true,
+    "jupyter": {
+     "source_hidden": true
+    },
+    "slideshow": {
+     "slide_type": ""
+    },
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "#simuliere 1000 Spielzeiten\n",
+    "muobs = np.mean(summe)\n",
+    "\n",
+    "tore = scipy.stats.poisson.rvs(muobs,size=(1000,306))\n",
+    "\n",
+    "d = np.zeros(len(tore))\n",
+    "mu = np.zeros(len(tore))\n",
+    "for i in range(len(tore)):\n",
+    "    mu[i] = np.mean(tore[i,:])\n",
+    "    d[i] = np.sum(-scipy.stats.poisson.logpmf(tore[i],mu[i]) + scipy.stats.poisson.logpmf(tore[i],tore[i]))\n",
+    "    \n",
+    "plt.hist(mu, bins=50)\n",
+    "muobs = np.mean(summe)\n",
+    "plt.plot([muobs, muobs], [0, 100], linestyle = 'dotted')\n",
+    "plt.grid()\n",
+    "plt.xlabel(\"$\\hat \\mu$\")\n",
+    "plt.show()\n",
+    "dobs = -np.sum(scipy.stats.poisson.logpmf(summe,muobs)) + np.sum(scipy.stats.poisson.logpmf(summe,summe))\n",
+    "plt.hist(d, bins=50)\n",
+    "plt.plot([dobs, dobs], [0, 100], linestyle = 'dotted')\n",
+    "\n",
+    "plt.grid()\n",
+    "plt.xlabel(\"$-\\ln(P(H)/P(A))$\")\n",
+    "plt.show()\n",
+    "\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "f6db4bd4-de67-48e1-add9-4fdc05dbbcf7",
+   "metadata": {},
+   "source": [
+    "$p$-Wert \n",
+    "\n",
+    "Anteil der erwarteter Werte, die höher als der Daten-Wert sind."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "6647f14e-2282-4080-9139-c332db4af23a",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "print(\"p:\", np.sum(d > dobs)/len(d))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "c835358c-1291-431c-b0ab-792a4b940d68",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "## Geht es auch ohne MC?\n",
+    "\n",
+    "Einfacherer Fall: Gauß-Verteilungen:\n",
+    "\n",
+    "$d =  -\\ln L(\\mu; \\vec x)-(-\\ln\\hat L(\\vec x; \\vec x) = -\\ln \\prod_{i} \\frac{G(x_i,\\mu, \\sigma)}{G(x_i, x_i, \\sigma)}=-\\ln \\prod_{i} \\frac{\\exp(-\\frac{1}{2}(\\frac{x_i-\\mu}{\\sigma})^2)}{\\exp(-\\frac{1}{2}(\\frac{x_i-x_i}{\\sigma})^2)} = -\\ln \\exp(-\\frac{1}{2}(\\frac{x_i-\\mu}{\\sigma})^2) = \\frac{1}{2} \\sum_i\\left(\\frac{x_i - \\mu}{\\sigma}\\right)^2$\n",
+    "\n",
+    "$\\chi^2 = -2 \\ln\\frac{P(H}{P(A)}$ (Wilks Theorem)\n",
+    "\n",
+    "$-2 \\ln\\frac{P(H}{P(A)}$ sollte gemäß $\\chi^2$-Verteilung verteilt sein, mit n Freiheitsgraden n = Zahl der Messpunkte - Zahl der Modellparameter"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "9d667a3b-6a89-419a-8be4-79cb7de96151",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "plt.hist(2*d, bins=50, density=True)\n",
+    "plt.plot([2*dobs, 2*dobs], [0, 0.02], linestyle = 'dotted')\n",
+    "ds = np.linspace(200, 425, 100)\n",
+    "plt.plot(ds,scipy.stats.chi2.pdf(ds, 305))\n",
+    "\n",
+    "plt.grid()\n",
+    "plt.xlabel(\"$-2\\ln(P(H)/P(A))$\")\n",
+    "plt.show()\n",
+    "\n",
+    "\n",
+    "print(\"p-Wert über Chi2:\", scipy.stats.chi2.sf(2*dobs, 305))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "eb7b32c7-a9a7-44de-aa70-ce9744218a35",
+   "metadata": {},
+   "source": [
+    "Stimmt die Gaußsche Näherung in unserem Fall?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "cda0957a-414f-4bea-ab33-e61218a4a4f5",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "plt.hist( scipy.stats.chi2.sf(2*d, 305), bins=50)\n",
+    "plt.plot([ scipy.stats.chi2.sf(2*dobs, 305),  scipy.stats.chi2.sf(2*dobs, 305)], [0, 200], linestyle = 'dotted')\n",
+    "\n",
+    "plt.grid()\n",
+    "plt.xlabel(\"p\")\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "557559e1-8e4a-412a-9486-a2fb9b97de90",
+   "metadata": {},
+   "source": [
+    "Für große $\\mu$? Handball??"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "472aac93-e2dd-424a-ba0e-51c10d409f8e",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": ""
+    },
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "#simuliere 5000 Spielzeiten\n",
+    "muobs = 35\n",
+    "\n",
+    "tore = scipy.stats.poisson.rvs(muobs,size=(5000,306))\n",
+    "\n",
+    "d = np.zeros(len(tore))\n",
+    "mu = np.zeros(len(tore))\n",
+    "for i in range(len(tore)):\n",
+    "    mu[i] = np.mean(tore[i,:])\n",
+    "    d[i] = np.sum(-scipy.stats.poisson.logpmf(tore[i],mu[i]) + scipy.stats.poisson.logpmf(tore[i],tore[i]))\n",
+    "    \n",
+    "plt.hist(mu, bins=50)\n",
+    "plt.grid()\n",
+    "plt.xlabel(\"$\\hat \\mu$\")\n",
+    "plt.show()\n",
+    "\n",
+    "plt.hist(2 * d, bins=50, density=True)\n",
+    "ds = np.linspace(200, 425, 100)\n",
+    "plt.plot(ds,scipy.stats.chi2.pdf(ds, 305))\n",
+    "plt.grid()\n",
+    "plt.xlabel(\"$-2\\ln(P(H)/P(A))$\")\n",
+    "plt.show()\n",
+    "\n",
+    "plt.hist( scipy.stats.chi2.sf(2*d, 305), bins=50)\n",
+    "plt.grid()\n",
+    "plt.xlabel(\"p\")\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "450edccb-2c13-4400-9613-4a1f3e069ce6",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "# $\\chi^2$-Test\n",
+    "\n",
+    "\n",
+    "Haben wir schon die ganze Zeit gemacht...\n",
+    "\n",
+    "Wie sind die Konfidenzintervalle $n$ Freiheitsgrade/Dimensionen?\n",
+    "\n",
+    "$$\\chi^2 = (\\overrightarrow{y\\ } - \\vec{f})^{T} V(\\vec{y}- \\vec{f})$$\n",
+    "\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "2fd5c302-732b-4c6b-b224-5b9f79df57cc",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": ""
+    },
+    "tags": []
+   },
+   "outputs": [],
+   "source": [
+    "def conv_chi2_nd(z, n):\n",
+    "    return scipy.stats.chi2.cdf(z,n)\n",
+    "\n",
+    "\n",
+    "for z in [1,2,3,4,5]:\n",
+    "    print(z, conv_chi2_nd(z, 1), conv_chi2_nd(z, 2), conv_chi2_nd(z, 3))\n",
+    "\n",
+    "\n",
+    "print(\"Kritische chi2-Werte\")\n",
+    "for k in [1, 2, 3]:\n",
+    "    c = conv_gaus_nd(k, 1)\n",
+    "    print(c, scipy.optimize.brentq(lambda z: conv_chi2_nd(z, 1)-c,0, 30), scipy.optimize.brentq(lambda z: conv_chi2_nd(z, 2)-c,0, 30), scipy.optimize.brentq(lambda z: conv_chi2_nd(z,3)-c,0, 30))"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "23626cec-4198-44f4-a1c8-81e36992268f",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "for c in [0.68, 0.90, 0.95, 0.99]:\n",
