diff --git a/AfterPreProcessing.txt b/AfterPreProcessing.txt index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..f543869fe2ef85e9d7d4e749c7ae9d52c7b18237 100644 --- a/AfterPreProcessing.txt +++ b/AfterPreProcessing.txt @@ -0,0 +1,1117 @@ +\ SCIP STATISTICS +\ Problem name : data/6f4s.lp_relaxscip +\ Variables : 54 (54 binary, 0 integer, 0 implicit integer, 0 continuous) +\ Constraints : 6 +Minimize + Obj: +1 t_x_{1}_{0} +15 t_x_{1}_{15} +30 t_x_{1}_{30} +45 t_x_{1}_{45} +60 t_x_{1}_{60} +75 t_x_{1}_{75} + +90 t_x_{1}_{90} +105 t_x_{1}_{105} +120 t_x_{1}_{120} +15 t_x_{2}_{15} +30 t_x_{2}_{30} +45 t_x_{2}_{45} + +60 t_x_{2}_{60} +75 t_x_{2}_{75} +90 t_x_{2}_{90} +105 t_x_{2}_{105} +120 t_x_{2}_{120} +15 t_x_{3}_{15} + +30 t_x_{3}_{30} +45 t_x_{3}_{45} +60 t_x_{3}_{60} +75 t_x_{3}_{75} +90 t_x_{3}_{90} +105 t_x_{3}_{105} + +120 t_x_{3}_{120} +15 t_x_{4}_{15} +30 t_x_{4}_{30} +45 t_x_{4}_{45} +60 t_x_{4}_{60} +75 t_x_{4}_{75} + +90 t_x_{4}_{90} +105 t_x_{4}_{105} +120 t_x_{4}_{120} +15 t_x_{5}_{15} +30 t_x_{5}_{30} +45 t_x_{5}_{45} + +60 t_x_{5}_{60} +75 t_x_{5}_{75} +90 t_x_{5}_{90} +105 t_x_{5}_{105} +120 t_x_{5}_{120} +15 t_x_{6}_{15} + +30 t_x_{6}_{30} +45 t_x_{6}_{45} +60 t_x_{6}_{60} +75 t_x_{6}_{75} +90 t_x_{6}_{90} +105 t_x_{6}_{105} + +120 t_x_{6}_{120} +Subject to + F_6: +1 t_x_{6}_{0} +1 t_x_{6}_{15} +1 t_x_{6}_{30} +1 t_x_{6}_{45} +1 t_x_{6}_{60} +1 t_x_{6}_{75} +1 t_x_{6}_{90} + +1 t_x_{6}_{105} +1 t_x_{6}_{120} = +1 + F_5: +1 t_x_{5}_{0} +1 t_x_{5}_{15} +1 t_x_{5}_{30} +1 t_x_{5}_{45} +1 t_x_{5}_{60} +1 t_x_{5}_{75} +1 t_x_{5}_{90} + +1 t_x_{5}_{105} +1 t_x_{5}_{120} = +1 + F_4: +1 t_x_{4}_{0} +1 t_x_{4}_{15} +1 t_x_{4}_{30} +1 t_x_{4}_{45} +1 t_x_{4}_{60} +1 t_x_{4}_{75} +1 t_x_{4}_{90} + +1 t_x_{4}_{105} +1 t_x_{4}_{120} = +1 + F_3: +1 t_x_{3}_{0} +1 t_x_{3}_{15} +1 t_x_{3}_{30} +1 t_x_{3}_{45} +1 t_x_{3}_{60} +1 t_x_{3}_{75} +1 t_x_{3}_{90} + +1 t_x_{3}_{105} +1 t_x_{3}_{120} = +1 + F_2: +1 t_x_{2}_{0} +1 t_x_{2}_{15} +1 t_x_{2}_{30} +1 t_x_{2}_{45} +1 t_x_{2}_{60} +1 t_x_{2}_{75} +1 t_x_{2}_{90} + +1 t_x_{2}_{105} +1 t_x_{2}_{120} = +1 + F_1: +1 t_x_{1}_{0} +1 t_x_{1}_{15} +1 t_x_{1}_{30} +1 t_x_{1}_{45} +1 t_x_{1}_{60} +1 t_x_{1}_{75} +1 t_x_{1}_{90} + +1 t_x_{1}_{105} +1 t_x_{1}_{120} = +1 +Bounds + 0 <= t_x_{1}_{0} <= 1 + 0 <= t_x_{1}_{15} <= 1 + 0 <= t_x_{1}_{30} <= 1 + 0 <= t_x_{1}_{45} <= 1 + 0 <= t_x_{1}_{60} <= 1 + 0 <= t_x_{1}_{75} <= 1 + 0 <= t_x_{1}_{90} <= 1 + 0 <= t_x_{1}_{105} <= 1 + 0 <= t_x_{1}_{120} <= 1 + 0 <= t_x_{2}_{0} <= 1 + 0 <= t_x_{2}_{15} <= 1 + 0 <= t_x_{2}_{30} <= 1 + 0 <= t_x_{2}_{45} <= 1 + 0 <= t_x_{2}_{60} <= 1 + 0 <= t_x_{2}_{75} <= 1 + 0 <= t_x_{2}_{90} <= 1 + 0 <= t_x_{2}_{105} <= 1 + 0 <= t_x_{2}_{120} <= 1 + 0 <= t_x_{3}_{0} <= 1 + 0 <= t_x_{3}_{15} <= 1 + 0 <= t_x_{3}_{30} <= 1 + 0 <= t_x_{3}_{45} <= 1 + 0 <= t_x_{3}_{60} <= 1 + 0 <= t_x_{3}_{75} <= 1 + 0 <= t_x_{3}_{90} <= 1 + 0 <= t_x_{3}_{105} <= 1 + 0 <= t_x_{3}_{120} <= 1 + 0 <= t_x_{4}_{0} <= 1 + 0 <= t_x_{4}_{15} <= 1 + 0 <= t_x_{4}_{30} <= 1 + 0 <= t_x_{4}_{45} <= 1 + 0 <= t_x_{4}_{60} <= 1 + 0 <= t_x_{4}_{75} <= 1 + 0 <= t_x_{4}_{90} <= 1 + 0 <= t_x_{4}_{105} <= 1 + 0 <= t_x_{4}_{120} <= 1 + 0 <= t_x_{5}_{0} <= 1 + 0 <= t_x_{5}_{15} <= 1 + 0 <= t_x_{5}_{30} <= 1 + 0 <= t_x_{5}_{45} <= 1 + 0 <= t_x_{5}_{60} <= 1 + 0 <= t_x_{5}_{75} <= 1 + 0 <= t_x_{5}_{90} <= 1 + 0 <= t_x_{5}_{105} <= 1 + 0 <= t_x_{5}_{120} <= 1 + 0 <= t_x_{6}_{0} <= 1 + 0 <= t_x_{6}_{15} <= 1 + 0 <= t_x_{6}_{30} <= 1 + 0 <= t_x_{6}_{45} <= 1 + 0 <= t_x_{6}_{60} <= 1 + 0 <= t_x_{6}_{75} <= 1 + 0 <= t_x_{6}_{90} <= 1 + 0 <= t_x_{6}_{105} <= 1 + 0 <= t_x_{6}_{120} <= 1 +Binaries + t_x_{1}_{0} t_x_{1}_{15} t_x_{1}_{30} t_x_{1}_{45} t_x_{1}_{60} t_x_{1}_{75} t_x_{1}_{90} t_x_{1}_{105} + t_x_{1}_{120} t_x_{2}_{0} t_x_{2}_{15} t_x_{2}_{30} t_x_{2}_{45} t_x_{2}_{60} t_x_{2}_{75} t_x_{2}_{90} + t_x_{2}_{105} t_x_{2}_{120} t_x_{3}_{0} t_x_{3}_{15} t_x_{3}_{30} t_x_{3}_{45} t_x_{3}_{60} t_x_{3}_{75} + t_x_{3}_{90} t_x_{3}_{105} t_x_{3}_{120} t_x_{4}_{0} t_x_{4}_{15} t_x_{4}_{30} t_x_{4}_{45} t_x_{4}_{60} + t_x_{4}_{75} t_x_{4}_{90} t_x_{4}_{105} t_x_{4}_{120} t_x_{5}_{0} t_x_{5}_{15} t_x_{5}_{30} t_x_{5}_{45} + t_x_{5}_{60} t_x_{5}_{75} t_x_{5}_{90} t_x_{5}_{105} t_x_{5}_{120} t_x_{6}_{0} t_x_{6}_{15} t_x_{6}_{30} + t_x_{6}_{45} t_x_{6}_{60} t_x_{6}_{75} t_x_{6}_{90} t_x_{6}_{105} t_x_{6}_{120} +End +\ SCIP STATISTICS +\ Problem name : data/6f4s.lp_relaxscip +\ Variables : 54 (54 binary, 0 integer, 0 implicit integer, 0 continuous) +\ Constraints : 6 +Minimize + Obj: +25 t_x_{1}_{0} +15 t_x_{1}_{15} +30 t_x_{1}_{30} +45 t_x_{1}_{45} +60 t_x_{1}_{60} +75 t_x_{1}_{75} + +90 t_x_{1}_{90} +105 t_x_{1}_{105} +120 t_x_{1}_{120} +24 t_x_{2}_{0} +15 t_x_{2}_{15} +30 t_x_{2}_{30} + +45 t_x_{2}_{45} +60 t_x_{2}_{60} +75 t_x_{2}_{75} +90 t_x_{2}_{90} +105 t_x_{2}_{105} +120 t_x_{2}_{120} + +32 t_x_{3}_{0} +15 t_x_{3}_{15} +30 t_x_{3}_{30} +45 t_x_{3}_{45} +60 t_x_{3}_{60} +75 t_x_{3}_{75} + +90 t_x_{3}_{90} +105 t_x_{3}_{105} +120 t_x_{3}_{120} +32 t_x_{4}_{0} +15 t_x_{4}_{15} +30 t_x_{4}_{30} + +45 t_x_{4}_{45} +60 t_x_{4}_{60} +75 t_x_{4}_{75} +90 t_x_{4}_{90} +105 t_x_{4}_{105} +120 t_x_{4}_{120} + +32 t_x_{5}_{0} +15 t_x_{5}_{15} +30 t_x_{5}_{30} +45 t_x_{5}_{45} +60 t_x_{5}_{60} +75 t_x_{5}_{75} + +90 t_x_{5}_{90} +105 t_x_{5}_{105} +120 t_x_{5}_{120} +16 t_x_{6}_{0} +15 t_x_{6}_{15} +30 t_x_{6}_{30} + +45 t_x_{6}_{45} +60 t_x_{6}_{60} +75 t_x_{6}_{75} +90 t_x_{6}_{90} +105 t_x_{6}_{105} +120 t_x_{6}_{120} + -56 +Subject to + F_6: +1 t_x_{6}_{0} +1 t_x_{6}_{15} +1 t_x_{6}_{30} +1 t_x_{6}_{45} +1 t_x_{6}_{60} +1 t_x_{6}_{75} +1 t_x_{6}_{90} + +1 t_x_{6}_{105} +1 t_x_{6}_{120} = +1 + F_5: +1 t_x_{5}_{0} +1 t_x_{5}_{15} +1 t_x_{5}_{30} +1 t_x_{5}_{45} +1 t_x_{5}_{60} +1 t_x_{5}_{75} +1 t_x_{5}_{90} + +1 t_x_{5}_{105} +1 t_x_{5}_{120} = +1 + F_4: +1 t_x_{4}_{0} +1 t_x_{4}_{15} +1 t_x_{4}_{30} +1 t_x_{4}_{45} +1 t_x_{4}_{60} +1 t_x_{4}_{75} +1 t_x_{4}_{90} + +1 t_x_{4}_{105} +1 t_x_{4}_{120} = +1 + F_3: +1 t_x_{3}_{0} +1 t_x_{3}_{15} +1 t_x_{3}_{30} +1 t_x_{3}_{45} +1 t_x_{3}_{60} +1 t_x_{3}_{75} +1 t_x_{3}_{90} + +1 t_x_{3}_{105} +1 t_x_{3}_{120} = +1 + F_2: +1 t_x_{2}_{0} +1 t_x_{2}_{15} +1 t_x_{2}_{30} +1 t_x_{2}_{45} +1 t_x_{2}_{60} +1 t_x_{2}_{75} +1 t_x_{2}_{90} + +1 t_x_{2}_{105} +1 t_x_{2}_{120} = +1 + F_1: +1 t_x_{1}_{0} +1 t_x_{1}_{15} +1 t_x_{1}_{30} +1 t_x_{1}_{45} +1 t_x_{1}_{60} +1 t_x_{1}_{75} +1 t_x_{1}_{90} + +1 t_x_{1}_{105} +1 t_x_{1}_{120} = +1 +Bounds + 0 <= t_x_{1}_{0} <= 1 + 0 <= t_x_{1}_{15} <= 1 + 0 <= t_x_{1}_{30} <= 1 + 0 <= t_x_{1}_{45} <= 1 + 0 <= t_x_{1}_{60} <= 1 + 0 <= t_x_{1}_{75} <= 1 + 0 <= t_x_{1}_{90} <= 1 + 0 <= t_x_{1}_{105} <= 1 + 0 <= t_x_{1}_{120} <= 1 + 0 <= t_x_{2}_{0} <= 1 + 0 <= t_x_{2}_{15} <= 1 + 0 <= t_x_{2}_{30} <= 1 + 0 <= t_x_{2}_{45} <= 