+    "    print(c, scipy.optimize.brentq(lambda z: conv_chi2_nd(z, 1)-c,0, 30), scipy.optimize.brentq(lambda z: conv_chi2_nd(z, 2)-c,0, 30),scipy.optimize.brentq(lambda z: conv_chi2_nd(z,3)-c,0, 30))"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "d79940bc-7c64-42c8-a564-898995f51ddc",
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.11.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/lecture_4.ipynb b/lecture_4.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..c2f9b5c19893176b53d487e803036c536d8d1175
--- /dev/null
+++ b/lecture_4.ipynb
@@ -0,0 +1,591 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "60c7547b-61ea-4709-bb5d-30ad3c94c340",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": ""
+    },
+    "tags": []
+   },
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "markdown",
+   "id": "d2193805-8359-4380-82da-4b1cb5358290",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "# Lecture 1\n",
+    "\n",
+    "---\n",
+    "\n",
+    "## Basic statistics \n",
+    "\n",
+    "<br>\n",
+    "<br>\n",
+    "\n",
+    " Hartmut Stadie\n",
+    "\n",
+    "hartmut.stadie@uni-hamburg.de"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "668ad170-00ca-4d67-ba06-71aebd7092a3",
+   "metadata": {
+    "editable": true,
+    "jp-MarkdownHeadingCollapsed": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "# Parameterschätzung\n",
+    "\n",
+    "## Einführung\n",
+    "\n",
+    "### Schätzer \n",
+    "\n",
+    "Schätzer $\\hat a$ für $a$ aus Stichprobe $x_1,\\dots x_n$\n",
+    "\n",
+    "Anforderungen:\n",
+    "\n",
+    "-   erwartungstreu:  \n",
+    "    $E[\\hat a]= a$\n",
+    "\n",
+    "-   konsistent:  \n",
+    "    $\\lim_{n\\to \\infty } \\hat a = a$\n",
+    "\n",
+    "-   effizient: $V[\\hat a]$ möglichst klein\n",
+    "\n",
+    "Schätzer für den Mittelwert:\n",
+    "$$\\hat \\mu = \\bar x = \\frac{1}{n}\\sum_1^n x_i \\text{ mit } V[\\hat \\mu] =  \\frac{\\sigma_x^2}{N}$$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "7c7c6ecd-1611-4787-8985-da0881e90d9f",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "# Methode der kleinsten Quadrate\n",
+    "\n",
+    "## Herleitung\n",
+    "\n",
+    "### Methode der kleinsten Quadrate \n",
+    "\n",
+    "$y(x) = mx +  a$: Finde $\\hat m$ und $\\hat a$!"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "73e6e46a-4e41-4e66-857b-2946946498d1",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "skip"
+    },
+    "tags": []
+   },
+   "source": [
+    "<img src=\"./figures/11/line.png\" style=\"width:90.0%\" alt=\"image\" />"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "id": "55bf0cad-8a50-4831-8a37-daf9bcb39b71",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": ""
+    },
+    "tags": []
+   },
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAG0CAYAAADHD6Y/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA3VElEQVR4nO3deXgV5eH28e9JQhKCSQDZCwq4gIKoBVQURQVxQRGlra+11uXXVhBUsIugrYq1oG1FWhco1lqtdWlFEEVlUQF3AVHBBTcQFBBRTJBAQpJ5/5gaRNkSksyZk+/nus7V80xmknuuocntM8tJBEEQIEmSFFNpUQeQJEnaHZYZSZIUa5YZSZIUa5YZSZIUa5YZSZIUa5YZSZIUa5YZSZIUa5YZSZIUa5YZSZIUa5YZSZIUa5GWmblz53LaaafRqlUrEokEU6ZM2errQRBw7bXX0qpVK+rXr8+xxx7Lm2++GU1YSZKUlDKi/OEbNmzg4IMP5oILLmDgwIHf+fof//hHxo4dyz//+U/2339/rr/+ek444QSWLFlCbm7uLv2M8vJyVq5cSW5uLolEorp3QZIk1YAgCFi/fj2tWrUiLW0ncy9BkgCCyZMnV4zLy8uDFi1aBDfccEPFsk2bNgX5+fnBhAkTdvn7rlixIgB8+fLly5cvXzF8rVixYqd/6yOdmdmRpUuXsnr1avr27VuxLCsri169evHCCy9w0UUXbXO74uJiiouLK8bB/z4UfMWKFeTl5dVsaEmSVC0KCwtp06bNLp2JSdoys3r1agCaN2++1fLmzZvz0UcfbXe7MWPGMGrUqO8sz8vLs8xIkhQzu3KJSNLfzfTtnQiCYIc7NnLkSAoKCipeK1asqOmIkiQpQkk7M9OiRQsgnKFp2bJlxfI1a9Z8Z7bmm7KyssjKyqrxfJIkKTkk7cxMu3btaNGiBTNnzqxYVlJSwpw5czjyyCMjTCZJkpJJpDMzX331Fe+//37FeOnSpbz22ms0btyYvfbai2HDhjF69Gj2228/9ttvP0aPHk1OTg4//vGPI0wtSZKSSaRlZv78+Rx33HEV48svvxyA8847j3/+85/85je/YePGjVx88cWsW7eOww8/nBkzZuzyM2YkSVLqSwRf37ucogoLC8nPz6egoMC7mSRJionK/P1O2mtmJEmSdoVlRpIkxZplRpIkxZplRpIkxZplRpIkxZplRpIkxZplRpIkxZplRpIkxZplRpIkVVpRSSltR0yj7YhpFJWURprFMiNJkmLNMiNJkmLNMiNJkmLNMiNJkmLNMiNJkmLNMiNJkmLNMiNJkmLNMiNJkmLNMiNJkmLNMiNJkmLNMiNJkmLNMiNJknbL6oJNkf58y4wkSaq0SQs+rnjfZ+wcHpy3PLIslhlJklQpqwo2cs3UNyvG5QFc+fBiVhVsjCSPZUaSJFXK0rUbKA+2XlYWBCxbWxRJHsuMJEmqlHZNGpCW2HpZeiJB2yY5keSxzEiSpEppmV+fUf07VYzTEjD6zM60zK8fSR7LjCRJqrSBXVtXvJ91eS/O6r5XZFksM5Ikabe0yM+O9OdbZiRJUqxZZiRJUqxZZiRJUpV0SCwnk81Rx7DMSJKkSirbTMZzf+axzKsYljEp6jRkRB1AkiTFzFOjyHzhFkjAXolPISiPNI4zM5IkqXJ6DKW8UXsuLRnC0M2XQiLaOmGZkSRJO7b2fXh27JZxbgs2XfQiU8uPAhLb3ay2eJpJkiRtW3k5vPI3mDUKSjdC0w7QsV/4tbTkqRDJk0SSJCWPdcvgkaGw7Nlw3P5YaNElykTbZZmRJElbBAHM/wfM+B1s3gD1GkDf66Db/0Ei+lNK22KZkSRJW0wZDK/fH77f60gYcDs0bved1XIyM1h2Q79aDrdtXgAsSZK2OHAAZGTDiWPg/GnbLDLJxpkZSZLqsvWr4bMl0L5XOO5wElz2BuQ2jzZXJTgzI0lSXRQEsOghuO1w+M+5ULhyy9diVGTAmRlJkuqeDWvhseHw9tRw3PJg2Lwx2ky7wTIjSVJd8tYj8NjlULQ2fFbMMb+Boy+H9HpRJ6syy4wkSXVBeTlMvggW/SccN+sEZ4wPZ2VizjIjSVJdkJYGOY3Dz1HqORx6XQEZWVGnqhaWGUmSUtWmAijZAHmtwnHva6DLWfC970ebq5p5N5MkSanog6fh9iPhof8LTzEBZOakXJEBZ2YkSUotxV/BzKth/p3hOL0erF8J+a2jzVWDLDOSJKWKZc/BlIvhy4/C8WG/gD7XQmaDSGPVNMuMJElxt3kTzLoWXh4fjvPbwOm3bXmqb4qzzEiSFHeJNFj2bPj++z+Fvn+A7LxoM9Uiy4wkSXG0eROkpYfXxGRkwhkTws9Z2u+EqJPVOu9mkiQpblYuhIm94NmxW5a1OKhOFhmwzEiSFB+lJfDMaLijN3z2Drx6N5QURZ0qcp5mkiQpDlYvhimDYPWicNzpDDjlpvDZMXWcZUaSpGRWVgrP3wyzb4TyzVC/MfS7CTqfGXWypGGZkSSpFhWVlHLg1dMBeOu6E8nJ3Mmf4oIVMPemsMh06Aen3gy5zWshaXxYZiRJSjZBAIlE+L5xOzj5BsjIDj9X6evlquAFwJIkJZPPP4B/9oPlL21Z1vV8OPj/WWS2wzIjSVIyKC+HlyfChJ7w0fPw+K/DGRrtlKeZJEmK2pfL4ZEhsHRuOG57dPhxBM7E7BLLjCRJUQkCWPBPmH4VlHwF9XLghOug2/9BmidPdpVlRpKkiKR9+BQ8elk4aHMEDLgd9twn2lAxZJmRJCki5e17wwH9oc3hcMTg8LOWVGlJPYdVWlrKb3/7W9q1a0f9+vVp37491113HeXl5VFHkySp8tZ/Subjw8hjQzhOJOBH98CRQy0yuyGpZ2ZuvPFGJkyYwN13302nTp2YP38+F1xwAfn5+Vx22WVRx5Mkadctfhim/ZKMjV9wVcYKrij9Rbjci3x3W1KXmRdffJHTTz+dfv36AdC2bVvuv/9+5s+fH3EySZJ20YbP4fFfwpuTAShvfhB3LT8p4lCpJalPM/Xs2ZOnnnqKd999F4DXX3+d5