1 + 0 <= t_x_{2}_{60} <= 1 + 0 <= t_x_{2}_{75} <= 1 + 0 <= t_x_{2}_{90} <= 1 + 0 <= t_x_{2}_{105} <= 1 + 0 <= t_x_{2}_{120} <= 1 + 0 <= t_x_{3}_{0} <= 1 + 0 <= t_x_{3}_{15} <= 1 + 0 <= t_x_{3}_{30} <= 1 + 0 <= t_x_{3}_{45} <= 1 + 0 <= t_x_{3}_{60} <= 1 + 0 <= t_x_{3}_{75} <= 1 + 0 <= t_x_{3}_{90} <= 1 + 0 <= t_x_{3}_{105} <= 1 + 0 <= t_x_{3}_{120} <= 1 + 0 <= t_x_{4}_{0} <= 1 + 0 <= t_x_{4}_{15} <= 1 + 0 <= t_x_{4}_{30} <= 1 + 0 <= t_x_{4}_{45} <= 1 + 0 <= t_x_{4}_{60} <= 1 + 0 <= t_x_{4}_{75} <= 1 + 0 <= t_x_{4}_{90} <= 1 + 0 <= t_x_{4}_{105} <= 1 + 0 <= t_x_{4}_{120} <= 1 + 0 <= t_x_{5}_{0} <= 1 + 0 <= t_x_{5}_{15} <= 1 + 0 <= t_x_{5}_{30} <= 1 + 0 <= t_x_{5}_{45} <= 1 + 0 <= t_x_{5}_{60} <= 1 + 0 <= t_x_{5}_{75} <= 1 + 0 <= t_x_{5}_{90} <= 1 + 0 <= t_x_{5}_{105} <= 1 + 0 <= t_x_{5}_{120} <= 1 + 0 <= t_x_{6}_{0} <= 1 + 0 <= t_x_{6}_{15} <= 1 + 0 <= t_x_{6}_{30} <= 1 + 0 <= t_x_{6}_{45} <= 1 + 0 <= t_x_{6}_{60} <= 1 + 0 <= t_x_{6}_{75} <= 1 + 0 <= t_x_{6}_{90} <= 1 + 0 <= t_x_{6}_{105} <= 1 + 0 <= t_x_{6}_{120} <= 1 +Binaries + t_x_{1}_{0} t_x_{1}_{15} t_x_{1}_{30} t_x_{1}_{45} t_x_{1}_{60} t_x_{1}_{75} t_x_{1}_{90} t_x_{1}_{105} + t_x_{1}_{120} t_x_{2}_{0} t_x_{2}_{15} t_x_{2}_{30} t_x_{2}_{45} t_x_{2}_{60} t_x_{2}_{75} t_x_{2}_{90} + t_x_{2}_{105} t_x_{2}_{120} t_x_{3}_{0} t_x_{3}_{15} t_x_{3}_{30} t_x_{3}_{45} t_x_{3}_{60} t_x_{3}_{75} + t_x_{3}_{90} t_x_{3}_{105} t_x_{3}_{120} t_x_{4}_{0} t_x_{4}_{15} t_x_{4}_{30} t_x_{4}_{45} t_x_{4}_{60} + t_x_{4}_{75} t_x_{4}_{90} t_x_{4}_{105} t_x_{4}_{120} t_x_{5}_{0} t_x_{5}_{15} t_x_{5}_{30} t_x_{5}_{45} + t_x_{5}_{60} t_x_{5}_{75} t_x_{5}_{90} t_x_{5}_{105} t_x_{5}_{120} t_x_{6}_{0} t_x_{6}_{15} t_x_{6}_{30} + t_x_{6}_{45} t_x_{6}_{60} t_x_{6}_{75} t_x_{6}_{90} t_x_{6}_{105} t_x_{6}_{120} +End +\ SCIP STATISTICS +\ Problem name : data/6f4s.lp_relaxscip +\ Variables : 54 (54 binary, 0 integer, 0 implicit integer, 0 continuous) +\ Constraints : 6 +Minimize + Obj: +18.3333333333333 t_x_{1}_{0} +25 t_x_{1}_{15} +30 t_x_{1}_{30} +45 t_x_{1}_{45} +60 t_x_{1}_{60} + +75 t_x_{1}_{75} +90 t_x_{1}_{90} +105 t_x_{1}_{105} +120 t_x_{1}_{120} +17.3333333333333 t_x_{2}_{0} + +25 t_x_{2}_{15} +30 t_x_{2}_{30} +45 t_x_{2}_{45} +60 t_x_{2}_{60} +75 t_x_{2}_{75} +90 t_x_{2}_{90} + +105 t_x_{2}_{105} +120 t_x_{2}_{120} +25.3333333333333 t_x_{3}_{0} +28.3333333333333 t_x_{3}_{15} + +30 t_x_{3}_{30} +45 t_x_{3}_{45} +60 t_x_{3}_{60} +75 t_x_{3}_{75} +90 t_x_{3}_{90} +105 t_x_{3}_{105} + +120 t_x_{3}_{120} +25.3333333333333 t_x_{4}_{0} +28.3333333333333 t_x_{4}_{15} +30 t_x_{4}_{30} + +45 t_x_{4}_{45} +60 t_x_{4}_{60} +75 t_x_{4}_{75} +90 t_x_{4}_{90} +105 t_x_{4}_{105} +120 t_x_{4}_{120} + +25.3333333333333 t_x_{5}_{0} +28.3333333333333 t_x_{5}_{15} +30 t_x_{5}_{30} +45 t_x_{5}_{45} +60 t_x_{5}_{60} + +75 t_x_{5}_{75} +90 t_x_{5}_{90} +105 t_x_{5}_{105} +120 t_x_{5}_{120} +12.6666666666667 t_x_{6}_{0} + +21.6666666666667 t_x_{6}_{15} +30 t_x_{6}_{30} +45 t_x_{6}_{45} +60 t_x_{6}_{60} +75 t_x_{6}_{75} + +90 t_x_{6}_{90} +105 t_x_{6}_{105} +120 t_x_{6}_{120} -66 +Subject to + F_6: +1 t_x_{6}_{0} +1 t_x_{6}_{15} +1 t_x_{6}_{30} +1 t_x_{6}_{45} +1 t_x_{6}_{60} +1 t_x_{6}_{75} +1 t_x_{6}_{90} + +1 t_x_{6}_{105} +1 t_x_{6}_{120} = +1 + F_5: +1 t_x_{5}_{0} +1 t_x_{5}_{15} +1 t_x_{5}_{30} +1 t_x_{5}_{45} +1 t_x_{5}_{60} +1 t_x_{5}_{75} +1 t_x_{5}_{90} + +1 t_x_{5}_{105} +1 t_x_{5}_{120} = +1 + F_4: +1 t_x_{4}_{0} +1 t_x_{4}_{15} +1 t_x_{4}_{30} +1 t_x_{4}_{45} +1 t_x_{4}_{60} +1 t_x_{4}_{75} +1 t_x_{4}_{90} + +1 t_x_{4}_{105} +1 t_x_{4}_{120} = +1 + F_3: +1 t_x_{3}_{0} +1 t_x_{3}_{15} +1 t_x_{3}_{30} +1 t_x_{3}_{45} +1 t_x_{3}_{60} +1 t_x_{3}_{75} +1 t_x_{3}_{90} + +1 t_x_{3}_{105} +1 t_x_{3}_{120} = +1 + F_2: +1 t_x_{2}_{0} +1 t_x_{2}_{15} +1 t_x_{2}_{30} +1 t_x_{2}_{45} +1 t_x_{2}_{60} +1 t_x_{2}_{75} +1 t_x_{2}_{90} + +1 t_x_{2}_{105} +1 t_x_{2}_{120} = +1 + F_1: +1 t_x_{1}_{0} +1 t_x_{1}_{15} +1 t_x_{1}_{30} +1 t_x_{1}_{45} +1 t_x_{1}_{60} +1 t_x_{1}_{75} +1 t_x_{1}_{90} + +1 t_x_{1}_{105} +1 t_x_{1}_{120} = +1 +Bounds + 0 <= t_x_{1}_{0} <= 1 + 0 <= t_x_{1}_{15} <= 1 + 0 <= t_x_{1}_{30} <= 1 + 0 <= t_x_{1}_{45} <= 1 + 0 <= t_x_{1}_{60} <= 1 + 0 <= t_x_{1}_{75} <= 1 + 0 <= t_x_{1}_{90} <= 1 + 0 <= t_x_{1}_{105} <= 1 + 0 <= t_x_{1}_{120} <= 1 + 0 <= t_x_{2}_{0} <= 1 + 0 <= t_x_{2}_{15} <= 1 + 0 <= t_x_{2}_{30} <= 1 + 0 <= t_x_{2}_{45} <= 1 + 0 <= t_x_{2}_{60} <= 1 + 0 <= t_x_{2}_{75} <= 1 + 0 <= t_x_{2}_{90} <= 1 + 0 <= t_x_{2}_{105} <= 1 + 0 <= t_x_{2}_{120} <= 1 + 0 <= t_x_{3}_{0} <= 1 + 0 <= t_x_{3}_{15} <= 1 + 0 <= t_x_{3}_{30} <= 1 + 0 <= t_x_{3}_{45} <= 1 + 0 <= t_x_{3}_{60} <= 1 + 0 <= t_x_{3}_{75} <= 1 + 0 <= t_x_{3}_{90} <= 1 + 0 <= t_x_{3}_{105} <= 1 + 0 <= t_x_{3}_{120} <= 1 + 0 <= t_x_{4}_{0} <= 1 + 0 <= t_x_{4}_{15} <= 1 + 0 <= t_x_{4}_{30} <= 1 + 0 <= t_x_{4}_{45} <= 1 + 0 <= t_x_{4}_{60} <= 1 + 0 <= t_x_{4}_{75} <= 1 + 0 <= t_x_{4}_{90} <= 1 + 0 <= t_x_{4}_{105} <= 1 + 0 <= t_x_{4}_{120} <= 1 + 0 <= t_x_{5}_{0} <= 1 + 0 <= t_x_{5}_{15} <= 1 + 0 <= t_x_{5}_{30} <= 1 + 0 <= t_x_{5}_{45} <= 1 + 0 <= t_x_{5}_{60} <= 1 + 0 <= t_x_{5}_{75} <= 1 + 0 <= t_x_{5}_{90} <= 1 + 0 <= t_x_{5}_{105} <= 1 + 0 <= t_x_{5}_{120} <= 1 + 0 <= t_x_{6}_{0} <= 1 + 0 <= t_x_{6}_{15} <= 1 + 0 <= t_x_{6}_{30} <= 1 + 0 <= t_x_{6}_{45} <= 1 + 0 <= t_x_{6}_{60} <= 1 + 0 <= t_x_{6}_{75} <= 1 + 0 <= t_x_{6}_{90} <= 1 + 0 <= t_x_{6}_{105} <= 1 + 0 <= t_x_{6}_{120} <= 1 +Binaries + t_x_{1}_{0} t_x_{1}_{15} t_x_{1}_{30} t_x_{1}_{45} t_x_{1}_{60} t_x_{1}_{75} t_x_{1}_{90} t_x_{1}_{105} + t_x_{1}_{120} t_x_{2}_{0} t_x_{2}_{15} t_x_{2}_{30} t_x_{2}_{45} t_x_{2}_{60} t_x_{2}_{75} t_x_{2}_{90} + t_x_{2}_{105} t_x_{2}_{120} t_x_{3}_{0} t_x_{3}_{15} t_x_{3}_{30} t_x_{3}_{45} t_x_{3}_{60} t_x_{3}_{75} + t_x_{3}_{90} t_x_{3}_{105} t_x_{3}_{120} t_x_{4}_{0} t_x_{4}_{15} t_x_{4}_{30} t_x_{4}_{45} t_x_{4}_{60} + t_x_{4}_{75} t_x_{4}_{90} t_x_{4}_{105} t_x_{4}_{120} t_x_{5}_{0} t_x_{5}_{15} t_x_{5}_{30} t_x_{5}_{45} + t_x_{5}_{60} t_x_{5}_{75} t_x_{5}_{90} t_x_{5}_{105} t_x_{5}_{120} t_x_{6}_{0} t_x_{6}_{15} t_x_{6}_{30} + t_x_{6}_{45} t_x_{6}_{60} t_x_{6}_{75} t_x_{6}_{90} t_x_{6}_{105} t_x_{6}_{120} +End +\ SCIP STATISTICS +\ Problem name : data/6f4s.lp_relaxscip +\ Variables : 54 (54 binary, 0 integer, 0 implicit integer, 0 continuous) +\ Constraints : 6 +Minimize + Obj: +23.0833333333333 t_x_{1}_{0} +21.8333333333333 t_x_{1}_{15} +30 t_x_{1}_{30} +45 t_x_{1}_{45} +60 t_x_{1}_{60} + +75 t_x_{1}_{75} +90 t_x_{1}_{90} +105 t_x_{1}_{105} +120 t_x_{1}_{120} +22.0833333333333 t_x_{2}_{0} + +21.8333333333333 t_x_{2}_{15} +30 t_x_{2}_{30} +45 t_x_{2}_{45} +60 t_x_{2}_{60} +75 t_x_{2}_{75} + +90 t_x_{2}_{90} +105 t_x_{2}_{105} +120 t_x_{2}_{120} +31.6666666666667 t_x_{3}_{0} +25.1666666666667 t_x_{3}_{15} + +30 t_x_{3}_{30} +45 t_x_{3}_{45} +60 t_x_{3}_{60} +75 