557jlNOOSXiZJIk7YJ3psHth4dFJpEOva5g0/kzeCfYK+pkKSWpZ2auuOIKCgoK6NixI+np6ZSVlfGHP/yBs88+e7vbFBcXU1xcXDEuLCysjaiSJG1t3p0w7fLwfdMD4Izx0OpQKCmtWGV1wSbaN90jooCpI6lnZh588EHuvfde7rvvPl599VXuvvtu/vznP3P33Xdvd5sxY8aQn59f8WrTpk0tJpYk6X86nQG5reCoYXDRnLDIAJMWfFyxSp+xc3hw3vKIAqaORBAk77OS27Rpw4gRIxgyZEjFsuuvv557772Xd955Z5vbbGtmpk2bNhQUFJCXl1fjmSVJddSmQlj0n/CBd19f1Fv8FWRtmXlZVbCRo254mvJv/OVNTyR4bsRxtMyvX8uBk1thYSH5+fm79Pc7qU8zFRUVkfatJyCmp6fv8NbsrKwssrKyajqaJKmWFZWUcuDV0wF467oTyclMoj9hH84JP46gYAVk5UOXH4bLs7Y+hbR07YatigxAWRCwbG2RZWY3JNG/hO867bTT+MMf/sBee+1Fp06dWLhwIWPHjuXCCy+MOpokSVCyAWZdC69MDMcN94a8VttdvV2TBqQl+M7MTNsmOTWbM8UldZm55ZZb+N3vfsfFF1/MmjVraNWqFRdddBFXX3111NEkSXXdRy/ClMGwbmk47nYhnPD778zGfFPL/PqM6t+J3z3yJgBpCRh9ZmdnZXZTUpeZ3Nxcxo0bx7hx46KOIknSFs+NC2dkCCDve9D/Fti39y5tOrBr64oyM+vyXt7NVA2SusxIkpSUWh0KBHDIT+Ck0ZCdX6Vv0yI/u3pz1VGWGUmSdqa0GFYvhtZdw3H7XnDxS9DsgGhzCUjy58xIkhS5Va/DxOPg7tPgi6VblltkkoZlRpKkbSnbDLNvhDuOhzVvQr36UPDxzrdTrfM0kyRJ37bmbZh8UTgrA3BAfzj1ZmjQJNpc2ibLjCRJ3/TCLfDUdVBWAtkNod9N0Hnglqf6KulYZiRJ+qaiz8Mis/9JcNpfILdF1Im0E5YZSVLdVl4OG7/Ycgrp2JHQokv4QZHOxsSCFwBLkmJndcGm6vlGXyyFu0+Ff/8AykrDZRlZ0PlMi0yMWGYkSbEwacGWO4n6jJ3Dg/OWV/2bBQHM+zuMPwo+eh4+exc+XVQNKRUFy4wkKemtKtjINVPfrBiXB3Dlw4tZVbCx8t/syxXwrwEw7ZeweQPs3RMGP/+/p/oqjrxmRpKU9Jau3bDVJ00DlAUBy9YW7fqHNAYBvPZveHIkFBdCRjb0uRYOuwjS/G/7OLPMSJKSXrsmDUhLsFWhSU8kaNskZ9e/SVAO8+8Ki0zr7jBgAjTZt/rD7kROZgbLbuhX6z83lVlFJUlJr2V+fUb171QxTkvA6DM773xWJgigvOx/G6XDgPHQZxRcOD2SIqOaYZmRJMXCwK6tK97PurwXZ3Xfa8cbfPUZ/OdceGrUlmVN94eew8Jio5ThaSZJUuy0yM/e8QpvPQKPDQ8fgJeeBUdc7MPvUphlRpKUOoq+gMd/DYsfCsfNOsEZ4y0yKc4yI0lKDUuehEcvha8+hUQa9BwOva4IH4KnlGaZkaQUV1RSyoFXTwfgretOJCczBX/1F30Bk34GJeuhyf7hnUqtu0adSrUkBf9FS5LqnJzGcNIY+OwdOP63UG8Xnz2jlGCZkSTFT/F6mHEdHHAa7HN8uOz750abSZHx1mxJUqwcnnib7L8fA/P/AVMvhdLiqCMpYs7MSJLiYXMR12TczQUZ06EAyN8LTr/VC3xlmZEkxcDyl8meMpgLMj4AoPSQn5Jx0h8gOy/iYEoGnmaSJCW3T9+Eu04i7YsPWBU05rySKyg55WaLjCo4MyNJSm7NO8EB/SlNz+LEeb0pZI+oEynJODMjSUoupSUw98+wYe2WZQP/Tslpt1tktE3OzEiSksfqxTBlEKxeBKtehx/dA4kEpNcjJx2W3dAv6oRKQpYZSVL0ykrh+XEw+wYo3wz1G0OnM8IiI+2EZUaSFK3PlsDkQbDy1XDcoR+cNg72aBZpLMWHZUaS6pDVBZto3zSJrjt5fxbc/2MoK4bsfDj5j9DlLGdkVCleACxJKW7Sgo8r3vcZO4cH5y2PMM23tO4ODZrCvn3g4pfg4P9nkVGlWWYkKYWtKtjINVPfrBiXB3Dlw4tZVbAxmkDl5fD2oxAE4Tg7H342E855CPJaRZNJsWeZkaQUtnTtBsqDrZeVBQHL1hbVfph1H8E9/eHBn8Crd29ZntfK2RjtFq+ZkaQU1q5JA9ISbFVo0hMJ2jbJqb0QQRCWl+lXQclXUC8HsLyo+jgzI0kprGV+fUb171QxTkvA6DM70zK/fu0EKPgE7h0Ij14WFpm9esCg56DrebXz81UnWGYkKcUN7Nq64v2sy3txVve9aucHvzMNbu8BHzwF6VnQ93o4fxrsuU/t/HzVGZ5mkqQ6pEV+du39sAbNoGQ9fK8rDJgATfevvZ+tOsUyI0mqPp9/sGXmpU13+OkjsNeRkO6fG9UcTzNJknbfhs/hP+eFp5U+W7JlebtjLDKqcf4LkyTtnrcfg8eGwYbPIC0DVrwCTTtEnUp1iGVGklQ1G9fBE1fAGw+G46YHwBnjodWh0eZSnWOZkSRV3nuzYOpQWL8KEmlw5KVw3JWQkRV1MtVBlhlJUuWtei0sMnvuG96p1KZ71IlUh1lmJEm7ZvNGqPe/h+0dNSychen2f5BZi08TlrbBu5kkSTtWsgGm/QruOB5Ki8Nl6Rlw5CUWGSUFZ2YkSdv30YswZTCsWxqO35sJB5wabSbpWywzkqTv2rwRnr4eXrwNCCCvNZx+K+xzXNTJpO+wzEhSisvJzGDZDf12fYOP58PkQfD5e+H40J/AiaMhO79mAkq7yTIjSdra078Pi8weLaD/X2H/E6NOJO2QZUaStLXT/gpz/wQnXAc5jaNOI+2UZUaS6rKyzfDsTbDxSzj5hnBZo73D62OkmLDMSFJd9elbMGUQrHo9HB/yY2jZJdpMUhVYZiSprikrhRf+CrPHQFkJZDeEfjdBi4OiTiZViWVGkuqSte+Fdyp9Mj8c738SnPYXyG0RbS5pN1hmJKmuKC2Bu/vD+pWQlQcn3RCeWkokok4m7RbLjCTVFRmZ0Pf38Nq/of8tkN866kRStbDMSFKqKi+H+XeGpaXDyeGyzgPDl7MxSiGWGUlKRV+ugEeGwNI50KApDHklfGaMJUYpyDIjSakkCGDhvfDkSChZDxn14ehfhXcsSSnKMiNJqaJwFTx6Kbw3Ixy3PgwGjIcm+0abS6phlhlJSgXrP4Xbj4BNX0J6Jhz/W+gxFNLSo04m1TjLjCSlgtzm0PFUWPMmDJgAzTpGnUiqNZYZSYqrtx6B1t0hr1U4PuWP4axMer1oc0m1LC3qAJKkSir6Ah66EP7zU5h6aXjRL0BmA4uM6qSkLzOffPIJP/nJT9hzzz3JycnhkEMOYcGCBVHHkqRoLHkyvDZm8SRIpEOrQ6C8LOpUUqSS+jTTunXrOOqoozjuuON44oknaNasGR988AENGzaMOpok1a6NX4a3W79+Xzhu0gHOGA/f6xppLCkZJHWZufHGG2nTpg133XVXxbK2bdtGF0iSorDmbbh3IBR+AiTgyEvguKugXnbUyaSkkNSnmaZOnUq3bt344Q9/SLNmzTj00EO54447oo4lSbWr4d6QkQ2N28OF08PPV7LISBWSusx8+OGHjB8/nv3224/p06czaNAgLr30Uu65557tblNcXExhYeFWL0mKnU8WhJ+tBJCZAz/+Dwx6DvY6PNpcUhJKBMHXl8Enn8zMTLp168YLL7xQsezSSy9l3rx5vPjii9vc5tprr2XUqFHfWV5QUEBeXl6NZZWkalFSBLOuhVf+BieOhh5Dok4kRaKwsJD8/Pxd+vud1DMzLVu25MADD9xq2QEHHMDy5cu3u83IkSMpKCioeK1YsaKmY0pS9Vj+MkzoGRYZCD8sUtJOJfUFwEcddRRLlizZatm7777L3nvvvd1tsrKyyMrKquloklR9Nm+CZ66HF24FAshtBaffAvv2iTqZFAtJXWaGDx/OkUceyejRo/nRj37EK6+8wsSJE5k4cWLU0SSpeqx6Ayb9DNb+7z/cDj4bTroB6jeMNJYUJ0ldZrp3787kyZMZOXIk1113He3atWPcuHGcc845UUeTpOqRSMAXH0KDZnDaX6DjKVEnkmInqS8Arg6VuYBIkmpF0ReQ03jL+O3HYO8jt14m1XEpcwGwJKWUslKY8ye4uROsfG3L8gNOtchIuyGpTzNJUspY8w5MGQQrF4bjxZPCz1WStNssM5JUk8rL4MXb4OnroawYsvPh5D9Blx9FnUxKGZYZSdqOopJSDrx6OgBvXXciOZmV/JX5+QcwZTCseDkc73sC9P8r5LWq5qRS3WaZkaSa8t7MsMhk5sJJo+HQc8O7lyRVK8uMJFWn8nJI+9+9FYf9AtavhO4/g4Z7RZtLSmHezSRJ1SEIYP5dMPEYKNkQLktLgxOus8hINcwyI0m7q+ATuHcgPDYMVi+CBf+MOpFUp3iaSZKqKgjg9fvhiRFQXAAZ2dD7ajh8cNTJpDrFMiNJVbH+U3j0Mnj3iXD8va4wYAI03T/aXFIdZJmRpKqYcVVYZNIz4diRcOSlkO6vVCkK/j9PkqrihN/DV2vCT7hufmDUaaQ6zQuAJWkXpC95DKZftWVBXks4b6pFRkoCzsxI0g7k8RWj6t1N1qTnwwX7HA/79o42lKStWGYkaTvSPpjFjKwraJFYR5BII3HUMGjbM+pYkr7FMiNJ37apEKZfSfbCfxHQmIdKe9LtrCtpe9BRUSeTtA2WGUn6piCAfw2ATxbwQOmxjCz9GQFppN33JWPOXM5Z3X2ar5RsvABYkr4pkYCjf8WqvIO5suwXBP/7NVkewJUPL2ZVwcaIA0r6NsuMJH30Arwzbcu44yksPfVByoOtVysLApatLardbJJ2ytNMkuquzRvhqd/DS7dDdh5c/HJ4yzXQrnlD0hJsVWjSEwnaNsmJKKyk7XFmRlLd9PF8mHA0vHQbEMAB/SGzQcWXW+bXZ1T/ThXjtASMPrMzLfPrRxBW0o5Uusycf/75zJ07tyaySFLNKy2GWdfCnSfA5+/BHi3gx/+F028NZ2e+YWDX1hXvZ13ey4t/pSRV6TKzfv16+vbty3777cfo0aP55JNPaiKXJFW/zRvhjuPhuZshKIcuZ8GQl2D/vjvdtEV+di0ElFQVlS4zkyZN4pNPPmHo0KH897//pW3btpx88sk89NBDbN68uSYySlL1qFcf9j4ScprAWffCmROhfqOoU0naTVW6ZmbPPffksssuY+HChbzyyivsu+++nHvuubRq1Yrhw4fz3nvvVXdOSaqaT9+Cdcu2jPtcC0NehgNOiyqRpGq2WxcAr1q1ihkzZjBjxgzS09M55ZRTePPNNznwwAO5+eabqyujJFVeWSk8exNM7AVThkB5ebg8swE0aBJtNknVqtK3Zm/evJmpU6dy1113MWPGDLp06cLw4cM555xzyM3NBeCBBx5g8ODBDB8+vNoDS9JOffYuTBkMn8wPx9l5sHkDZOVGm0tSjah0mWnZsiXl5eWcffbZvPLKKxxyyCHfWefEE0+kYcOG1RBPkiqhvAxeGg9P/x5KN0FWPpx8Axx8dvhkX0kpqdJl5uabb+aHP/wh2dnbv7K/UaNGLF26dLeCSVKlfLUG/nMeLH8hHO9zPPS/BfJb73g7SbFX6TJz7rnn1kQOSdo92fmwqQDqNYATr4euFzgbI9URfpyBpPgq+AT2aAbp9SAjC37wD6iXDY3aRp1MUi3y4wwkxU8QwKv3wG2Hw3Pjtixv1tEiI9VBlhlJ8VK4Cu77EUy9BErWw4ezwwt/JdVZnmaSFA9BAG/8B574dXhtTHoWHH8V9BgKaelRp5MUIcuMpOT31Wfw2DB457Fw3OpQGDAhPK1Ug3IyM1h2Q78a/RmSdp9lRlLy2/QlvD8L0upBryug53BI99eXpJC/DSQlp9Li8A4lgCb7Qf9bw5mYFgdFm0tS0vECYEnVrqiklLYjptF2xDSKSkor/w3eeRz+cjAsf3nLsi4/tMhI2ibLjKTksfFLmDwYHjgb1q+C58dFnUhSDHiaSVJyeH8WPHIJrF8JJODIS+C4q6JOJSkGLDOSolW8HqZfBa/eHY4bt4cB42GvI6LNJSk2LDOSovXOtC1F5vBB0PsayMyJNpOkWLHMSIpWl7Ng+YvQeSC0OybqNJJiyAuAJdWu5S/D3aeFT/GF8JOtT/uLRUZSlVlmpCSy27c0J7PNm2DG7+AfJ8LSuTD7xqgTSUoRnmaSVPM+WRDecr12STg+5Bzo9ZtoM0lKGZYZSTWmHqXUmzMaXhgHQRns0Tw8pdTh5KijSUohlhlJNebyjP9S7/lHw0HnH8Apf4KcxtGGkpRyvGZGUo2ZWNqP8iYd4Yd3ww/utMhIqhGWGUnVZ8078PT1EAQArCOPZT+aCZ0GRJtLUkqzzEjafeVl8Pxf4G9Hw9w/8fBjj1Z8qc/Nz/LgvOURhpOU6iwzknbP2vfhHyfBzKuhrIRVbQdw9fysii+XB3Dlw4tZVbAxwpCSUpllRlLVlJfDSxNgQk/4+BXIzIX+t7K0502UB1uvWhYELFtbFE1OSSnPu5kkVc2UwfDGA+H79sdC/1uhYRvaFWwkLcFWhSY9kaBtEz9vSVLNcGZGUtUccjZk7gH9boJzp0DDNgC0zK/PqP6dKlZLS8DoMzvTMr9+REElpTrLjKRdU/AxvDtjy7j9sTBsEXT/Wfj5St8wsGvrivezLu/FWd33qqWQkuoiy4yUpFYXbIo6QigIYOG/4fYe8NAFsG7Zlq/twnNjWuRn11w2ScIyIyWVSQs+rnjfZ+yc6G9pXr8a7j8bHrkYiguhacfwNmxJSiKWGSlJrCrYyDVT36wYR3pLcxDAoofgtsPh3ScgPRN6XwMXToc996n9PJK0A97NJCWJpWs3bPeW5lq9eDYI4KEL4c2Hw3GLLnDG36D5gbWXQZIqwTIjJYl2TRokxy3NiQQ02hvSMuCYX8PRv4T0erWbQZIqwdNMUpKI9Jbmoi+2vrD32JHwi9lw7AiLjKSkZ5mRkkgktzS/Oz28U+m/F0BZabgsIwtaHFTzP1uSqoGnmaQkVeO3NG8qgOlXwsJ7w3FWLqxfVfHwO0mKC8uMVBd98DQ8cgkUfgwkoMcQOP63UM+n9EqKH8uMVJds3gjTr4L5d4bjRu1gwO2w95HR5pKk3RCra2bGjBlDIpFg2LBhUUeR4imtHqx6LXzf/ecw+HmLjKTYi83MzLx585g4cSJdunSJOooULyVFkJYeXtSbngEDJsD6leFnK0lSCojFzMxXX33FOeecwx133EGjRo2ijiPFx4p58Lej4ZnRW5Y13b/Gi0xOZgbLbujHshv6kZMZm/9mkhRTsSgzQ4YMoV+/fvTp02en6xYXF1NYWLjVS6pzSoth5jXwj77w+fvhRxOUbIg6lSTViKT/T6YHHniAV199lXnz5u3S+mPGjGHUqFE1nEpKYisXwuTB8Nnb4bjLWXDyjZDZINpcklRDknpmZsWKFVx22WXce++9ZGfv2jM3Ro4cSUFBQcVrxYoVNZxSShKlJeHppDt6h0WmQVM4699w5kSo7+lZSakrqWdmFixYwJo1a+jatWvFsrKyMubOncutt95KcXEx6enpW22TlZVFVlZWbUeVovfVp/DibRCUwYEDoN9YaLBn1KkkqcYldZnp3bs3ixYt2mrZBRdcQMeOHbniiiu+U2SkOicIwg+GhPDJvf3GhncsdR4YbS5JqkVJXWZyc3Pp3LnzVssaNGjAnnvu+Z3lUp3z2bvwyMVw3FWwz3HhsoPPijaTJEUgqcuMVNd8fUvzDpWXwUvj4enfQ+kmmPFbGPTclhkaSapjYldmZs+eHXUEKTqffwCPDIHlL4bjfXpD/1ssMpLqtNiVGalOKi8PP09p5tWwuQgy94C+10PX8y0ykuo8y4wUB0tnw+O/Ct+3PRpOvw0a7R1pJElKFpYZKQ7aHwcH/xhaHQrdfwZpSf2IKEmqVf5GlJJR4UqY9HPYsDYcJxJwxng4/BcWGUn6FmdmpGQSBPDGg/DEb2BTQbhs4B3RZpKkJGeZkZLFV2vg0WGwZFo4bvV9OPqXkUaSpDiwzEjJYPHDMO2XsPELSKsHx14BRw0Pn+YrSdohf1NKUZv/D3hsePi++UHhtTEtDoo2kyTFiFcSSlHrPBAatYVjfgM/f9oiI0mV5MyMVNs2roOF90KPoeFdStn5cPFLUK9+1MkkKZYsM1Jtem8WTB0K61dBVm74BF+wyEjSbrDMSLWheD1MvwpevTscN94Hmh0YbSZJShGWGammfTgHHhkKBcvD8eGDoffVkJkTbS5JShGWGakmPXczzLo2fN9wbxhwO7TtGWkkSUo1lhmlhKKSUg68ejoAb113IjmZSfJPe++jIJEOXc+DE34PWXtEnUiSUk6S/MaXUsTmjfDJgi2zL20Og0vmQ+P20eaSpBTmc2ak6vLxAvjbMfCvM+Gzd7cst8hIUo2yzEi7q7QYnvo93HkCrH0X6jeEDWuiTiVJdYanmaTdseoNmDIYPl0cjjv/AE75E+Q0jjaXJNUhlhmpqp4dC8/8AcpLIWdPOPVmOPD0qFNJUp1jmZGqqrwsLDIHnAb9boY9mkadSJLqJMuMtKvKy+CrNZDXMhz3HA4tOsP+J4WfsSRJioQXAEu7Yu378I8T4d4zwwt+AdIzoMPJFhlJiphlRtqR8nJ4aTxM6Akfz4OCj+HTN6NOJUn6Bk8zSduzbhlMGQIfPReO2x8H/W+Bhm0ijSVJ2pplRvq2IIAFd8H038LmDVCvAfT9PXS70FNKkpSELDPStwUBLJoUFpm9e8Lpt0LjdlGnkiRth2VGKWd1wSbaN63kBzoGQXibdXo9SEuDAbfBkifhsF+EY0lS0vK3tFLCpAUfV7zvM3YOD85bvusbr18N9/8/mH7llmWN2sIRgywykhQD/qZW7K0q2Mg1U7fcYVQewJUPL2ZVwcYdbxgE8MZ/4bbD4d0nYcHdULiyhtNKkqqbp5kUe0vXbqA82HpZWRCwbG0RLfPrb3ujrz6DacPh7UfDccuDYcAEyGtVs2ElSdXOMqPYa9ekAWkJtio06YkEbZvkbHuDt6bCY8OhaC2kZcAxv4GjLw+vl5EkxY6nmRR7LfPrM6p/p4pxWgJGn9l527MyG7+EqZeERaZZJ/j503DsFRYZSYoxZ2aUEgZ2bc3vHgmvm5l1ea/t381UvyH0uwnWvAW9roCMrNoLKUmqEZYZpZwW+dlbBpsKwruUOvSDjqeEyw76QTTBJEk1wjKj1PXB0/DIUCj8BN6bBfscD/Wyd76dJClWLDNKPSVfwYxRMP8f4bhROxgw3iIjSSnKMqOUcnjibbL/PhK+/Chc0P3ncMIoyGwQbTBJUo2xzChl7Jv4mPszryftywDy24SfqdT+2KhjSZJqmGVGKeP9oDWTyo7mjG57k3HSaMjOizqSJKkW+JwZxdfmTfD0H6BwVcWiK0p/Qckp4ywyklSHODOjeFq5ECYPgs/egVWvwQ/uA6Dcfi5JdY5lRvFSWgJz/wTP3gRBGTRoCt8/DxKJqJNJkiJimVF8rF4MUwbB6kXhuNMZcMpN0GBPKCmNNpskKTKWGcXD+0/BfWdB+Wao3zj8SILOZ0adSpKUBCwzioe9joCGbaBpRzh1HOQ23+rLOZkZLLuhXzTZJEmRsswoOZWXweKHofNASEsLH3p34Qxo0MTrYyRJW7HMKPl8/gFMuRhWvARFa+GIweHyPZpGm0uSlJQsM0oe5eUw/06YeTVsLoLMPSDL58VIknbMMqPksO4jmDoUls4Nx22PhtNvg0Z7R5tLkpT0LDOK3ltTYcrg8NOu6+VAn1HQ/WfhtTKSJO2EZUbRa9QWSjdBmyNgwO2w5z5RJ5IkxYhlRrUvCGDN29D8wHDcsgtc8AR8ryukpUebTZIUO87jq3at/xQeOAf+djSsemPL8jaHWWQkSVVimVHtWfww3H4ELJkGJGD1GzvdRJKknfE0k2rehs/h8V/Cm5PDcYuDYMAEaNE52lySpJRgmVHNWvIETL0ENnwGiXQ45ldw9K8gIzPqZJKkFGGZUc36YmlYZJoeAGeMh1aHRp1IkpRiLDOqfsXrISs3fH/4IEivB4eeC/Wyo80lSUpJXgCs6rOpMDyl9LdeUFIULktLg8N+bpGRJNUYy0wdV1RSStsR02g7YhpFJaVV/0YfzoHxR8Gr98AXH8IHT1VfSEmSdsDTTNo9JRtg5jUw745w3HBvGDAe2h4VbS5JUp1hmVHVffRi+JlK65aG427/BydcB1l7RJtLklSnWGZUdc+PC4tM3vfg9Fthn+OjTiRJqoMsM6qcIIBEInx/6jh49s/Q+2rIzo80liSp7krqC4DHjBlD9+7dyc3NpVmzZgwYMIAlS5ZEHatuKi2Gp66DRy/dsiyvJfS7ySIjSYpUUpeZOXPmMGTIEF566SVmzpxJaWkpffv2ZcOGDVFHq1tWvQ4Tj4NnbwrvVlq5MOpEkiRVSOrTTE8++eRW47vuuotmzZqxYMECjjnmmIhS1SFlm8MCM/dPUF4KOU3g1LE+xVeSlFSSusx8W0FBAQCNGzfe7jrFxcUUFxdXjAsLC2s8V0pa8zZMviiclQE4oD/0Gwt7NI02lyRJ35LUp5m+KQgCLr/8cnr27Ennztv/tOUxY8aQn59f8WrTpk0tpkwRZZvh3z8Mi0x2Qxh4J/zoHouMJCkpxabMDB06lDfeeIP7779/h+uNHDmSgoKCiteKFStqKWEKSa8HJ98I+58EQ16Gg36w5Q4mSZKSTCxOM11yySVMnTqVuXPn0rp16x2um5WVRVZWVi0lSw0JyrkgfTrpb22EQ34QLuzYDzqcYomRJCW9pC4zQRBwySWXMHnyZGbPnk27du2ijpRyEuuWcVu9v9CQDXz++LO02u9YaNDkf1+0yEiSkl9Sl5khQ4Zw33338cgjj5Cbm8vq1asByM/Pp379+hGni7kggPl38shjM7hy82WUk0ba5oAxbxZx1mFRh5MkadclgiAIog6xPYntzAzcddddnH/++bv0PQoLC8nPz6egoIC8vLxqTBdjX66AqUNZ9cEbHFX8V8q/celUeiLBcyOOo2W+ZVGSFJ3K/P1O6pmZJO5Z8bVhLYw/CooLWJo4ZKsiA1AWBCxbW2SZkSTFRmzuZlI1adAEuvwIWh9Gu/MmkPatya/0RIK2TXKiySZJUhVYZlJdEMAb/4V1y7Ys63s9XPgkLdsdwKj+nSoWpyVg9JmdnZWRJMWKZSaVffUZPPgTePhnMGUIlJeHy+tlQ1o6AAO7brnVfdblvTir+15RJJUkqcqS+poZ7Ya3HoHHhkPR55CWAe17QVDOjvpri/zs2ssnSVI1scykmqIv4PFfw+KHwnHzzjBgPLTsEm0uSZJqiGUmlax5G+45Hb76FBLp0HM49LoCMjKjTiZJUo2xzKSSxu0hZ8/wwyHPGA/f6xp1IkmSapxlJu4+ehFad4f0DMjIgrMfgD2ahxf5SpJUB3g3UxUVlZTSdsQ02o6YRlFJae0HKF4Pjw6Du06C52/esrzR3hYZSVKd4sxMHC19Fh65GL5cHo43fhlpHEmSomSZiZOSInhqFLw8IRzn7wWn3xredi1JUh1lmYmLla/BQxfCFx+E467nh0/yzcqNMpUkSZGzzMRFvRwo+BhyW0H/W2C/PlEnkiQpKVhmktn61ZDbInzfdH/4f/dB625Qv2GksSRJSibezZSMSkvg6eth3EGw4pUty/frY5GRJOlbnJlJNqsXweTB8OmicPzOY9DmsBr7cTmZGSy7oV+NfX9JkmqaZSZZlJWGz4uZfSOUb4b6jaHfTdD5zKiTSZKU1CwzyeCzJTB5EKx8NRx3PBVOvRn2aBZtLkmSYsAykwyWvxgWmex8OPlP0OVHkEhEnUqSpFiwzESlrDT8PCWA758X3rn0/Z9CXqtoc0mSFDPezVTbysvh5b/B+B6wqSBclkjAsSMsMpIkVYFlphqsLti0ayuu+wju6Q9P/AbWvgsL7q7ZYJIk1QGWmSqatODjivd9xs7hwXnLt79yEMD8u2D8kbDs2fBpvqf8GXoMrYWkkiSlNq+ZqYJVBRu5ZuqbFePyAK58eDHH7N+Ulvn1t1654BOYegl88FQ43qsHnH4b7LlPLSaWJCl1WWaqYOnaDZQHWy8rCwKWrS36bpl55g9hkUnPgt5XwxGDIS299sJKkpTiLDNV0K5JA9ISbFVo0hMJ2jbJ+e7KJ/weij4P/7fp/rUXUpKkOsJrZqqgZX59RvXvVDFOS8DoMzuHszKLJ8Gjl4XXyQA02BN+/KBFRpKkGmKZqaKBXVtXvJ91eS/OOrAB/Oc8eOhCWPBPePfJ6MJJklSHeJqpGnxv9VPw5C9hw2eQlgFH/wr27RN1LEmS6gTLzG7I4yuurXcPWZOeCxc0PQDOmACtDok0lyRJdYllpqqCgH9m/pHvp71PkEgjcdRlcOxIyMiKOpkkSXWK18xUVSLBTaU/5P3yVhT/9HHoc61FRpKkCFhmdsPz5QdxYsmNlH+ve9RRJEmqsywzu6kMH4AnSVKULDOSJCnWLDOSJCnWLDOSJCnWLDOSJCnWLDOSJCnWfGheFeVkZrDshn5Rx5Akqc5zZkaSJMWaZUaSJMWaZUaSJMWaZUaSJMWaZUaSJMWaZUaSJMWaZUaSJMWaZUaSJMWaZUaSJMWaZUaSJMWaZUaSJMWaZUaSJMWaZUaSJMWaZUaSJMWaZUaSJMVaRtQBaloQBAAUFhZGnESSJO2qr/9uf/13fEdSvsysX78egDZt2kScRJIkVdb69evJz8/f4TqJYFcqT4yVl5ezcuVKcnNzSSQS1fq9CwsLadOmDStWrCAvL69av3cycP/iL9X30f2Lv1TfR/ev6oIgYP369bRq1Yq0tB1fFZPyMzNpaWm0bt26Rn9GXl5eSv4j/Zr7F3+pvo/uX/yl+j66f1WzsxmZr3kBsCRJijXLjCRJijXLzG7IysrimmuuISsrK+ooNcL9i79U30f3L/5SfR/dv9qR8hcAS5Kk1ObMjCRJijXLjCRJijXLjCRJijXLjCRJijXLzA7cfvvttGvXjuzsbLp27cqzzz67w/XnzJlD165dyc7Opn379kyYMKGWklZdZfZx9uzZJBKJ77zeeeedWky86+bOnctpp51Gq1atSCQSTJkyZafbxOkYVnb/4nb8xowZQ/fu3cnNzaVZs2YMGDCAJUuW7HS7uBzDquxf3I7h+PHj6dKlS8UD1Xr06METTzyxw23icvyg8vsXt+P3bWPGjCGRSDBs2LAdrhfFMbTMbMeDDz7IsGHDuOqqq1i4cCFHH300J598MsuXL9/m+kuXLuWUU07h6KOPZuHChVx55ZVceumlTJo0qZaT77rK7uPXlixZwqpVqype++23Xy0lrpwNGzZw8MEHc+utt+7S+nE7hpXdv6/F5fjNmTOHIUOG8NJLLzFz5kxKS0vp27cvGzZs2O42cTqGVdm/r8XlGLZu3ZobbriB+fPnM3/+fI4//nhOP/103nzzzW2uH6fjB5Xfv6/F5fh907x585g4cSJdunTZ4XqRHcNA23TYYYcFgwYN2mpZx44dgxEjRmxz/d/85jdBx44dt1p20UUXBUcccUSNZdxdld3HZ555JgCCdevW1UK66gUEkydP3uE6cTyGX9uV/Yvz8QuCIFizZk0ABHPmzNnuOnE+hruyf3E/hkEQBI0aNQr+/ve/b/NrcT5+X9vR/sX1+K1fvz7Yb7/9gpkzZwa9evUKLrvssu2uG9UxdGZmG0pKSliwYAF9+/bdannfvn154YUXtrnNiy+++J31TzzxRObPn8/mzZtrLGtVVWUfv3booYfSsmVLevfuzTPPPFOTMWtV3I5hVcX1+BUUFADQuHHj7a4T52O4K/v3tTgew7KyMh544AE2bNhAjx49trlOnI/fruzf1+J2/IYMGUK/fv3o06fPTteN6hhaZrZh7dq1lJWV0bx5862WN2/enNWrV29zm9WrV29z/dLSUtauXVtjWauqKvvYsmVLJk6cyKRJk3j44Yfp0KEDvXv3Zu7cubURucbF7RhWVpyPXxAEXH755fTs2ZPOnTtvd724HsNd3b84HsNFixaxxx57kJWVxaBBg5g8eTIHHnjgNteN4/GrzP7F8fg98MADvPrqq4wZM2aX1o/qGKb8p2bvjkQisdU4CILvLNvZ+ttankwqs48dOnSgQ4cOFeMePXqwYsUK/vznP3PMMcfUaM7aEsdjuKvifPyGDh3KG2+8wXPPPbfTdeN4DHd1/+J4DDt06MBrr73Gl19+yaRJkzjvvPOYM2fOdv/gx+34VWb/4nb8VqxYwWWXXcaMGTPIzs7e5e2iOIbOzGxDkyZNSE9P/84MxZo1a77TOL/WokWLba6fkZHBnnvuWWNZq6oq+7gtRxxxBO+99151x4tE3I5hdYjD8bvkkkuYOnUqzzzzDK1bt97hunE8hpXZv21J9mOYmZnJvvvuS7du3RgzZgwHH3wwf/nLX7a5bhyPX2X2b1uS+fgtWLCANWvW0LVrVzIyMsjIyGDOnDn89a9/JSMjg7Kysu9sE9UxtMxsQ2ZmJl27dmXmzJlbLZ85cyZHHnnkNrfp0aPHd9afMWMG3bp1o169ejWWtaqqso/bsnDhQlq2bFnd8SIRt2NYHZL5+AVBwNChQ3n44Yd5+umnadeu3U63idMxrMr+bUsyH8NtCYKA4uLibX4tTsdve3a0f9uSzMevd+/eLFq0iNdee63i1a1bN8455xxee+010tPTv7NNZMewRi8vjrEHHnggqFevXnDnnXcGb731VjBs2LCgQYMGwbJly4IgCIIRI0YE5557bsX6H374YZCTkxMMHz48eOutt4I777wzqFevXvDQQw9FtQs7Vdl9vPnmm4PJkycH7777brB48eJgxIgRARBMmjQpql3YofXr1wcLFy4MFi5cGADB2LFjg4ULFwYfffRREATxP4aV3b+4Hb/BgwcH+fn5wezZs4NVq1ZVvIqKiirWifMxrMr+xe0Yjhw5Mpg7d26wdOnS4I033giuvPLKIC0tLZgxY0YQBPE+fkFQ+f2L2/Hblm/fzZQsx9AyswO33XZbsPfeeweZmZnB97///a1umTzvvPOCXr16bbX+7Nmzg0MPPTTIzMwM2rZtG4wfP76WE1deZfbxxhtvDPbZZ58gOzs7aNSoUdCzZ89g2rRpEaTeNV/fBvnt13nnnRcEQfyPYWX3L27Hb1v7BgR33XVXxTpxPoZV2b+4HcMLL7yw4vdL06ZNg969e1f8oQ+CeB+/IKj8/sXt+G3Lt8tMshzDRBD878ocSZKkGPKaGUmSFGuWGUmSFGuWGUmSFGuWGUmSFGuWGUmSFGuWGUmSFGuWGUmSFGuWGUmSFGuWGUmSFGuWGUmSFGuWGUmx8tlnn9GiRQtGjx5dsezll18mMzOTGTNmRJhMUlT8bCZJsfP4448zYMAAXnjhBTp27Mihhx5Kv379GDduXNTRJEXAMiMploYMGcKsWbPo3r07r7/+OvPmzSM7OzvqWJIiYJmRFEsbN26kc+fOrFixgvnz59OlS5eoI0mKiNfMSIqlDz/8kJUrV1JeXs5HH30UdRxJEXJmRlLslJSUcNhhh3HIIYfQsWNHxo4dy6JFi2jevHnU0SRFwDIjKXZ+/etf89BDD/H666+zxx57cNxxx5Gbm8tjjz0WdTRJEfA0k6RYmT17NuPGjeNf//oXeXl5pKWl8a9//YvnnnuO8ePHRx1PUgScmZEkSbHmzIwkSYo1y4wkSYo1y4wkSYo1y4wkSYo1y4wkSYo1y4wkSYo1y4wkSYo1y4wkSYo1y4wkSYo1y4wkSYo1y4wkSYo1y4wkSYq1/w+B+I5fUZ/qLQAAAABJRU5ErkJggg==",
+      "text/plain": [
+       "<Figure size 640x480 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "#hideme\n",
+    "import numpy as np\n",
+    "import scipy.stats as stats\n",
+    "import matplotlib.pyplot as plt \n",
+    "\n",
+    "def f(x):\n",
+    "    return 2*x + 1\n",
+    "\n",
+    "n = 10\n",
+    "xs = np.linspace(0,4,n)\n",
+    "sigma_y=0.4\n",
+    "ys = stats.multivariate_normal.rvs(f(xs), np.eye(n)*sigma_y**2, 1, random_state=42)\n",
+    "    \n",
+    "x_axis = np.linspace(0,4,100)\n",
+    "plt.errorbar(xs,ys,yerr=sigma_y,fmt=\".\")\n",
+    "plt.plot(x_axis, f(x_axis),'--')\n",
+    "plt.xlabel(\"x\")\n",
+    "plt.ylabel(\"y\")\n",
+    "plt.savefig(\"line.png\")\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "64e67452-e6bd-442c-a174-e12bdb18dba0",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": ""
+    },
+    "tags": []
+   },
+   "source": [
+    "### Methode der kleinsten Quadrate \n",
+    "\n",
+    "$$\\chi^2 = \\sum_i \\left(\\frac{y_i - \\hat y(x)}{\\sigma_i}\\right)^2$$\n",
+    "quantifiziert die Übereinstimmung von Modell zu Daten  \n",
+    "$\\rightarrow$ $\\hat m$ und $\\hat a$ sollten $\\chi^2$ minimieren.\n",
+    "<img src=\"./figures/11/line.png\" style=\"width:80.0%\"\n",
+    "alt=\"image\" />"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "bdc0949d-791e-4e29-9adc-169578e62821",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "### Methode der kleinsten Quadrate II \n",
+    "\n",
+    "Minimiere\n",
+    "$\\chi^2 = \\sum_i \\left(\\frac{y_i - \\hat y(x)}{\\sigma_i}\\right)^2 =  \\sum_i \\frac{(y_i - m x_i - a)^2}{\\sigma_i^2}$:\n",
+    "\n",
+    "Erste Ableitung ist Null:  \n",
+    "\n",
+    "$$\\begin{aligned}\n",
+    "  \\frac{d\\chi^2}{dm} &=& -2\\sum_i  x_i\\frac {y_i -\\hat  m x_i - \\hat a}{\\sigma_i^2} = 0\\\\\n",
+    "  \\frac{d\\chi^2}{da} &=& -2\\sum_i \\frac{y_i - \\hat m x_i - \\hat a}{\\sigma_i^2} = 0 \\\\\n",