t_x_{3}_{75} +90 t_x_{3}_{90} +105 t_x_{3}_{105} + +120 t_x_{3}_{120} +31.6666666666667 t_x_{4}_{0} +25.1666666666667 t_x_{4}_{15} +30 t_x_{4}_{30} + +45 t_x_{4}_{45} +60 t_x_{4}_{60} +75 t_x_{4}_{75} +90 t_x_{4}_{90} +105 t_x_{4}_{105} +120 t_x_{4}_{120} + +31.6666666666667 t_x_{5}_{0} +25.1666666666667 t_x_{5}_{15} +30 t_x_{5}_{30} +45 t_x_{5}_{45} +60 t_x_{5}_{60} + +75 t_x_{5}_{75} +90 t_x_{5}_{90} +105 t_x_{5}_{105} +120 t_x_{5}_{120} +15.8333333333333 t_x_{6}_{0} + +20.0833333333333 t_x_{6}_{15} +30 t_x_{6}_{30} +45 t_x_{6}_{45} +60 t_x_{6}_{60} +75 t_x_{6}_{75} + +90 t_x_{6}_{90} +105 t_x_{6}_{105} +120 t_x_{6}_{120} -70.75 +Subject to + F_6: +1 t_x_{6}_{0} +1 t_x_{6}_{15} +1 t_x_{6}_{30} +1 t_x_{6}_{45} +1 t_x_{6}_{60} +1 t_x_{6}_{75} +1 t_x_{6}_{90} + +1 t_x_{6}_{105} +1 t_x_{6}_{120} = +1 + F_5: +1 t_x_{5}_{0} +1 t_x_{5}_{15} +1 t_x_{5}_{30} +1 t_x_{5}_{45} +1 t_x_{5}_{60} +1 t_x_{5}_{75} +1 t_x_{5}_{90} + +1 t_x_{5}_{105} +1 t_x_{5}_{120} = +1 + F_4: +1 t_x_{4}_{0} +1 t_x_{4}_{15} +1 t_x_{4}_{30} +1 t_x_{4}_{45} +1 t_x_{4}_{60} +1 t_x_{4}_{75} +1 t_x_{4}_{90} + +1 t_x_{4}_{105} +1 t_x_{4}_{120} = +1 + F_3: +1 t_x_{3}_{0} +1 t_x_{3}_{15} +1 t_x_{3}_{30} +1 t_x_{3}_{45} +1 t_x_{3}_{60} +1 t_x_{3}_{75} +1 t_x_{3}_{90} + +1 t_x_{3}_{105} +1 t_x_{3}_{120} = +1 + F_2: +1 t_x_{2}_{0} +1 t_x_{2}_{15} +1 t_x_{2}_{30} +1 t_x_{2}_{45} +1 t_x_{2}_{60} +1 t_x_{2}_{75} +1 t_x_{2}_{90} + +1 t_x_{2}_{105} +1 t_x_{2}_{120} = +1 + F_1: +1 t_x_{1}_{0} +1 t_x_{1}_{15} +1 t_x_{1}_{30} +1 t_x_{1}_{45} +1 t_x_{1}_{60} +1 t_x_{1}_{75} +1 t_x_{1}_{90} + +1 t_x_{1}_{105} +1 t_x_{1}_{120} = +1 +Bounds + 0 <= t_x_{1}_{0} <= 1 + 0 <= t_x_{1}_{15} <= 1 + 0 <= t_x_{1}_{30} <= 1 + 0 <= t_x_{1}_{45} <= 1 + 0 <= t_x_{1}_{60} <= 1 + 0 <= t_x_{1}_{75} <= 1 + 0 <= t_x_{1}_{90} <= 1 + 0 <= t_x_{1}_{105} <= 1 + 0 <= t_x_{1}_{120} <= 1 + 0 <= t_x_{2}_{0} <= 1 + 0 <= t_x_{2}_{15} <= 1 + 0 <= t_x_{2}_{30} <= 1 + 0 <= t_x_{2}_{45} <= 1 + 0 <= t_x_{2}_{60} <= 1 + 0 <= t_x_{2}_{75} <= 1 + 0 <= t_x_{2}_{90} <= 1 + 0 <= t_x_{2}_{105} <= 1 + 0 <= t_x_{2}_{120} <= 1 + 0 <= t_x_{3}_{0} <= 1 + 0 <= t_x_{3}_{15} <= 1 + 0 <= t_x_{3}_{30} <= 1 + 0 <= t_x_{3}_{45} <= 1 + 0 <= t_x_{3}_{60} <= 1 + 0 <= t_x_{3}_{75} <= 1 + 0 <= t_x_{3}_{90} <= 1 + 0 <= t_x_{3}_{105} <= 1 + 0 <= t_x_{3}_{120} <= 1 + 0 <= t_x_{4}_{0} <= 1 + 0 <= t_x_{4}_{15} <= 1 + 0 <= t_x_{4}_{30} <= 1 + 0 <= t_x_{4}_{45} <= 1 + 0 <= t_x_{4}_{60} <= 1 + 0 <= t_x_{4}_{75} <= 1 + 0 <= t_x_{4}_{90} <= 1 + 0 <= t_x_{4}_{105} <= 1 + 0 <= t_x_{4}_{120} <= 1 + 0 <= t_x_{5}_{0} <= 1 + 0 <= t_x_{5}_{15} <= 1 + 0 <= t_x_{5}_{30} <= 1 + 0 <= t_x_{5}_{45} <= 1 + 0 <= t_x_{5}_{60} <= 1 + 0 <= t_x_{5}_{75} <= 1 + 0 <= t_x_{5}_{90} <= 1 + 0 <= t_x_{5}_{105} <= 1 + 0 <= t_x_{5}_{120} <= 1 + 0 <= t_x_{6}_{0} <= 1 + 0 <= t_x_{6}_{15} <= 1 + 0 <= t_x_{6}_{30} <= 1 + 0 <= t_x_{6}_{45} <= 1 + 0 <= t_x_{6}_{60} <= 1 + 0 <= t_x_{6}_{75} <= 1 + 0 <= t_x_{6}_{90} <= 1 + 0 <= t_x_{6}_{105} <= 1 + 0 <= t_x_{6}_{120} <= 1 +Binaries + t_x_{1}_{0} t_x_{1}_{15} t_x_{1}_{30} t_x_{1}_{45} t_x_{1}_{60} t_x_{1}_{75} t_x_{1}_{90} t_x_{1}_{105} + t_x_{1}_{120} t_x_{2}_{0} t_x_{2}_{15} t_x_{2}_{30} t_x_{2}_{45} t_x_{2}_{60} t_x_{2}_{75} t_x_{2}_{90} + t_x_{2}_{105} t_x_{2}_{120} t_x_{3}_{0} t_x_{3}_{15} t_x_{3}_{30} t_x_{3}_{45} t_x_{3}_{60} t_x_{3}_{75} + t_x_{3}_{90} t_x_{3}_{105} t_x_{3}_{120} t_x_{4}_{0} t_x_{4}_{15} t_x_{4}_{30} t_x_{4}_{45} t_x_{4}_{60} + t_x_{4}_{75} t_x_{4}_{90} t_x_{4}_{105} t_x_{4}_{120} t_x_{5}_{0} t_x_{5}_{15} t_x_{5}_{30} t_x_{5}_{45} + t_x_{5}_{60} t_x_{5}_{75} t_x_{5}_{90} t_x_{5}_{105} t_x_{5}_{120} t_x_{6}_{0} t_x_{6}_{15} t_x_{6}_{30} + t_x_{6}_{45} t_x_{6}_{60} t_x_{6}_{75} t_x_{6}_{90} t_x_{6}_{105} t_x_{6}_{120} +End +\ SCIP STATISTICS +\ Problem name : data/6f4s.lp_relaxscip +\ Variables : 54 (54 binary, 0 integer, 0 implicit integer, 0 continuous) +\ Constraints : 6 +Minimize + Obj: +20.85 t_x_{1}_{0} +25.1833333333333 t_x_{1}_{15} +30 t_x_{1}_{30} +45 t_x_{1}_{45} +60 t_x_{1}_{60} + +75 t_x_{1}_{75} +90 t_x_{1}_{90} +105 t_x_{1}_{105} +120 t_x_{1}_{120} +19.85 t_x_{2}_{0} +25.1833333333333 t_x_{2}_{15} + +30 t_x_{2}_{30} +45 t_x_{2}_{45} +60 t_x_{2}_{60} +75 t_x_{2}_{75} +90 t_x_{2}_{90} +105 t_x_{2}_{105} + +120 t_x_{2}_{120} +29.4333333333333 t_x_{3}_{0} +29.6333333333333 t_x_{3}_{15} +30 t_x_{3}_{30} + +45 t_x_{3}_{45} +60 t_x_{3}_{60} +75 t_x_{3}_{75} +90 t_x_{3}_{90} +105 t_x_{3}_{105} +120 t_x_{3}_{120} + +30.55 t_x_{4}_{0} +28.5166666666667 t_x_{4}_{15} +30 t_x_{4}_{30} +45 t_x_{4}_{45} +60 t_x_{4}_{60} + +75 t_x_{4}_{75} +90 t_x_{4}_{90} +105 t_x_{4}_{105} +120 t_x_{4}_{120} +30.55 t_x_{5}_{0} +28.5166666666667 t_x_{5}_{15} + +30 t_x_{5}_{30} +45 t_x_{5}_{45} +60 t_x_{5}_{60} +75 t_x_{5}_{75} +90 t_x_{5}_{90} +105 t_x_{5}_{105} + +120 t_x_{5}_{120} +15.8333333333333 t_x_{6}_{0} +21.2 t_x_{6}_{15} +30 t_x_{6}_{30} +45 t_x_{6}_{45} + +60 t_x_{6}_{60} +75 t_x_{6}_{75} +90 t_x_{6}_{90} +105 t_x_{6}_{105} +120 t_x_{6}_{120} -74.1 +Subject to + F_6: +1 t_x_{6}_{0} +1 t_x_{6}_{15} +1 t_x_{6}_{30} +1 t_x_{6}_{45} +1 t_x_{6}_{60} +1 t_x_{6}_{75} +1 t_x_{6}_{90} + +1 t_x_{6}_{105} +1 t_x_{6}_{120} = +1 + F_5: +1 t_x_{5}_{0} +1 t_x_{5}_{15} +1 t_x_{5}_{30} +1 t_x_{5}_{45} +1 t_x_{5}_{60} +1 t_x_{5}_{75} +1 t_x_{5}_{90} + +1 t_x_{5}_{105} +1 t_x_{5}_{120} = +1 + F_4: +1 t_x_{4}_{0} +1 t_x_{4}_{15} +1 t_x_{4}_{30} +1 t_x_{4}_{45} +1 t_x_{4}_{60} +1 t_x_{4}_{75} +1 t_x_{4}_{90} + +1 t_x_{4}_{105} +1 t_x_{4}_{120} = +1 + F_3: +1 t_x_{3}_{0} +1 t_x_{3}_{15} +1 t_x_{3}_{30} +1 t_x_{3}_{45} +1 t_x_{3}_{60} +1 t_x_{3}_{75} +1 t_x_{3}_{90} + +1 t_x_{3}_{105} +1 t_x_{3}_{120} = +1 + F_2: +1 t_x_{2}_{0} +1 t_x_{2}_{15} +1 t_x_{2}_{30} +1 t_x_{2}_{45} +1 t_x_{2}_{60} +1 t_x_{2}_{75} +1 t_x_{2}_{90} + +1 t_x_{2}_{105} +1 t_x_{2}_{120} = +1 + F_1: +1 t_x_{1}_{0} +1 t_x_{1}_{15} +1 t_x_{1}_{30} +1 t_x_{1}_{45} +1 t_x_{1}_{60} +1 t_x_{1}_{75} +1 t_x_{1}_{90} + +1 t_x_{1}_{105} +1 t_x_{1}_{120} = +1 +Bounds + 0 <= t_x_{1}_{0} <= 1 + 0 <= t_x_{1}_{15} <= 1 + 0 <= t_x_{1}_{30} <= 1 + 0 <= t_x_{1}_{45} <= 1 + 0 <= t_x_{1}_{60} <= 1 + 0 <= t_x_{1}_{75} <= 1 + 0 <= t_x_{1}_{90} <= 1 + 0 <= t_x_{1}_{105} <= 1 + 0 <= t_x_{1}_{120} <= 1 + 0 <= t_x_{2}_{0} <= 1 + 0 <= t_x_{2}_{15} <= 1 + 0 <= t_x_{2}_{30} <= 1 + 0 <= t_x_{2}_{45} <= 1 + 0 <= t_x_{2}_{60} <= 1 + 0 <= t_x_{2}_{75} <= 1 + 0 <= t_x_{2}_{90} <= 1 + 0 <= t_x_{2}_{105} <= 1 + 0 <= t_x_{2}_{120} <= 1 + 0 <= t_x_{3}_{0} <= 1 + 0 <= t_x_{3}_{15} <= 1 + 0 <= t_x_{3}_{30} <= 1 + 0 <= t_x_{3}_{45} <= 1 + 0 <= t_x_{3}_{60} <= 1 + 0 <= t_x_{3}_{75} <= 1 + 0 <= t_x_{3}_{90} <= 1 + 0 <= t_x_{3}_{105} <= 1 + 0 <= t_x_{3}_{120} <= 1 + 0 <= t_x_{4}_{0} <= 1 + 0 <= t_x_{4}_{15} <= 1 + 0 <= t_x_{4}_{30} <= 1 + 0 <= t_x_{4}_{45} <= 1 + 0 <= t_x_{4}_{60} <= 1 + 0 <= t_x_{4}_{75} <= 1 + 0 <= t_x_{4}_{90} <= 1 + 0 <= t_x_{4}_{105} <= 1 + 0 <= t_x_{4}_{120} <= 1 + 0 <= t_x_{5}_{0} <= 1 + 0 <= t_x_{5}_{15} <= 1 + 0 <= t_x_{5}_{30} <= 1 + 0 <= t_x_{5}_{45} <= 1 + 0 <= t_x_{5}_{60} <= 1 + 0 <= t_x_{5}_{75} <= 1 + 0 <= t_x_{5}_{90} <= 1 + 0 <= t_x_{5}_{105} <= 1 + 0 <= t_x_{5}_{120} <= 1 + 0 <= t_x_{6}_{0} <= 1 + 0 <= t_x_{6}_{15} <= 1 + 0 <= t_x_{6}_{30} <= 1 + 0 <= t_x_{6}_{45} <= 1 + 0 <= t_x_{6}_{60} <= 1 + 0 <= t_x_{6}_{75} <= 1 + 0 <= t_x_{6}_{90} <= 1 + 0 <= t_x_{6}_{105} <= 1 + 0 <= t_x_{6}_{120} <= 1 +Binaries + t_x_{1}_{0} t_x_{1}_{15} t_x_{1}_{30} t_x_{1}_{45} t_x_{1}_{60} t_x_{1}_{75} t_x_{1}_{90} t_x_{1}_{105} + t_x_{1}_{120} t_x_{2}_{0} t_x_{2}_{15} t_x_{2}_{30} t_x_{2}_{45} t_x_{2}_{60} t_x_{2}_{75} t_x_{2}_{90} + t_x_{2}_{105} t_x_{2}_{120} t_x_{3}_{0} t_x_{3}_{15} t_x_{3}_{30} t_x_{3}_{45} t_x_{3}_{60} t_x_{3}_{75} + t_x_{3}_{90} t_x_{3}_{105} t_x_{3}_{120} t_x_{4}_{0} t_x_{4}_{15} t_x_{4}_{30} t_x_{4}_{45} t_x_{4}_{60} + t_x_{4}_{75} t_x_{4}_{90} t_x_{4}_{105} t_x_{4}_{120} t_x_{5}_{0} t_x_{5}_{15} t_x_{5}_{30} t_x_{5}_{45} + t_x_{5}_{60} t_x_{5}_{75} t_x_{5}_{90} t_x_{5}_{105} t_x_{5}_{120} t_x_{6}_{0} t_x_{6}_{15} t_x_{6}_{30} + t_x_{6}_{45} t_x_{6}_{60} t_x_{6}_{75} t_x_{6}_{90} t_x_{6}_{105} t_x_{6}_{120} +End +\ SCIP STATISTICS +\ Problem name : data/6f4s.lp_relaxscip +\ Variables : 54 (54 binary, 0 integer, 0 implicit integer, 0 continuous) +\ Constraints : 6 +Minimize + Obj: +22.8888888888889 t_x_{1}_{0} +24.1638888888889 t_x_{1}_{15} +30 t_x_{1}_{30} +45 t_x_{1}_{45} +60 t_x_{1}_{60} + +75 t_x_{1}_{75} +90 t_x_{1}_{90} +105 t_x_{1}_{105} +120 t_x_{1}_{120} +21.8888888888889 t_x_{2}_{0} + +24.1638888888889 t_x_{2}_{15} +30 t_x_{2}_{30} +45 t_x_{2}_{45} +60 t_x_{2}_{60} +75 t_x_{2}_{75} + +90 t_x_{2}_{90} +105 t_x_{2}_{105} +120 t_x_{2}_{120} +31.4722222222222 t_x_{3}_{0} +29.6333333333333 t_x_{3}_{15} + +30 t_x_{3}_{30} +45 t_x_{3}_{45} +60 t_x_{3}_{60} +75 t_x_{3}_{75} +90 t_x_{3}_{90} +105 t_x_{3}_{105} + +120 t_x_{3}_{120} +31.5694444444444 t_x_{4}_{0} +29.5361111111111 t_x_{4}_{15} +30 t_x_{4}_{30} + +45 t_x_{4}_{45} +60 t_x_{4}_{60} +75 t_x_{4}_{75} +90 t_x_{4}_{90} +105 t_x_{4}_{105} +120 t_x_{4}_{120} + +31.5694444444444 t_x_{5}_{0} +29.5361111111111 t_x_{5}_{15} +30 t_x_{5}_{30} +45 t_x_{5}_{45} +60 t_x_{5}_{60} + +75 t_x_{5}_{75} +90 t_x_{5}_{90} +105 t_x_{5}_{105} +120 t_x_{5}_{120} +15.8333333333333 t_x_{6}_{0} + +22.2194444444444 t_x_{6}_{15} +30 t_x_{6}_{30} +45 t_x_{6}_{45} +60 t_x_{6}_{60} +75 t_x_{6}_{75} + +90 t_x_{6}_{90} +105 t_x_{6}_{105} +120 t_x_{6}_{120} -77.1583333333333 +Subject to + F_6: +1 t_x_{6}_{0} +1 t_x_{6}_{15} +1 t_x_{6}_{30} +1 t_x_{6}_{45} +1 t_x_{6}_{60} +1 t_x_{6}_{75} +1 t_x_{6}_{90} + +1 t_x_{6}_{105} +1 t_x_{6}_{120} = +1 + F_5: +1 t_x_{5}_{0} +1 t_x_{5}_{15} +1 t_x_{5}_{30} +1 t_x_{5}_{45} +1 t_x_{5}_{60} +1 t_x_{5}_{75} +1 t_x_{5}_{90} + +1 t_x_{5}_{105} +1 t_x_{5}_{120} = +1 + F_4: +1 t_x_{4}_{0} +1 t_x_{4}_{15} +1 t_x_{4}_{30} +1 t_x_{4}_{45} +1 t_x_{4}_{60} +1 t_x_{4}_{75} +1 t_x_{4}_{90} + +1 t_x_{4}_{105} +1 t_x_{4}_{120} = +1 + F_3: +1 t_x_{3}_{0} +1 t_x_{3}_{15} +1 t_x_{3}_{30} +1 t_x_{3}_{45} +1 t_x_{3}_{60} +1 t_x_{3}_{75} +1 t_x_{3}_{90} + +1 t_x_{3}_{105} +1 t_x_{3}_{120} = +1 + F_2: +1 t_x_{2}_{0} +1 t_x_{2}_{15} +1 t_x_{2}_{30} +1 t_x_{2}_{45} +1 t_x_{2}_{60} +1 t_x_{2}_{75} +1 t_x_{2}_{90} + +1 t_x_{2}_{105} +1 t_x_{2}_{120} = +1 + F_1: +1 t_x_{1}_{0} +1 t_x_{1}_{15} +1 t_x_{1}_{30} +1 t_x_{1}_{45} +1 t_x_{1}_{60} +1 t_x_{1}_{75} +1 t_x_{1}_{90} + +1 t_x_{1}_{105} +1 t_x_{1}_{120} = +1 +Bounds + 0 <= t_x_{1}_{0} <= 1 + 0 <= t_x_{1}_{15} <= 1 + 0 <= t_x_{1}_{30} <= 1 + 0 <= t_x_{1}_{45} <= 1 + 0 <= t_x_{1}_{60} <= 1 + 0 <= t_x_{1}_{75} <= 1 + 0 <= t_x_{1}_{90} <= 1 + 0 <= t_x_{1}_{105} <= 1 + 0 <= t_x_{1}_{120} <= 1 + 0 <= t_x_{2}_{0} <= 1 + 0 <= t_x_{2}_{15} <= 1 + 0 <= t_x_{2}_{30} <= 1 + 0 <= t_x_{2}_{45} <= 1 + 0 <= t_x_{2}_{60} <= 1 + 0 <= t_x_{2}_{75} <= 1 + 0 <= t_x_{2}_{90} <= 1 + 0 <= t_x_{2}_{105} <= 1 + 0 <= t_x_{2}_{120} <= 1 + 0 <= t_x_{3}_{0} <= 1 + 0 <= t_x_{3}_{15} <= 1 + 0 <= t_x_{3}_{30} <= 1 + 0 <= t_x_{3}_{45} <= 1 + 0 <= t_x_{3}_{60} <= 1 + 0 <= t_x_{3}_{75} <= 1 + 0 <= t_x_{3}_{90} <= 1 + 0 <= t_x_{3}_{105} <= 1 + 0 <= t_x_{3}_{120} <= 1 + 0 <= t_x_{4}_{0} <= 1 + 0 <= t_x_{4}_{15} <= 1 + 0 <= t_x_{4}_{30} <= 1 + 0 <= t_x_{4}_{45} <= 1 + 0 <= t_x_{4}_{60} <= 1 + 0 <= t_x_{4}_{75} <= 1 + 0 <= t_x_{4}_{90} <= 1 + 0 <= t_x_{4}_{105} <= 1 + 0 <= t_x_{4}_{120} <= 1 + 0 <= t_x_{5}_{0} <= 1 + 0 <= t_x_{5}_{15} <= 1 + 0 <= t_x_{5}_{30} <= 1 + 0 <= t_x_{5}_{45} <= 1 + 0 <= t_x_{5}_{60} <= 1 + 0 <= t_x_{5}_{75} <= 1 + 0 <= t_x_{5}_{90} <= 1 + 0 <= t_x_{5}_{105} <= 1 + 0 <= t_x_{5}_{120} <= 1 + 0 <= t_x_{6}_{0} <= 1 + 0 <= t_x_{6}_{15} <= 1 + 0 <= t_x_{6}_{30} <= 1 + 0 <= t_x_{6}_{45} <= 1 + 0 <= t_x_{6}_{60} <= 1 + 0 <= t_x_{6}_{75} <= 1 + 0 <= t_x_{6}_{90} <= 1 + 0 <= t_x_{6}_{105} <= 1 + 0 <= t_x_{6}_{120} <= 1 +Binaries + t_x_{1}_{0} t_x_{1}_{15} t_x_{1}_{30} t_x_{1}_{45} t_x_{1}_{60} t_x_{1}_{75} t_x_{1}_{90} t_x_{1}_{105} + t_x_{1}_{120} t_x_{2}_{0} t_x_{2}_{15} t_x_{2}_{30} t_x_{2}_{45} t_x_{2}_{60} t_x_{2}_{75} t_x_{2}_{90} + t_x_{2}_{105} t_x_{2}_{120} t_x_{3}_{0} t_x_{3}_{15} t_x_{3}_{30} t_x_{3}_{45} t_x_{3}_{60} t_x_{3}_{75} + t_x_{3}_{90} t_x_{3}_{105} t_x_{3}_{120} t_x_{4}_{0} t_x_{4}_{15} t_x_{4}_{30} t_x_{4}_{45} t_x_{4}_{60} + t_x_{4}_{75} t_x_{4}_{90} t_x_{4}_{105} t_x_{4}_{120} t_x_{5}_{0} t_x_{5}_{15} t_x_{5}_{30} t_x_{5}_{45} + t_x_{5}_{60} t_x_{5}_{75} t_x_{5}_{90} t_x_{5}_{105} t_x_{5}_{120} t_x_{6}_{0} t_x_{6}_{15} t_x_{6}_{30} + t_x_{6}_{45} t_x_{6}_{60} t_x_{6}_{75} t_x_{6}_{90} t_x_{6}_{105} t_x_{6}_{120} +End +\ SCIP STATISTICS +\ Problem name : data/6f4s.lp_relaxscip +\ Variables : 54 (54 binary, 0 integer, 0 implicit integer, 0 continuous) +\ Constraints : 6 +Minimize + Obj: +23.8916666666667 t_x_{1}_{0} +24.1638888888889 t_x_{1}_{15} +30 t_x_{1}_{30} +45 t_x_{1}_{45} +60 t_x_{1}_{60} + +75 t_x_{1}_{75} +90 t_x_{1}_{90} +105 t_x_{1}_{105} +120 t_x_{1}_{120} +22.8916666666667 t_x_{2}_{0} + +24.1638888888889 t_x_{2}_{15} +30 t_x_{2}_{30} +45 t_x_{2}_{45} +60 t_x_{2}_{60} +75 t_x_{2}_{75} + +90 t_x_{2}_{90} +105 t_x_{2}_{105} +120 t_x_{2}_{120} +31.4722222222222 t_x_{3}_{0} +31.6388888888889 t_x_{3}_{15} + +30 t_x_{3}_{30} +45 t_x_{3}_{45} +60 t_x_{3}_{60} +75 t_x_{3}_{75} +90 t_x_{3}_{90} +105 t_x_{3}_{105} + +120 t_x_{3}_{120} +31.5694444444444 t_x_{4}_{0} +31.5416666666667 t_x_{4}_{15} +30 t_x_{4}_{30} + +45 t_x_{4}_{45} +60 t_x_{4}_{60} +75 t_x_{4}_{75} +90 t_x_{4}_{90} +105 t_x_{4}_{105} +120 t_x_{4}_{120} + +31.5694444444444 t_x_{5}_{0} +31.5416666666667 t_x_{5}_{15} +30 t_x_{5}_{30} +45 t_x_{5}_{45} +60 t_x_{5}_{60} + +75 t_x_{5}_{75} +90 t_x_{5}_{90} +105 t_x_{5}_{105} +120 t_x_{5}_{120} +15.8333333333333 t_x_{6}_{0} + +23.2222222222222 