+    "    \\sum_i\\frac{x_iy_i}{\\sigma_i^2} - \\hat m \\sum_i\\frac{x_i^2}{\\sigma_i^2}- \\hat a \\sum_i \\frac{x_i}{\\sigma_i^2} &=& 0 \\\\\n",
+    "     \\sum_i\\frac{y_i}{\\sigma_i^2} - \\hat m \\sum_i\\frac{x_i}{\\sigma_i^2}- \\hat a \\sum_i \\frac{1}{\\sigma_i^2} &=& 0 \n",
+    "\\end{aligned}$$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "322c67fc-ddd1-4830-a5f5-6f118ef54c4c",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "### Methode der kleinsten Quadrate III \n",
+    "\n",
+    "Minimiere\n",
+    "$\\chi^2 = \\sum_i \\left(\\frac{y_i - \\hat y(x)}{\\sigma_i}\\right)^2 =  \\sum_i \\frac{(y_i - m x_i - a)^2}{\\sigma_i^2}$:  \n",
+    "$$\\begin{aligned}\n",
+    "    \\sum_i\\frac{x_iy_i}{\\sigma_i^2} - \\hat m \\sum_i\\frac{x_i^2}{\\sigma_i^2}- \\hat a \\sum_i \\frac{x_i}{\\sigma_i^2} &=& 0 \\\\\n",
+    "     \\sum_i\\frac{y_i}{\\sigma_i^2} - \\hat m \\sum_i\\frac{x_i}{\\sigma_i^2}- \\hat a \\sum_i \\frac{1}{\\sigma_i^2} &=& 0   \n",
+    "\\end{aligned}$$ mit\n",
+    "$\\frac{1}{\\sum_i 1/\\sigma_i^2} \\sum_i \\frac{f}{\\sigma_i^2} = \\langle f \\rangle$:  \n",
+    "$$\\begin{aligned}\n",
+    "     \\langle xy  \\rangle -\\langle x^2  \\rangle \\hat m& - \\langle x  \\rangle  \\hat a&= 0\\\\\n",
+    "     \\langle y  \\rangle - \\langle x  \\rangle \\hat m& - \\hat a& = 0    \n",
+    "\\end{aligned}$$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "fb25687c-4410-4281-b540-39369732fb26",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "### Methode der kleinsten Quadrate IV \n",
+    "\n",
+    "$$\\begin{aligned}\n",
+    "       \\hat m&=&\\frac{\\langle xy  \\rangle - \\langle y  \\rangle\\langle x  \\rangle}{\\langle x^2  \\rangle - \\langle x  \\rangle^2} =  \\frac{1}{\\sum_i 1/\\sigma_i^2} \\sum_i \\frac{x_i - \\langle x \\rangle}{\\sigma_i^2(\\langle x^2  \\rangle - \\langle x  \\rangle^2)}y_i\\\\\n",
+    "     \\hat a &=& \\frac{ \\langle y  \\rangle  \\langle x^2  \\rangle- \\langle y  \\rangle \\langle x  \\rangle^2- \\langle x  \\rangle \\langle xy  \\rangle+ \\langle y  \\rangle \\langle x  \\rangle^2}{ \\langle x^2  \\rangle- \\langle x  \\rangle^2}\\\\\n",
+    "               &=& \\frac{ \\langle y \\rangle \\langle x^2 \\rangle -  \\langle x \\rangle \\langle xy \\rangle}{ \\langle x^2 \\rangle -  \\langle x \\rangle^2} =   \\frac{1}{\\sum_i 1/\\sigma_i^2} \\sum_i \\frac{\\langle x^2 \\rangle - \\langle x \\rangle x_i}{\\sigma_i^2(\\langle x^2  \\rangle - \\langle x  \\rangle^2)}y_i\n",
+    "\\end{aligned}$$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "b08ade05-e5eb-4a7e-9315-31a45c51aadb",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": ""
+    },
+    "tags": []
+   },
+   "source": [
+    "## Fehler\n",
+    "\n",
+    "### Fehler \n",
+    "\n",
+    "$$\\begin{aligned}\n",
+    "V(\\hat m) = \\sum_i \\left(\\frac{d\\hat m}{y_i}\\sigma_i\\right)^2\\text{; }\\frac{d\\hat m}{y_i} & = & \\frac{1}{\\sum_i 1/\\sigma_i^2} \\frac{x_i - \\langle x \\rangle}{\\sigma_i^2(\\langle x^2  \\rangle - \\langle x  \\rangle^2)} \\\\\n",
+    "V(\\hat a) = \\sum_i \\left(\\frac{d\\hat a}{y_i}\\sigma_i\\right)^2\\text{; }\\frac{d\\hat a}{y_i} & = &  \\frac{1}{\\sum_i 1/\\sigma_i^2} \\frac{\\langle x^2 \\rangle - \\langle x \\rangle x_i}{\\sigma_i^2(\\langle x^2  \\rangle - \\langle x  \\rangle^2)}\n",
+    "\\end{aligned}$$ $$\\begin{aligned}\n",
+    "V(\\hat m) &=&  \\left(\\frac{1}{\\sum_i 1/\\sigma_i^2}\\right)^2 \\sum_i \\left(\\frac{x_i - \\langle x \\rangle}{\\sigma_i^2(\\langle x^2  \\rangle - \\langle x  \\rangle^2)}\\right)^2 \\sigma_i^2 \\\\\n",
+    "&=& \\frac{1}{\\sum_i 1/\\sigma_i^2} \\frac{\\langle x^2 \\rangle - 2\\langle x \\rangle \\langle x \\rangle + \\langle x \\rangle^2}{(\\langle x^2  \\rangle - \\langle x  \\rangle^2)^2} \n",
+    "= \\frac{1}{\\sum_i 1/\\sigma_i^2} \\frac{1}{\\langle x^2  \\rangle - \\langle x  \\rangle^2} \\\\\n",
+    "V(\\hat a) &=& \\frac{1}{\\sum_i 1/\\sigma_i^2} \\frac{\\langle x^2  \\rangle^2 - 2\\langle x^2  \\rangle\\langle x  \\rangle^2 + \\langle x^2  \\rangle\\langle x  \\rangle^2}{(\\langle x^2  \\rangle - \\langle x  \\rangle^2)^2}\n",
+    "= \\frac{1}{\\sum_i 1/\\sigma_i^2} \\frac{\\langle x^2  \\rangle}{\\langle x^2  \\rangle - \\langle x  \\rangle^2}\n",
+    "\\end{aligned}$$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "d8828d04-0af8-4dc3-a846-24acbc9a0f8e",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": ""
+    },
+    "tags": []
+   },
+   "source": [
+    "### Korrelation \n",
+    "\n",
+    "$$\\begin{aligned}\n",
+    "V(\\hat m) &=& \\frac{1}{\\sum_i 1/\\sigma_i^2} \\frac{1}{\\langle x^2  \\rangle - \\langle x  \\rangle^2} \\\\\n",
+    "V(\\hat a) &=& \\frac{1}{\\sum_i 1/\\sigma_i^2} \\frac{\\langle x^2  \\rangle}{\\langle x^2  \\rangle - \\langle x  \\rangle^2}\\\\\n",
+    "\\text{cov}(\\hat m, \\hat a) &=&=  \\frac{1}{\\sum_i 1/\\sigma_i^2} \\frac{\\langle (x-\\langle x \\rangle)(\\langle x^2 \\rangle - \\langle x \\rangle x)\\rangle}{(\\langle x^2  \\rangle - \\langle x  \\rangle^2)^2}\\\\\n",
+    "&=& \\frac{1}{\\sum_i 1/\\sigma_i^2} \\frac{\\langle x^2 \\rangle \\langle x \\rangle - \\langle x \\rangle \\langle x^2 \\rangle - \\langle x \\rangle \\langle x^2 \\rangle + \\langle x \\rangle^2\\langle x \\rangle}{(\\langle x^2  \\rangle - \\langle x  \\rangle^2)^2}\\\\\n",
+    "&=& - \\frac{1}{\\sum_i 1/\\sigma_i^2} \\frac{\\langle x \\rangle}{\\langle x^2  \\rangle - \\langle x  \\rangle^2}\n",
+    "\\end{aligned}$$\n",
+    "\n",
+    "### Beispiel in Jupyter "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "424bdd1f-53bf-422b-bc4a-0702231b976d",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": ""
+    },
+    "tags": []
+   },
+   "source": [
+    "### Minimales $\\chi^2$ \n",
+    "\n",
+    "$$\\begin{aligned}\n",