t_x_{6}_{15} +30 t_x_{6}_{30} +45 t_x_{6}_{45} +60 t_x_{6}_{60} +75 t_x_{6}_{75} + +90 t_x_{6}_{90} +105 t_x_{6}_{105} +120 t_x_{6}_{120} -80.1666666666667 +Subject to + F_6: +1 t_x_{6}_{0} +1 t_x_{6}_{15} +1 t_x_{6}_{30} +1 t_x_{6}_{45} +1 t_x_{6}_{60} +1 t_x_{6}_{75} +1 t_x_{6}_{90} + +1 t_x_{6}_{105} +1 t_x_{6}_{120} = +1 + F_5: +1 t_x_{5}_{0} +1 t_x_{5}_{15} +1 t_x_{5}_{30} +1 t_x_{5}_{45} +1 t_x_{5}_{60} +1 t_x_{5}_{75} +1 t_x_{5}_{90} + +1 t_x_{5}_{105} +1 t_x_{5}_{120} = +1 + F_4: +1 t_x_{4}_{0} +1 t_x_{4}_{15} +1 t_x_{4}_{30} +1 t_x_{4}_{45} +1 t_x_{4}_{60} +1 t_x_{4}_{75} +1 t_x_{4}_{90} + +1 t_x_{4}_{105} +1 t_x_{4}_{120} = +1 + F_3: +1 t_x_{3}_{0} +1 t_x_{3}_{15} +1 t_x_{3}_{30} +1 t_x_{3}_{45} +1 t_x_{3}_{60} +1 t_x_{3}_{75} +1 t_x_{3}_{90} + +1 t_x_{3}_{105} +1 t_x_{3}_{120} = +1 + F_2: +1 t_x_{2}_{0} +1 t_x_{2}_{15} +1 t_x_{2}_{30} +1 t_x_{2}_{45} +1 t_x_{2}_{60} +1 t_x_{2}_{75} +1 t_x_{2}_{90} + +1 t_x_{2}_{105} +1 t_x_{2}_{120} = +1 + F_1: +1 t_x_{1}_{0} +1 t_x_{1}_{15} +1 t_x_{1}_{30} +1 t_x_{1}_{45} +1 t_x_{1}_{60} +1 t_x_{1}_{75} +1 t_x_{1}_{90} + +1 t_x_{1}_{105} +1 t_x_{1}_{120} = +1 +Bounds + 0 <= t_x_{1}_{0} <= 1 + 0 <= t_x_{1}_{15} <= 1 + 0 <= t_x_{1}_{30} <= 1 + 0 <= t_x_{1}_{45} <= 1 + 0 <= t_x_{1}_{60} <= 1 + 0 <= t_x_{1}_{75} <= 1 + 0 <= t_x_{1}_{90} <= 1 + 0 <= t_x_{1}_{105} <= 1 + 0 <= t_x_{1}_{120} <= 1 + 0 <= t_x_{2}_{0} <= 1 + 0 <= t_x_{2}_{15} <= 1 + 0 <= t_x_{2}_{30} <= 1 + 0 <= t_x_{2}_{45} <= 1 + 0 <= t_x_{2}_{60} <= 1 + 0 <= t_x_{2}_{75} <= 1 + 0 <= t_x_{2}_{90} <= 1 + 0 <= t_x_{2}_{105} <= 1 + 0 <= t_x_{2}_{120} <= 1 + 0 <= t_x_{3}_{0} <= 1 + 0 <= t_x_{3}_{15} <= 1 + 0 <= t_x_{3}_{30} <= 1 + 0 <= t_x_{3}_{45} <= 1 + 0 <= t_x_{3}_{60} <= 1 + 0 <= t_x_{3}_{75} <= 1 + 0 <= t_x_{3}_{90} <= 1 + 0 <= t_x_{3}_{105} <= 1 + 0 <= t_x_{3}_{120} <= 1 + 0 <= t_x_{4}_{0} <= 1 + 0 <= t_x_{4}_{15} <= 1 + 0 <= t_x_{4}_{30} <= 1 + 0 <= t_x_{4}_{45} <= 1 + 0 <= t_x_{4}_{60} <= 1 + 0 <= t_x_{4}_{75} <= 1 + 0 <= t_x_{4}_{90} <= 1 + 0 <= t_x_{4}_{105} <= 1 + 0 <= t_x_{4}_{120} <= 1 + 0 <= t_x_{5}_{0} <= 1 + 0 <= t_x_{5}_{15} <= 1 + 0 <= t_x_{5}_{30} <= 1 + 0 <= t_x_{5}_{45} <= 1 + 0 <= t_x_{5}_{60} <= 1 + 0 <= t_x_{5}_{75} <= 1 + 0 <= t_x_{5}_{90} <= 1 + 0 <= t_x_{5}_{105} <= 1 + 0 <= t_x_{5}_{120} <= 1 + 0 <= t_x_{6}_{0} <= 1 + 0 <= t_x_{6}_{15} <= 1 + 0 <= t_x_{6}_{30} <= 1 + 0 <= t_x_{6}_{45} <= 1 + 0 <= t_x_{6}_{60} <= 1 + 0 <= t_x_{6}_{75} <= 1 + 0 <= t_x_{6}_{90} <= 1 + 0 <= t_x_{6}_{105} <= 1 + 0 <= t_x_{6}_{120} <= 1 +Binaries + t_x_{1}_{0} t_x_{1}_{15} t_x_{1}_{30} t_x_{1}_{45} t_x_{1}_{60} t_x_{1}_{75} t_x_{1}_{90} t_x_{1}_{105} + t_x_{1}_{120} t_x_{2}_{0} t_x_{2}_{15} t_x_{2}_{30} t_x_{2}_{45} t_x_{2}_{60} t_x_{2}_{75} t_x_{2}_{90} + t_x_{2}_{105} t_x_{2}_{120} t_x_{3}_{0} t_x_{3}_{15} t_x_{3}_{30} t_x_{3}_{45} t_x_{3}_{60} t_x_{3}_{75} + t_x_{3}_{90} t_x_{3}_{105} t_x_{3}_{120} t_x_{4}_{0} t_x_{4}_{15} t_x_{4}_{30} t_x_{4}_{45} t_x_{4}_{60} + t_x_{4}_{75} t_x_{4}_{90} t_x_{4}_{105} t_x_{4}_{120} t_x_{5}_{0} t_x_{5}_{15} t_x_{5}_{30} t_x_{5}_{45} + t_x_{5}_{60} t_x_{5}_{75} t_x_{5}_{90} t_x_{5}_{105} t_x_{5}_{120} t_x_{6}_{0} t_x_{6}_{15} t_x_{6}_{30} + t_x_{6}_{45} t_x_{6}_{60} t_x_{6}_{75} t_x_{6}_{90} t_x_{6}_{105} t_x_{6}_{120} +End +\ SCIP STATISTICS +\ Problem name : data/6f4s.lp_relaxscip +\ Variables : 54 (54 binary, 0 integer, 0 implicit integer, 0 continuous) +\ Constraints : 6 +Minimize + Obj: +24.8920138888889 t_x_{1}_{0} +22.3190972222222 t_x_{1}_{15} +31.0003472222222 t_x_{1}_{30} +45 t_x_{1}_{45} + +60 t_x_{1}_{60} +75 t_x_{1}_{75} +90 t_x_{1}_{90} +105 t_x_{1}_{105} +120 t_x_{1}_{120} +23.8920138888889 t_x_{2}_{0} + +22.3190972222222 t_x_{2}_{15} +31.0003472222222 t_x_{2}_{30} +45 t_x_{2}_{45} +60 t_x_{2}_{60} + +75 t_x_{2}_{75} +90 t_x_{2}_{90} +105 t_x_{2}_{105} +120 t_x_{2}_{120} +31.4722222222222 t_x_{3}_{0} + +29.6381944444444 t_x_{3}_{15} +32.0006944444444 t_x_{3}_{30} +45 t_x_{3}_{45} +60 t_x_{3}_{60} + +75 t_x_{3}_{75} +90 t_x_{3}_{90} +105 t_x_{3}_{105} +120 t_x_{3}_{120} +31.5694444444444 t_x_{4}_{0} + +29.5409722222222 t_x_{4}_{15} +32.0006944444444 t_x_{4}_{30} +45 t_x_{4}_{45} +60 t_x_{4}_{60} + +75 t_x_{4}_{75} +90 t_x_{4}_{90} +105 t_x_{4}_{105} +120 t_x_{4}_{120} +31.5694444444444 t_x_{5}_{0} + +29.5409722222222 t_x_{5}_{15} +32.0006944444444 t_x_{5}_{30} +45 t_x_{5}_{45} +60 t_x_{5}_{60} + +75 t_x_{5}_{75} +90 t_x_{5}_{90} +105 t_x_{5}_{105} +120 t_x_{5}_{120} +15.8333333333333 t_x_{6}_{0} + +22.221875 t_x_{6}_{15} +31.0003472222222 t_x_{6}_{30} +45 t_x_{6}_{45} +60 t_x_{6}_{60} +75 t_x_{6}_{75} + +90 t_x_{6}_{90} +105 t_x_{6}_{105} +120 t_x_{6}_{120} -80.3225694444444 +Subject to + F_6: +1 t_x_{6}_{0} +1 t_x_{6}_{15} +1 t_x_{6}_{30} +1 t_x_{6}_{45} +1 t_x_{6}_{60} +1 t_x_{6}_{75} +1 t_x_{6}_{90} + +1 t_x_{6}_{105} +1 t_x_{6}_{120} = +1 + F_5: +1 t_x_{5}_{0} +1 t_x_{5}_{15} +1 t_x_{5}_{30} +1 t_x_{5}_{45} +1 t_x_{5}_{60} +1 t_x_{5}_{75} +1 t_x_{5}_{90} + +1 t_x_{5}_{105} +1 t_x_{5}_{120} = +1 + F_4: +1 t_x_{4}_{0} +1 t_x_{4}_{15} +1 t_x_{4}_{30} +1 t_x_{4}_{45} +1 t_x_{4}_{60} +1 t_x_{4}_{75} +1 t_x_{4}_{90} + +1 t_x_{4}_{105} +1 t_x_{4}_{120} = +1 + F_3: +1 t_x_{3}_{0} +1 t_x_{3}_{15} +1 t_x_{3}_{30} +1 t_x_{3}_{45} +1 t_x_{3}_{60} +1 t_x_{3}_{75} +1 t_x_{3}_{90} + +1 t_x_{3}_{105} +1 t_x_{3}_{120} = +1 + F_2: +1 t_x_{2}_{0} +1 t_x_{2}_{15} +1 t_x_{2}_{30} +1 t_x_{2}_{45} +1 t_x_{2}_{60} +1 t_x_{2}_{75} +1 t_x_{2}_{90} + +1 t_x_{2}_{105} +1 t_x_{2}_{120} = +1 + F_1: +1 t_x_{1}_{0} +1 t_x_{1}_{15} +1 t_x_{1}_{30} +1 t_x_{1}_{45} +1 t_x_{1}_{60} +1 t_x_{1}_{75} +1 t_x_{1}_{90} + +1 t_x_{1}_{105} +1 t_x_{1}_{120} = +1 +Bounds + 0 <= t_x_{1}_{0} <= 1 + 0 <= t_x_{1}_{15} <= 1 + 0 <= t_x_{1}_{30} <= 1 + 0 <= t_x_{1}_{45} <= 1 + 0 <= t_x_{1}_{60} <= 1 + 0 <= t_x_{1}_{75} <= 1 + 0 <= t_x_{1}_{90} <= 1 + 0 <= t_x_{1}_{105} <= 1 + 0 <= t_x_{1}_{120} <= 1 + 0 <= t_x_{2}_{0} <= 1 + 0 <= t_x_{2}_{15} <= 1 + 0 <= t_x_{2}_{30} <= 1 + 0 <= t_x_{2}_{45} <= 1 + 0 <= t_x_{2}_{60} <= 1 + 0 <= t_x_{2}_{75} <= 1 + 0 <= t_x_{2}_{90} <= 1 + 0 <= t_x_{2}_{105} <= 1 + 0 <= t_x_{2}_{120} <= 1 + 0 <= t_x_{3}_{0} <= 1 + 0 <= t_x_{3}_{15} <= 1 + 0 <= t_x_{3}_{30} <= 1 + 0 <= t_x_{3}_{45} <= 1 + 0 <= t_x_{3}_{60} <= 1 + 0 <= t_x_{3}_{75} <= 1 + 0 <= t_x_{3}_{90} <= 1 + 0 <= t_x_{3}_{105} <= 1 + 0 <= t_x_{3}_{120} <= 1 + 0 <= t_x_{4}_{0} <= 1 + 0 <= t_x_{4}_{15} <= 1 + 0 <= t_x_{4}_{30} <= 1 + 0 <= t_x_{4}_{45} <= 1 + 0 <= t_x_{4}_{60} <= 1 + 0 <= t_x_{4}_{75} <= 1 + 0 <= t_x_{4}_{90} <= 1 + 0 <= t_x_{4}_{105} <= 1 + 0 <= t_x_{4}_{120} <= 1 + 0 <= t_x_{5}_{0} <= 1 + 0 <= t_x_{5}_{15} <= 1 + 0 <= t_x_{5}_{30} <= 1 + 0 <= t_x_{5}_{45} <= 1 + 0 <= t_x_{5}_{60} <= 1 + 0 <= t_x_{5}_{75} <= 1 + 0 <= t_x_{5}_{90} <= 1 + 0 <= t_x_{5}_{105} <= 1 + 0 <= t_x_{5}_{120} <= 1 + 0 <= t_x_{6}_{0} <= 1 + 0 <= t_x_{6}_{15} <= 