+    "  \\chi^2 &=& \\sum_i \\frac{(y_i - \\hat m x_i - \\hat a)^2}{\\sigma_i^2} = \\sum_i \\frac{\\left[y_i -  \\frac{\\langle xy  \\rangle - \\langle y  \\rangle\\langle x  \\rangle}{\\langle x^2  \\rangle - \\langle x  \\rangle^2} x_i - \\frac{ \\langle y \\rangle \\langle x^2 \\rangle -  \\langle x \\rangle \\langle xy \\rangle}{ \\langle x^2 \\rangle -  \\langle x \\rangle^2} \\right]^2}{\\sigma_i^2}\\\\\n",
+    " & = &  \\sum_i \\frac{\\left[(\\langle x^2  \\rangle - \\langle x  \\rangle^2)y_i - (\\langle xy  \\rangle - \\langle y  \\rangle\\langle x  \\rangle)x_i  -  \\langle y \\rangle \\langle x^2 \\rangle +  \\langle x \\rangle \\langle xy \\rangle\\right]^2}{\\sigma_i^2 ( \\langle x^2 \\rangle -  \\langle x \\rangle^2)^2} \\\\\n",
+    " &=&  \\dots\\\\\n",
+    "& =& (\\sum_i \\frac{1}{\\sigma_i^2}) V(y) ( 1- \\rho^2_{xy})\n",
+    "\\end{aligned}$$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "e89f415e-8836-4b97-893c-a7335c3a21e5",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": ""
+    },
+    "tags": []
+   },
+   "source": [
+    "### Beispiel in Jupyter \n",
+    "\n",
+    "## In Python"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "7311c0ff-0ce0-4427-a50e-b6698100e454",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": ""
+    },
+    "tags": []
+   },
+   "source": [
+    "### Mit Python I\n",
+    "\n",
+    "Mit scipy.optimize:\n",
+    "\n",
+    "```\n",
+    "import scipy.optimize as opti\n",
+    "def fitf(x, m , a):\n",
+    "    return m*x + a\n",
+    "pfit, Vfit = opti.curve_fit(fitf , xs, ys, \n",
+    "     sigma=[sigma_y]*len(ys),absolue_sigma=True)\n",
+    "print(pfit, Vfit)\n",
+    "```\n",
+    "\n",
+    "Vorsicht! Falsche Unsicherheit ohne `absolute_sigma=True`"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "a5fec52e-bd3a-4437-bb43-620de44939b2",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": ""
+    },
+    "tags": []
+   },
+   "source": [
+    "### Mit Python II\n",
+    "\n",
+    "Mit scipy.optimize:\n",
+    "\n",
+    "```\n",
+    "def chi2(x, y, sy, a, m):\n",
+    "    my = m * x + a\n",
+    "    r = (y - my)/sy\n",
+    "    return np.sum(r**2)\n",
+    "    \n",
+    "res = opti.minimize( lambda p: chi2(xs, ys, sigma_y, p[1], p[0]),x0=np.zeros(2))\n",
+    "print(res.x, res.hess_inv*2)\n",
+    "```"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "84b00301-c0d3-4595-858e-4f784d69c876",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "### Inverse Hesse-Matrix und $\\chi^2$ \n",
+    "\n",
+    "$\\Delta \\chi2$ und Kovarianz Ellipse um Minimum gemäß Kovarianzmatrix\n",
+    "genau bei $\\Delta \\chi^2 = 1$.  \n",
+    "$$1 = \\delta \\chi^2 = (\\vec a -\\hat \\vec a)^T V^{-1} (\\vec a-\\hat \\vec a)$$\n",
+    "Mit\n",
+    "$\\chi^2(\\vec a) = \\chi^2(\\hat \\vec a) + (\\vec a -\\hat \\vec a)^T V^{-1} (\\vec a-\\hat \\vec a)$\n",
+    "und\n",
+    "$H_{ij} = \\frac{\\partial^2 \\chi^2(\\vec a)}{\\partial a_i \\partial a_j}$  \n",
+    "$$H_{ij} = \\frac{\\partial^2 (a_k -\\hat a_k) V^{-1}_{kl} (a_l -\\hat a_l)}{\\partial a_i \\partial a_j} =  \\frac{\\partial( \\delta_{ik}V^{-1}_{kl} (a_l -\\hat a_l) + (a_k -\\hat a_k) V^{-1}_{kl} \\delta_{il})}{\\partial a_j}$$\n",
+    "$$H_{ij} = \\delta_{ik}V^{-1}_{kl}\\delta_{lj} +  \\delta_{jk}V^{-1}_{kl}\\delta_{il} = 2V^{-1}_{ij}  \\text{ und  } V_{ij} = 2 * H^{-1}_{ij}$$\n",
+    "\n",
+    "Vorsicht! Manche Algorithmen in `minimize` berechnen keine inverse\n",
+    "Hesse-Matrix."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "632583d4-1e97-498b-b8f3-91e259baa24d",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "# Maximum-Likelihood \n",
+    "\n",
+    "Maximum-Likelihood (ML) Daten: $x_1,...,x_N$  \n",
+    "Wahrscheinlichkeit der Daten für Modell mit Parametern $a$:\n",
+    "$$P(x_1,...,x_N; a) = \\prod_i P(x_i ; a)$$\n",
+    "\n",
+    "Likelihoodfunktion: $$L(a) =  \\prod_i P(x_i ; a)$$\n",
+    "\n",
+    "ML-Schätzer $\\hat a$: Maximum von $L(a)$:\n",
+    "$$\\left.\\frac{dL}{da}\\right|_{a = \\hat a} = 0$$ (praktischer:\n",
+    "Log-Likelihood: $-\\ln L = \\sum_i -\\ln P(x_i; a)$)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "dd0afbf7-8504-46f8-b3da-4fb33487a635",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "### Beispiel\n",
+    "\n",
+    "\n",
+    "$y(x) = mx +  a$: Finde $\\hat m$ und $\\hat a$ Daten: $y_1,...,y_N$ und\n",
+    "Modell: $$P(y_i; m, a) = G(y_i; \\mu = m x_i +  a, \\sigma=\\sigma_i)$$\n",
+    "$$L(m, a) = \\prod_i G(y_i; \\mu = m x_i +  a, \\sigma=\\sigma_i)$$\n",
+    "\n",
+    "0.5 <img src=\"./figures/11/line.png\" alt=\"image\" />\n",
+    "\n",
+    "<img src=\"./figures/11/like_a.png\" style=\"width:49.0%\"\n",
+    "alt=\"image\" />\n",
+    "<img src=\"./figures/11/loglike_a.png\" style=\"width:49.0%\"\n",
+    "alt=\"image\" />\n",
+    "\n",
+    "ML-Schätzer für Poisson $\\mu$ $$\\begin{aligned}\n",
+    "  L(\\mu) &  = & \\prod_i^N  P(k_i; \\mu) =  \\prod_i^N   \\frac{\\mu^{k_i}e^{-\\mu}}{k_i!}\\\\\n",
+    "  \\ln L(\\mu) &  = & \\sum_{i=1}^N \\left( \\ln \\mu^{k_i} + \\ln e^{-\\mu} - \\ln k_i!\\right)\\\\\n",
+    "  & = &  \\sum_{i=1}^N  \\left( k_i \\ln \\mu -\\mu -  \\ln k_i!\\right)\\\\\n",
+    " 0  \\stackrel{!}{=} \\frac{d \\ln L(\\mu)}{d\\mu} \\Big|_{\\hat \\mu}& = &   \\sum_{i=1}^N \\left( \\frac{k_i}{\\hat \\mu} - 1\\right)  = \\sum_{i=1}^N  \\frac{k_i}{\\hat\\mu} - N\\\\\n",
+    "  N & = & \\frac{1}{\\hat\\mu} \\sum_{i=1}^N  k_i \\rightarrow  \\hat\\mu =  \\frac{1} {N} \\sum_{i=1}^N  k_i\n",
+    "     \n",
+    "\\end{aligned}$$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "d9571970-772e-4e95-8474-82e0afb1dd68",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": ""
+    },
+    "tags": []
+   },
+   "source": [
+    "Varianz des ML-Schätzers\n",
+    "\n",
+    "Rao-Cramér-Frechet-Ungleichung: Schätzer $\\hat a$ mit Bias (Verzerrung)\n",
+    "$b$\n",
+    "$$V(\\hat a) \\geq \\frac{\\left(1+ \\frac{\\partial b}{\\partial a} \\right)^2}{E\\left[-\\frac{\\partial^2 \\ln L}{\\partial a^2}\\right]}$$\n",
+    "Fisher-Information:\n",
+    "$$I(\\hat a) = E\\left [-\\frac{\\partial^2 \\ln L}{\\partial a^2}\\right]$$\n",
+    "\n",
+    "ML-Schätzer für Poisson $V(\\hat \\mu)$ $$\\begin{aligned}\n",
+    "V(\\hat \\mu) & \\geq &\\frac{\\left(1+ \\frac{\\partial b}{\\partial \\mu} \\right)^2}{E\\left[-\\frac{\\partial^2 \\ln L}{\\mu^2}\\right]} \\\\\n",
+    "               & = & \\frac{1}{E\\left[-\\frac{\\partial(\\sum_{i=1}^N  \\frac{k_i}{\\mu} - N)}{\\partial \\mu^2}\\right]} \\\\\n",
+    "               & = & \\frac{1}{E\\left[-\\sum_{i=1}^N  \\frac{-k_i}{\\hat \\mu^2}\\right]} =  \\frac{1}{E\\left[\\sum_{i=1}^N  \\frac{k_i}{\\hat \\mu^2}\\right]} \\\\\n",
+    "               & = & \\frac{1}{\\frac{1}{\\hat \\mu^2}E\\left[\\sum_{i=1}^N  k_i \\right]} =   \\frac{1}{\\frac{1}{\\hat \\mu^2}E\\left[N \\hat \\mu \\right]}\\\\\n",
+    "               & = & \\frac{\\hat \\mu}{N}\n",
+    "\\end{aligned}$$\n",
+    "\n",
+    "Varianz für mehrere Parameter $\\vec \\theta$\n",
+    "\n",
+    "Für effizienten und erwartungstreuen Schätzer:\n",
+    "$$\\left(V^{-1}\\right)_{ij} = E\\left[ -\\frac{\\partial^2 \\ln L(\\theta)}{\\partial \\theta_i \\partial \\theta_j}\\right]$$\n",
+    "\n",
+    "Näherung für große Datensätze:\n",
+    "$$\\left(\\hat V^{-1}\\right)_{ij} = -\\frac{\\partial^2 \\ln L(\\theta)}{\\partial \\theta_i \\partial \\theta_j}\\Big|_{\\theta=\\hat \\theta} =$$\n",
+    "\n",
+    "Graphisch:\n",
+    "$$\\ln L(\\theta) \\approx \\ln L(\\hat \\theta) + \\frac{\\partial \\ln L}{\\partial \\theta}\\Big|_{\\hat \\theta}(\\theta - \\hat \\theta) + \\frac{1}{2} \\frac{\\partial^2 \\ln L}{\\partial \\theta^2}(\\theta - \\hat \\theta)^2$$\n",
+    "$$\\ln L(\\hat \\theta + \\sigma_\\theta)  \\approx \\ln L(\\hat \\theta) + \\frac{1}{2} \\frac{\\partial^2 \\ln L}{\\partial \\theta^2}(\\sigma_\\theta)^2  = \\ln L(\\hat \\theta) - \\frac{1}{2}$$\n",
+    "\n",
+    "Zusammenhang ML und $\\chi^2$\n",
+    "\n",
+    "Likelihood-Quotient:\n",
+    "$$\\lambda = -2 \\ln \\frac{L(\\hat \\theta)}{L(\\hat \\theta^\\prime_\\text{saturiert})}$$\n",
+    "\n",
+    "Mit Normalverteilung: $$\\begin{aligned}\n",
+    "\\lambda &=& -2 \\ln \\frac{L(\\hat \\theta)}{L(\\hat \\theta^\\prime_\\text{saturiert})} = -2 \\ln \\frac{\\prod_i G(x_i; \\hat \\mu, \\sigma_i)}{\\prod_i G(x_i; x_i, \\sigma_i)}\\\\\n",
+    "& = & -2 \\ln \\frac{\\frac{1}{\\sqrt{2\\pi}\\sigma_i}exp\\left(\\frac{(x_i-\\hat \\mu)^2}{2\\sigma_i^2}\\right)}{\\frac{1}{\\sqrt{2\\pi}\\sigma_i}exp\\left(\\frac{(x_i-x_i)^2}{2\\sigma_i^2}\\right)} = -2\\ln exp\\left(\\frac{(x_i-\\hat \\mu)^2}{2\\sigma_i^2}\\right) \\\\\n",
+    "& = & -2 \\frac{(x_i-\\hat \\mu)^2}{2\\sigma_i^2} = \\chi^2 \\text{; also   } \\ln L(\\theta) = - \\chi^2(\\theta) / 2 \n",
+    "\\end{aligned}$$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "7ae85d99-d6fa-409b-abb2-144cc24570db",
+   "metadata": {
+    "editable": true,
+    "slideshow": {
+     "slide_type": "slide"
+    },
+    "tags": []
+   },
+   "source": [
+    "# Zusammenfassung und Ausblick\n",
+    "\n",
+    "## Zusammenfassung und Ausblick\n",
+    "\n",
+    "Zusammenfassung\n",
+    "\n",
+    "-   Methode der kleinsten Quadrate ($\\chi^2$)\n",
+    "\n",
+    "-   Maximum-Likelihood\n",
+    "\n",
+    "-   Zusammenhang $\\chi^2$-ML\n",
+    "\n",
+    "-   Minimierung\n",
+    "\n",
+    "-   Literatur:  \n",
+    "\n",
+    "    -   Glen Cowan, Statistical Data Analysis,\n",
+    "        [pdf](https://www.sherrytowers.com/cowan_statistical_data_analysis.pdf)\n",
+    "\n",
+    "    -   Roger John Barlow, Statistics: A Guide to the Use of Statistical\n",
+    "        Methods in the Physical Sciences,\n",
+    "        [Skript](https://arxiv.org/pdf/1905.12362.pdf)\n",
+    "\n",
+    "    -   Volker Blobel, Erich Lohrmann, Statistische und numerische\n",
+    "        Methoden der Datenanalyse,\n",
+    "        [pdf](https://www.desy.de/~sschmitt/blobel/eBuch.pdf)\n",
+    "\n",
+    "# Bibliography\n",
+    "\n",
+    "Bibliography"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.11.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/rise.css b/rise.css
new file mode 100644
index 0000000000000000000000000000000000000000..2f4475493dc1e689adda1897017a16ae4c0fdf81
--- /dev/null
+++ b/rise.css
@@ -0,0 +1,73 @@
+/* this goes with my global default setting
+ * that has rise use reveal's theme sky
+ */
+/*.reveal {
+    font-family: "Quicksand", sans-serif;
+}*/
+
+.reveal h1, .reveal h2, .reveal h3, .reveal h4, .reveal h5, .reveal h6 {
+    text-transform: initial;   /* sky.css says uppercase */
+    letter-spacing: initial ;  /* sky.css says -0.08em */
+}
+
+body.rise-enabled .reveal ol, body.rise-enabled .reveal dl, body.rise-enabled .reveal ul {
+    margin-left: 0.1em;
+    margin-top: 0.2em;
+}
+
+.reveal .rendered_html h1:first-child,
+.reveal .rendered_html h2:first-child,
+.reveal .rendered_html h3:first-child,
+.reveal .rendered_html h4:first-child,
+.reveal .rendered_html h5:first-child {
+    margin-top: 0.2em;
+}
+
+h1.plan, h2.plan, h3.plan {
+    text-align: center;
+    padding-bottom: 30px;
+}
+
+ul.plan>li>span.plan-bold {
+    font-size: 110%;
+    padding: 4px;
+    font-weight: bold;
+    background-color: #eee;
+}
+
+ul.plan>li>ul.subplan>li>span.plan-bold {
+    font-weight: bold;
+}
+
+.plan-strike {
+    opacity: 0.4;
+/*    text-decoration: line-through; */
+}
+
+div.plan-container {
+    display: grid;
+    grid-template-columns: 50% 50%;
+}
+
+/* something big and obvious again just to outline
+   that this file is actually loaded */
+
+div.cell.code_cell.rendered, div.input_area {
+    border-width: 10px;
+}
+
+/* this is only to check that rise.css properly gets
+ * ignored when quitting reveal mode */
+div.text_cell_render.rendered_html {
+    color: #5050b0;
+}
+
+/*
+ * this is to void xarray's html output to show the fallback textual representation
+ * see also
+   * xarray.md and 
+   * https://github.com/damianavila/RISE/issues/594
+ */
+.reveal pre.xr-text-repr-fallback {
+    display: none;
+}
\ No newline at end of file