1 + 0 <= t_x_{6}_{30} <= 1 + 0 <= t_x_{6}_{45} <= 1 + 0 <= t_x_{6}_{60} <= 1 + 0 <= t_x_{6}_{75} <= 1 + 0 <= t_x_{6}_{90} <= 1 + 0 <= t_x_{6}_{105} <= 1 + 0 <= t_x_{6}_{120} <= 1 +Binaries + t_x_{1}_{0} t_x_{1}_{15} t_x_{1}_{30} t_x_{1}_{45} t_x_{1}_{60} t_x_{1}_{75} t_x_{1}_{90} t_x_{1}_{105} + t_x_{1}_{120} t_x_{2}_{0} t_x_{2}_{15} t_x_{2}_{30} t_x_{2}_{45} t_x_{2}_{60} t_x_{2}_{75} t_x_{2}_{90} + t_x_{2}_{105} t_x_{2}_{120} t_x_{3}_{0} t_x_{3}_{15} t_x_{3}_{30} t_x_{3}_{45} t_x_{3}_{60} t_x_{3}_{75} + t_x_{3}_{90} t_x_{3}_{105} t_x_{3}_{120} t_x_{4}_{0} t_x_{4}_{15} t_x_{4}_{30} t_x_{4}_{45} t_x_{4}_{60} + t_x_{4}_{75} t_x_{4}_{90} t_x_{4}_{105} t_x_{4}_{120} t_x_{5}_{0} t_x_{5}_{15} t_x_{5}_{30} t_x_{5}_{45} + t_x_{5}_{60} t_x_{5}_{75} t_x_{5}_{90} t_x_{5}_{105} t_x_{5}_{120} t_x_{6}_{0} t_x_{6}_{15} t_x_{6}_{30} + t_x_{6}_{45} t_x_{6}_{60} t_x_{6}_{75} t_x_{6}_{90} t_x_{6}_{105} t_x_{6}_{120} +End +\ SCIP STATISTICS +\ Problem name : data/6f4s.lp_relaxscip +\ Variables : 54 (54 binary, 0 integer, 0 implicit integer, 0 continuous) +\ Constraints : 6 +Minimize + Obj: +22.8919367283951 t_x_{1}_{0} +25.319212962963 t_x_{1}_{15} +30.0003086419753 t_x_{1}_{30} +45 t_x_{1}_{45} + +60 t_x_{1}_{60} +75 t_x_{1}_{75} +90 t_x_{1}_{90} +105 t_x_{1}_{105} +120 t_x_{1}_{120} +21.8919367283951 t_x_{2}_{0} + +25.319212962963 t_x_{2}_{15} +30.0003086419753 t_x_{2}_{30} +45 t_x_{2}_{45} +60 t_x_{2}_{60} +75 t_x_{2}_{75} + +90 t_x_{2}_{90} +105 t_x_{2}_{105} +120 t_x_{2}_{120} +29.4721450617284 t_x_{3}_{0} +33.6383487654321 t_x_{3}_{15} + +30.0006172839506 t_x_{3}_{30} +45 t_x_{3}_{45} +60 t_x_{3}_{60} +75 t_x_{3}_{75} +90 t_x_{3}_{90} + +105 t_x_{3}_{105} +120 t_x_{3}_{120} +30.5694058641975 t_x_{4}_{0} +32.541087962963 t_x_{4}_{15} + +30.0006172839506 t_x_{4}_{30} +45 t_x_{4}_{45} +60 t_x_{4}_{60} +75 t_x_{4}_{75} +90 t_x_{4}_{90} + +105 t_x_{4}_{105} +120 t_x_{4}_{120} +30.5694058641975 t_x_{5}_{0} +32.541087962963 t_x_{5}_{15} + +30.0006172839506 t_x_{5}_{30} +45 t_x_{5}_{45} +60 t_x_{5}_{60} +75 t_x_{5}_{75} +90 t_x_{5}_{90} + +105 t_x_{5}_{105} +120 t_x_{5}_{120} +15.8333333333333 t_x_{6}_{0} +23.2219135802469 t_x_{6}_{15} + +30.0003086419753 t_x_{6}_{30} +45 t_x_{6}_{45} +60 t_x_{6}_{60} +75 t_x_{6}_{75} +90 t_x_{6}_{90} + +105 t_x_{6}_{105} +120 t_x_{6}_{120} -80.3225694444445 +Subject to + F_6: +1 t_x_{6}_{0} +1 t_x_{6}_{15} +1 t_x_{6}_{30} +1 t_x_{6}_{45} +1 t_x_{6}_{60} +1 t_x_{6}_{75} +1 t_x_{6}_{90} + +1 t_x_{6}_{105} +1 t_x_{6}_{120} = +1 + F_5: +1 t_x_{5}_{0} +1 t_x_{5}_{15} +1 t_x_{5}_{30} +1 t_x_{5}_{45} +1 t_x_{5}_{60} +1 t_x_{5}_{75} +1 t_x_{5}_{90} + +1 t_x_{5}_{105} +1 t_x_{5}_{120} = +1 + F_4: +1 t_x_{4}_{0} +1 t_x_{4}_{15} +1 t_x_{4}_{30} +1 t_x_{4}_{45} +1 t_x_{4}_{60} +1 t_x_{4}_{75} +1 t_x_{4}_{90} + +1 t_x_{4}_{105} +1 t_x_{4}_{120} = +1 + F_3: +1 t_x_{3}_{0} +1 t_x_{3}_{15} +1 t_x_{3}_{30} +1 t_x_{3}_{45} +1 t_x_{3}_{60} +1 t_x_{3}_{75} +1 t_x_{3}_{90} + +1 t_x_{3}_{105} +1 t_x_{3}_{120} = +1 + F_2: +1 t_x_{2}_{0} +1 t_x_{2}_{15} +1 t_x_{2}_{30} +1 t_x_{2}_{45} +1 t_x_{2}_{60} +1 t_x_{2}_{75} +1 t_x_{2}_{90} + +1 t_x_{2}_{105} +1 t_x_{2}_{120} = +1 + F_1: +1 t_x_{1}_{0} +1 t_x_{1}_{15} +1 t_x_{1}_{30} +1 t_x_{1}_{45} +1 t_x_{1}_{60} +1 t_x_{1}_{75} +1 t_x_{1}_{90} + +1 t_x_{1}_{105} +1 t_x_{1}_{120} = +1 +Bounds + 0 <= t_x_{1}_{0} <= 1 + 0 <= t_x_{1}_{15} <= 1 + 0 <= t_x_{1}_{30} <= 1 + 0 <= t_x_{1}_{45} <= 1 + 0 <= t_x_{1}_{60} <= 1 + 0 <= t_x_{1}_{75} <= 1 + 0 <= t_x_{1}_{90} <= 1 + 0 <= t_x_{1}_{105} <= 1 + 0 <= t_x_{1}_{120} <= 1 + 0 <= t_x_{2}_{0} <= 1 + 0 <= t_x_{2}_{15} <= 1 + 0 <= t_x_{2}_{30} <= 1 + 0 <= t_x_{2}_{45} <= 1 + 0 <= t_x_{2}_{60} <= 1 + 0 <= t_x_{2}_{75} <= 1 + 0 <= t_x_{2}_{90} <= 1 + 0 <= t_x_{2}_{105} <= 1 + 0 <= t_x_{2}_{120} <= 1 + 0 <= t_x_{3}_{0} <= 1 + 0 <= t_x_{3}_{15} <= 1 + 0 <= t_x_{3}_{30} <= 1 + 0 <= t_x_{3}_{45} <= 1 + 0 <= t_x_{3}_{60} <= 1 + 0 <= t_x_{3}_{75} <= 1 + 0 <= t_x_{3}_{90} <= 1 + 0 <= t_x_{3}_{105} <= 1 + 0 <= t_x_{3}_{120} <= 1 + 0 <= t_x_{4}_{0} <= 1 + 0 <= t_x_{4}_{15} <= 1 + 0 <= t_x_{4}_{30} <= 1 + 0 <= t_x_{4}_{45} <= 1 + 0 <= t_x_{4}_{60} <= 1 + 0 <= t_x_{4}_{75} <= 1 + 0 <= t_x_{4}_{90} <= 1 + 0 <= t_x_{4}_{105} <= 1 + 0 <= t_x_{4}_{120} <= 1 + 0 <= t_x_{5}_{0} <= 1 + 0 <= t_x_{5}_{15} <= 1 + 0 <= t_x_{5}_{30} <= 1 + 0 <= t_x_{5}_{45} <= 1 + 0 <= t_x_{5}_{60} <= 1 + 0 <= t_x_{5}_{75} <= 1 + 0 <= t_x_{5}_{90} <= 1 + 0 <= t_x_{5}_{105} <= 1 + 0 <= t_x_{5}_{120} <= 1 + 0 <= t_x_{6}_{0} <= 1 + 0 <= t_x_{6}_{15} <= 1 + 0 <= t_x_{6}_{30} <= 1 + 0 <= t_x_{6}_{45} <= 1 + 0 <= t_x_{6}_{60} <= 1 + 0 <= t_x_{6}_{75} <= 1 + 0 <= t_x_{6}_{90} <= 1 + 0 <= t_x_{6}_{105} <= 1 + 0 <= t_x_{6}_{120} <= 1 +Binaries + t_x_{1}_{0} t_x_{1}_{15} t_x_{1}_{30} t_x_{1}_{45} t_x_{1}_{60} t_x_{1}_{75} t_x_{1}_{90} t_x_{1}_{105} + t_x_{1}_{120} t_x_{2}_{0} t_x_{2}_{15} t_x_{2}_{30} t_x_{2}_{45} t_x_{2}_{60} t_x_{2}_{75} t_x_{2}_{90} + t_x_{2}_{105} t_x_{2}_{120} t_x_{3}_{0} t_x_{3}_{15} t_x_{3}_{30} t_x_{3}_{45} t_x_{3}_{60} t_x_{3}_{75} + t_x_{3}_{90} t_x_{3}_{105} t_x_{3}_{120} t_x_{4}_{0} t_x_{4}_{15} t_x_{4}_{30} t_x_{4}_{45} t_x_{4}_{60} + t_x_{4}_{75} t_x_{4}_{90} t_x_{4}_{105} t_x_{4}_{120} t_x_{5}_{0} t_x_{5}_{15} t_x_{5}_{30} t_x_{5}_{45} + t_x_{5}_{60} t_x_{5}_{75} t_x_{5}_{90} t_x_{5}_{105} t_x_{5}_{120} t_x_{6}_{0} t_x_{6}_{15} t_x_{6}_{30} + t_x_{6}_{45} t_x_{6}_{60} t_x_{6}_{75} t_x_{6}_{90} t_x_{6}_{105} t_x_{6}_{120} +End +\ SCIP STATISTICS +\ Problem name : data/6f4s.lp_relaxscip +\ Variables : 54 (54 binary, 0 integer, 0 implicit integer, 0 continuous) +\ Constraints : 6 +Minimize + Obj: +24.8919444444444 t_x_{1}_{0} +23.3192052469136 t_x_{1}_{15} +30.0003086419753 t_x_{1}_{30} +45 t_x_{1}_{45} + +60 t_x_{1}_{60} +75 t_x_{1}_{75} +90 t_x_{1}_{90} +105 t_x_{1}_{105} +120 t_x_{1}_{120} +23.8919444444444 t_x_{2}_{0} + +23.3192052469136 t_x_{2}_{15} +30.0003086419753 t_x_{2}_{30} +45 t_x_{2}_{45} +60 t_x_{2}_{60} + +75 t_x_{2}_{75} +90 t_x_{2}_{90} +105 t_x_{2}_{105} +120 t_x_{2}_{120} +31.4721527777778 t_x_{3}_{0} + +31.6383410493827 t_x_{3}_{15} +30.0006172839506 t_x_{3}_{30} +45 t_x_{3}_{45} +60 t_x_{3}_{60} + +75 t_x_{3}_{75} +90 t_x_{3}_{90} +105 t_x_{3}_{105} +120 t_x_{3}_{120} +31.5694097222222 t_x_{4}_{0} + +30.5410802469136 t_x_{4}_{15} +31.0006211419753 t_x_{4}_{30} +45 t_x_{4}_{45} +60 t_x_{4}_{60} + +75 t_x_{4}_{75} +90 t_x_{4}_{90} +105 t_x_{4}_{105} +120 t_x_{4}_{120} +31.5694097222222 t_x_{5}_{0} + +30.5410802469136 t_x_{5}_{15} +31.0006211419753 t_x_{5}_{30} +45 t_x_{5}_{45} +60 t_x_{5}_{60} + +75 t_x_{5}_{75} +90 t_x_{5}_{90} +105 t_x_{5}_{105} +120 t_x_{5}_{120} +15.8333333333333 t_x_{6}_{0} + +22.2219097222222 t_x_{6}_{15} +31.0003125 t_x_{6}_{30} +45 t_x_{6}_{45} +60 t_x_{6}_{60} +75 t_x_{6}_{75} + +90 t_x_{6}_{90} +105 t_x_{6}_{105} +120 t_x_{6}_{120} -80.3225694444444 +Subject to + F_6: +1 t_x_{6}_{0} +1 t_x_{6}_{15} +1 t_x_{6}_{30} +1 t_x_{6}_{45} +1 t_x_{6}_{60} +1 t_x_{6}_{75} +1 t_x_{6}_{90} + +1 t_x_{6}_{105} +1 t_x_{6}_{120} = +1 + F_5: +1 t_x_{5}_{0} +1 t_x_{5}_{15} +1 t_x_{5}_{30} +1 t_x_{5}_{45} +1 t_x_{5}_{60} +1 t_x_{5}_{75} +1 t_x_{5}_{90} + +1 t_x_{5}_{105} +1 t_x_{5}_{120} = +1 + F_4: +1 t_x_{4}_{0} +1 t_x_{4}_{15} +1 t_x_{4}_{30} +1 t_x_{4}_{45} +1 t_x_{4}_{60} +1 t_x_{4}_{75} +1 t_x_{4}_{90} + +1 t_x_{4}_{105} +1 t_x_{4}_{120} = +1 + F_3: +1 t_x_{3}_{0} +1 t_x_{3}_{15} +1 t_x_{3}_{30} +1 t_x_{3}_{45} +1 t_x_{3}_{60} +1 t_x_{3}_{75} +1 t_x_{3}_{90} + +1 t_x_{3}_{105} +1 t_x_{3}_{120} = +1 + F_2: +1 t_x_{2}_{0} +1 t_x_{2}_{15} +1 t_x_{2}_{30} +1 t_x_{2}_{45} +1 t_x_{2}_{60} +1 t_x_{2}_{75} +1 t_x_{2}_{90} + +1 t_x_{2}_{105} +1 t_x_{2}_{120} = +1 + F_1: +1 t_x_{1}_{0} +1 t_x_{1}_{15} +1 t_x_{1}_{30} +1 t_x_{1}_{45} +1 t_x_{1}_{60} +1 t_x_{1}_{75} +1 t_x_{1}_{90} + +1 t_x_{1}_{105} +1 t_x_{1}_{120} = +1 +Bounds + 0 <= t_x_{1}_{0} <= 1 + 0 <= t_x_{1}_{15} <= 1 + 0 <= t_x_{1}_{30} <= 1 + 0 <= t_x_{1}_{45} <= 1 + 0 <= t_x_{1}_{60} <= 1 + 0 <= t_x_{1}_{75} <= 1 + 0 <= t_x_{1}_{90} <= 1 + 0 <= t_x_{1}_{105} <= 1 + 0 <= t_x_{1}_{120} <= 1 + 0 <= t_x_{2}_{0} <= 1 + 0 <= t_x_{2}_{15} <= 1 + 0 <= t_x_{2}_{30} <= 1 + 0 <= t_x_{2}_{45} <= 1 + 0 <= t_x_{2}_{60} <= 1 + 0 <= t_x_{2}_{75} <= 1 + 0 <= t_x_{2}_{90} <= 1 + 0 <= t_x_{2}_{105} <= 1 + 0 <= t_x_{2}_{120} <= 1 + 0 <= t_x_{3}_{0} <= 1 + 0 <= t_x_{3}_{15} <= 1 + 0 <= t_x_{3}_{30} <= 1 + 0 <= t_x_{3}_{45} <= 1 + 0 <= t_x_{3}_{60} <= 1 + 0 <= t_x_{3}_{75} <= 1 + 0 <= t_x_{3}_{90} <= 1 + 0 <= t_x_{3}_{105} <= 1 + 0 <= t_x_{3}_{120} <= 1 + 0 <= t_x_{4}_{0} <= 1 + 0 <= t_x_{4}_{15} <= 1 + 0 <= t_x_{4}_{30} <= 1 + 0 <= t_x_{4}_{45} <= 1 + 0 <= t_x_{4}_{60} <= 1 + 0 <= t_x_{4}_{75} <= 1 + 0 <= t_x_{4}_{90} <= 1 + 0 <= t_x_{4}_{105} <= 1 + 0 <= t_x_{4}_{120} <= 1 + 0 <= t_x_{5}_{0} <= 1 + 0 <= t_x_{5}_{15} <= 1 + 0 <= t_x_{5}_{30} <= 1 + 0 <= t_x_{5}_{45} <= 1 + 0 <= t_x_{5}_{60} <= 1 + 0 <= t_x_{5}_{75} <= 1 + 0 <= t_x_{5}_{90} <= 1 + 0 <= t_x_{5}_{105} <= 1 + 0 <= t_x_{5}_{120} <= 1 + 0 <= t_x_{6}_{0} <= 1 + 0 <= t_x_{6}_{15} <= 1 + 0 <= t_x_{6}_{30} <= 1 + 0 <= t_x_{6}_{45} <= 1 + 0 <= t_x_{6}_{60} <= 1 + 0 <= t_x_{6}_{75} <= 1 + 0 <= t_x_{6}_{90} <= 1 + 0 <= t_x_{6}_{105} <= 1 + 0 <= t_x_{6}_{120} <= 1 +Binaries + t_x_{1}_{0} t_x_{1}_{15} t_x_{1}_{30} t_x_{1}_{45} t_x_{1}_{60} t_x_{1}_{75} t_x_{1}_{90} t_x_{1}_{105} + t_x_{1}_{120} t_x_{2}_{0} t_x_{2}_{15} t_x_{2}_{30} t_x_{2}_{45} t_x_{2}_{60} t_x_{2}_{75} t_x_{2}_{90} + t_x_{2}_{105} t_x_{2}_{120} t_x_{3}_{0} t_x_{3}_{15} t_x_{3}_{30} t_x_{3}_{45} t_x_{3}_{60} t_x_{3}_{75} + t_x_{3}_{90} t_x_{3}_{105} t_x_{3}_{120} t_x_{4}_{0} t_x_{4}_{15} t_x_{4}_{30} t_x_{4}_{45} t_x_{4}_{60} + t_x_{4}_{75} t_x_{4}_{90} t_x_{4}_{105} t_x_{4}_{120} t_x_{5}_{0} t_x_{5}_{15} t_x_{5}_{30} t_x_{5}_{45} + t_x_{5}_{60} t_x_{5}_{75} t_x_{5}_{90} t_x_{5}_{105} t_x_{5}_{120} t_x_{6}_{0} t_x_{6}_{15} t_x_{6}_{30} + t_x_{6}_{45} t_x_{6}_{60} t_x_{6}_{75} t_x_{6}_{90} t_x_{6}_{105} t_x_{6}_{120} +End +\ SCIP STATISTICS +\ Problem name : data/6f4s.lp_relaxscip +\ Variables : 54 (54 binary, 0 integer, 0 implicit integer, 0 continuous) +\ Constraints : 6 +Minimize + Obj: +22.8919437429854 t_x_{1}_{0} +25.3192059483726 t_x_{1}_{15} +30.0003086419753 t_x_{1}_{30} +45 t_x_{1}_{45} + +60 t_x_{1}_{60} +75 t_x_{1}_{75} +90 t_x_{1}_{90} +105 t_x_{1}_{105} +120 t_x_{1}_{120} +21.8919437429854 t_x_{2}_{0} + +25.3192059483726 t_x_{2}_{15} +30.0003086419753 t_x_{2}_{30} +45 t_x_{2}_{45} +60 t_x_{2}_{60} + +75 t_x_{2}_{75} +90 t_x_{2}_{90} +105 t_x_{2}_{105} +120 t_x_{2}_{120} +29.4721520763187 t_x_{3}_{0} + +33.6383417508418 t_x_{3}_{15} +30.0006172839506 t_x_{3}_{30} +45 t_x_{3}_{45} +60 t_x_{3}_{60} + +75 t_x_{3}_{75} +90 t_x_{3}_{90} +105 t_x_{3}_{105} +120 t_x_{3}_{120} +30.5694093714927 t_x_{4}_{0} + +32.5410809483726 t_x_{4}_{15} +30.0006207912458 t_x_{4}_{30} +45 t_x_{4}_{45} +60 t_x_{4}_{60} + +75 t_x_{4}_{75} +90 t_x_{4}_{90} +105 t_x_{4}_{105} +120 t_x_{4}_{120} +30.5694093714927 t_x_{5}_{0} + +32.5410809483726 t_x_{5}_{15} +30.0006207912458 t_x_{5}_{30} +45 t_x_{5}_{45} +60 t_x_{5}_{60} + +75 t_x_{5}_{75} +90 t_x_{5}_{90} +105 t_x_{5}_{105} +120 t_x_{5}_{120} +15.8333333333333 t_x_{6}_{0} + +23.2219100729517 t_x_{6}_{15} +30.0003121492705 t_x_{6}_{30} +45 t_x_{6}_{45} +60 t_x_{6}_{60} + +75 t_x_{6}_{75} +90 t_x_{6}_{90} +105 t_x_{6}_{105} +120 t_x_{6}_{120} -80.3225694444444 +Subject to + F_6: +1 t_x_{6}_{0} +1 t_x_{6}_{15} +1 t_x_{6}_{30} +1 t_x_{6}_{45} +1 t_x_{6}_{60} +1 t_x_{6}_{75} +1 t_x_{6}_{90} + +1 t_x_{6}_{105} +1 t_x_{6}_{120} = +1 + F_5: +1 t_x_{5}_{0} +1 t_x_{5}_{15} +1 t_x_{5}_{30} +1 t_x_{5}_{45} +1 t_x_{5}_{60} +1 t_x_{5}_{75} +1 t_x_{5}_{90} + +1 t_x_{5}_{105} +1 t_x_{5}_{120} = +1 + F_4: +1 t_x_{4}_{0} +1 t_x_{4}_{15} +1 t_x_{4}_{30} +1 t_x_{4}_{45} +1 t_x_{4}_{60} +1 t_x_{4}_{75} +1 t_x_{4}_{90} + +1 t_x_{4}_{105} +1 t_x_{4}_{120} = +1 + F_3: +1 t_x_{3}_{0} +1 t_x_{3}_{15} +1 t_x_{3}_{30} +1 t_x_{3}_{45} +1 t_x_{3}_{60} +1 t_x_{3}_{75} +1 t_x_{3}_{90} + +1 t_x_{3}_{105} +1 t_x_{3}_{120} = +1 + F_2: +1 t_x_{2}_{0} +1 t_x_{2}_{15} +1 t_x_{2}_{30} +1 t_x_{2}_{45} +1 t_x_{2}_{60} +1 t_x_{2}_{75} +1 t_x_{2}_{90} + +1 t_x_{2}_{105} +1 t_x_{2}_{120} = +1 + F_1: +1 t_x_{1}_{0} +1 t_x_{1}_{15} +1 t_x_{1}_{30} +1 t_x_{1}_{45} +1 t_x_{1}_{60} +1 t_x_{1}_{75} +1 t_x_{1}_{90} + +1 t_x_{1}_{105} +1 t_x_{1}_{120} = +1 +Bounds + 0 <= t_x_{1}_{0} <= 1 + 0 <= t_x_{1}_{15} <= 1 + 0 <= t_x_{1}_{30} <= 1 + 0 <= t_x_{1}_{45} <= 1 + 0 <= t_x_{1}_{60} <= 1 + 0 <= t_x_{1}_{75} <= 1 + 0 <= t_x_{1}_{90} <= 1 + 0 <= t_x_{1}_{105} <= 1 + 0 <= t_x_{1}_{120} <= 1 + 0 <= t_x_{2}_{0} <= 1 + 0 <= t_x_{2}_{15} <= 1 + 0 <= t_x_{2}_{30} <= 1 + 0 <= t_x_{2}_{45} <= 1 + 0 <= t_x_{2}_{60} <= 1 + 0 <= t_x_{2}_{75} <= 1 + 0 <= t_x_{2}_{90} <= 1 + 0 <= t_x_{2}_{105} <= 1 + 0 <= t_x_{2}_{120} <= 1 + 0 <= t_x_{3}_{0} <= 1 + 0 <= t_x_{3}_{15} <= 1 + 0 <= t_x_{3}_{30} <= 1 + 0 <= t_x_{3}_{45} <= 1 + 0 <= t_x_{3}_{60} <= 1 + 0 <= t_x_{3}_{75} <= 1 + 0 <= t_x_{3}_{90} <= 1 + 0 <= t_x_{3}_{105} <= 1 + 0 <= t_x_{3}_{120} <= 1 + 0 <= t_x_{4}_{0} <= 1 + 0 <= t_x_{4}_{15} <= 1 + 0 <= t_x_{4}_{30} <= 1 + 0 <= t_x_{4}_{45} <= 1 + 0 <= t_x_{4}_{60} <= 1 + 0 <= t_x_{4}_{75} <= 1 + 0 <= t_x_{4}_{90} <= 1 + 0 <= t_x_{4}_{105} <= 1 + 0 <= t_x_{4}_{120} <= 1 + 0 <= t_x_{5}_{0} <= 1 + 0 <= t_x_{5}_{15} <= 1 + 0 <= t_x_{5}_{30} <= 1 + 0 <= t_x_{5}_{45} <= 1 + 0 <= t_x_{5}_{60} <= 1 + 0 <= t_x_{5}_{75} <= 1 + 0 <= t_x_{5}_{90} <= 1 + 0 <= t_x_{5}_{105} <= 1 + 0 <= t_x_{5}_{120} <= 1 + 0 <= t_x_{6}_{0} <= 1 + 0 <= t_x_{6}_{15} <= 1 + 0 <= t_x_{6}_{30} <= 1 + 0 <= t_x_{6}_{45} <= 1 + 0 <= t_x_{6}_{60} <= 1 + 0 <= t_x_{6}_{75} <= 1 + 0 <= t_x_{6}_{90} <= 1 + 0 <= t_x_{6}_{105} <= 1 + 0 <= t_x_{6}_{120} <= 1 +Binaries + t_x_{1}_{0} t_x_{1}_{15} t_x_{1}_{30} t_x_{1}_{45} t_x_{1}_{60} t_x_{1}_{75} t_x_{1}_{90} t_x_{1}_{105} + t_x_{1}_{120} t_x_{2}_{0} t_x_{2}_{15} t_x_{2}_{30} t_x_{2}_{45} t_x_{2}_{60} t_x_{2}_{75} t_x_{2}_{90} + t_x_{2}_{105} t_x_{2}_{120} t_x_{3}_{0} t_x_{3}_{15} t_x_{3}_{30} t_x_{3}_{45} t_x_{3}_{60} t_x_{3}_{75} + t_x_{3}_{90} t_x_{3}_{105} t_x_{3}_{120} t_x_{4}_{0} t_x_{4}_{15} t_x_{4}_{30} t_x_{4}_{45} t_x_{4}_{60} + t_x_{4}_{75} t_x_{4}_{90} t_x_{4}_{105} t_x_{4}_{120} t_x_{5}_{0} t_x_{5}_{15} t_x_{5}_{30} t_x_{5}_{45} + t_x_{5}_{60} t_x_{5}_{75} t_x_{5}_{90} t_x_{5}_{105} t_x_{5}_{120} t_x_{6}_{0} t_x_{6}_{15} t_x_{6}_{30} + t_x_{6}_{45} t_x_{6}_{60} t_x_{6}_{75} t_x_{6}_{90} t_x_{6}_{105} t_x_{6}_{120} +End +\ SCIP STATISTICS +\ Problem name : data/6f4s.lp_relaxscip +\ Variables : 54 (54 binary, 0 integer, 0 implicit integer, 0 continuous) +\ Constraints : 6 +Minimize + Obj: +24.8919438014403 t_x_{1}_{0} +23.3192058899177 t_x_{1}_{15} +30.0003086419753 t_x_{1}_{30} +45 t_x_{1}_{45} + +60 t_x_{1}_{60} +75 t_x_{1}_{75} +90 t_x_{1}_{90} +105 t_x_{1}_{105} +120 t_x_{1}_{120} +23.8919438014403 t_x_{2}_{0} + +23.3192058899177 t_x_{2}_{15} +30.0003086419753 t_x_{2}_{30} +45 t_x_{2}_{45} +60 t_x_{2}_{60} + +75 t_x_{2}_{75} +90 t_x_{2}_{90} +105 t_x_{2}_{105} +120 t_x_{2}_{120} +31.4721521347737 t_x_{3}_{0} + +31.6383416923868 t_x_{3}_{15} +30.0006172839506 t_x_{3}_{30} +45 t_x_{3}_{45} +60 t_x_{3}_{60} + +75 t_x_{3}_{75} +90 t_x_{3}_{90} +105 t_x_{3}_{105} +120 t_x_{3}_{120} +31.5694094007202 t_x_{4}_{0} + +30.5410808899177 t_x_{4}_{15} +31.0006208204733 t_x_{4}_{30} +45 t_x_{4}_{45} +60 t_x_{4}_{60} + +75 t_x_{4}_{75} +90 t_x_{4}_{90} +105 t_x_{4}_{105} +120 t_x_{4}_{120} +31.5694094007202 t_x_{5}_{0} + +30.5410808899177 t_x_{5}_{15} +31.0006208204733 t_x_{5}_{30} +45 t_x_{5}_{45} +60 t_x_{5}_{60} + +75 t_x_{5}_{75} +90 t_x_{5}_{90} +105 t_x_{5}_{105} +120 t_x_{5}_{120} +15.8333333333333 t_x_{6}_{0} + +22.2219100437243 t_x_{6}_{15} +31.0003121784979 t_x_{6}_{30} +45 t_x_{6}_{45} +60 t_x_{6}_{60} + +75 t_x_{6}_{75} +90 t_x_{6}_{90} +105 t_x_{6}_{105} +120 t_x_{6}_{120} -80.3225694444444 +Subject to + F_6: +1 t_x_{6}_{0} +1 t_x_{6}_{15} +1 t_x_{6}_{30} +1 t_x_{6}_{45} +1 t_x_{6}_{60} +1 t_x_{6}_{75} +1 t_x_{6}_{90} + +1 t_x_{6}_{105} +1 t_x_{6}_{120} = +1 + F_5: +1 t_x_{5}_{0} +1 t_x_{5}_{15} +1 t_x_{5}_{30} +1 t_x_{5}_{45} +1 t_x_{5}_{60} +1 t_x_{5}_{75} +1 t_x_{5}_{90} + +1 t_x_{5}_{105} +1 t_x_{5}_{120} = +1 + F_4: +1 t_x_{4}_{0} +1 t_x_{4}_{15} +1 t_x_{4}_{30} +1 t_x_{4}_{45} +1 t_x_{4}_{60} +1 t_x_{4}_{75} +1 t_x_{4}_{90} + +1 t_x_{4}_{105} +1 t_x_{4}_{120} = +1 + F_3: +1 t_x_{3}_{0} +1 t_x_{3}_{15} +1 t_x_{3}_{30} +1 t_x_{3}_{45} +1 t_x_{3}_{60} +1 t_x_{3}_{75} +1 t_x_{3}_{90} + +1 t_x_{3}_{105} +1 t_x_{3}_{120} = +1 + F_2: +1 t_x_{2}_{0} +1 t_x_{2}_{15} +1 t_x_{2}_{30} +1 t_x_{2}_{45} +1 t_x_{2}_{60} +1 t_x_{2}_{75} +1 t_x_{2}_{90} + +1 t_x_{2}_{105} +1 t_x_{2}_{120} = +1 + F_1: +1 t_x_{1}_{0} +1 t_x_{1}_{15} +1 t_x_{1}_{30} +1 t_x_{1}_{45} +1 t_x_{1}_{60} +1 t_x_{1}_{75} +1 t_x_{1}_{90} + +1 t_x_{1}_{105} +1 t_x_{1}_{120} = +1 +Bounds + 0 <= t_x_{1}_{0} <= 1 + 0 <= t_x_{1}_{15} <= 1 + 0 <= t_x_{1}_{30} <= 1 + 0 <= t_x_{1}_{45} <= 1 + 0 <= t_x_{1}_{60} <= 1 + 0 <= t_x_{1}_{75} <= 1 + 0 <= t_x_{1}_{90} <= 1 + 0 <= t_x_{1}_{105} <= 1 + 0 <= t_x_{1}_{120} <= 1 + 0 <= t_x_{2}_{0} <= 1 + 0 <= t_x_{2}_{15} <= 1 + 0 <= t_x_{2}_{30} <= 1 + 0 <= t_x_{2}_{45} <= 1 + 0 <= t_x_{2}_{60} <= 1 + 0 <= t_x_{2}_{75} <= 1 + 0 <= t_x_{2}_{90} <= 1 + 0 <= t_x_{2}_{105} <= 1 + 0 <= t_x_{2}_{120} <= 1 + 0 <= t_x_{3}_{0} <= 1 + 0 <= t_x_{3}_{15} <= 1 + 0 <= t_x_{3}_{30} <= 1 + 0 <= t_x_{3}_{45} <= 1 + 0 <= t_x_{3}_{60} <= 1 + 0 <= t_x_{3}_{75} <= 1 + 0 <= t_x_{3}_{90} <= 1 + 0 <= t_x_{3}_{105} <= 1 + 0 <= t_x_{3}_{120} <= 1 + 0 <= t_x_{4}_{0} <= 1 + 0 <= t_x_{4}_{15} <= 1 + 0 <= t_x_{4}_{30} <= 1 + 0 <= t_x_{4}_{45} <= 1 + 0 <= t_x_{4}_{60} <= 1 + 0 <= t_x_{4}_{75} <= 1 + 0 <= t_x_{4}_{90} <= 1 + 0 <= t_x_{4}_{105} <= 1 + 0 <= t_x_{4}_{120} <= 1 + 0 <= t_x_{5}_{0} <= 1 + 0 <= t_x_{5}_{15} <= 1 + 0 <= t_x_{5}_{30} <= 1 + 0 <= t_x_{5}_{45} <= 1 + 0 <= t_x_{5}_{60} <= 1 + 0 <= t_x_{5}_{75} <= 1 + 0 <= t_x_{5}_{90} <= 1 + 0 <= t_x_{5}_{105} <= 1 + 0 <= t_x_{5}_{120} <= 1 + 0 <= t_x_{6}_{0} <= 1 + 0 <= t_x_{6}_{15} <= 1 + 0 <= t_x_{6}_{30} <= 1 + 0 <= t_x_{6}_{45} <= 1 + 0 <= t_x_{6}_{60} <= 1 + 0 <= t_x_{6}_{75} <= 1 + 0 <= t_x_{6}_{90} <= 1 + 0 <= t_x_{6}_{105} <= 1 + 0 <= t_x_{6}_{120} <= 1 +Binaries + t_x_{1}_{0} t_x_{1}_{15} t_x_{1}_{30} t_x_{1}_{45} t_x_{1}_{60} t_x_{1}_{75} t_x_{1}_{90} t_x_{1}_{105} + t_x_{1}_{120} t_x_{2}_{0} t_x_{2}_{15} t_x_{2}_{30} t_x_{2}_{45} t_x_{2}_{60} t_x_{2}_{75} t_x_{2}_{90} + t_x_{2}_{105} t_x_{2}_{120} t_x_{3}_{0} t_x_{3}_{15} t_x_{3}_{30} t_x_{3}_{45} t_x_{3}_{60} t_x_{3}_{75} + t_x_{3}_{90} t_x_{3}_{105} t_x_{3}_{120} t_x_{4}_{0} t_x_{4}_{15} t_x_{4}_{30} t_x_{4}_{45} t_x_{4}_{60} + t_x_{4}_{75} t_x_{4}_{90} t_x_{4}_{105} t_x_{4}_{120} t_x_{5}_{0} t_x_{5}_{15} t_x_{5}_{30} t_x_{5}_{45} + t_x_{5}_{60} t_x_{5}_{75} t_x_{5}_{90} t_x_{5}_{105} t_x_{5}_{120} t_x_{6}_{0} t_x_{6}_{15} t_x_{6}_{30} + t_x_{6}_{45} t_x_{6}_{60} t_x_{6}_{75} t_x_{6}_{90} t_x_{6}_{105} t_x_{6}_{120} +End diff --git a/dual.txt b/dual.txt index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..660b41ece1dfe4e60eb11f5a064e3d447b6d83a3 100644 --- a/dual.txt +++ b/dual.txt @@ -0,0 +1,531 @@ +<<<<<<< HEAD +======= +objective value: 1 +t_x_{1}_{0} 1 (obj:1) +t_x_{2}_{0} 1 (obj:0) +t_x_{3}_{0} 1 (obj:0) +t_x_{4}_{0} 1 (obj:0) +t_x_{5}_{0} 1 (obj:0) +t_x_{6}_{0} 1 (obj:0) +dualbound = 1.000000, lowerbound=1.000000, norm of subgrad 7.280110 stepsize= 8.000000 + then dual = 8.000000 step size 8.000000, subgradient 1.000000 + then dual = 0.000000 step size 8.000000, subgradient -1.000000 + then dual = 0.000000 step size 8.000000, subgradient -1.000000 + then dual = 0.000000 step size 8.000000, subgradient -1.000000 + then dual = 0.000000 step size 8.000000, subgradient -1.000000 + then dual = 0.000000 step size 8.000000, subgradient -1.000000 + then dual = 0.000000 step size 8.000000, subgradient -1.000000 + then dual = 0.000000 step size 8.000000, subgradient -1.000000 + then dual = 0.000000 step size 8.000000, subgradient -1.000000 + then dual = 16.000000 step size 8.000000, subgradient 2.000000 + then dual = 0.000000 step size 8.000000, subgradient -1.000000 + then dual = 0.000000 step size 8.000000, subgradient -1.000000 + then dual = 0.000000 step size 8.000000, subgradient -1.000000 + then dual = 0.000000 step size 8.000000, subgradient -1.000000 + then dual = 0.000000 step size 8.000000, subgradient -1.000000 + then dual = 0.000000 step size 8.000000, subgradient -1.000000 + then dual = 0.000000 step size 8.000000, subgradient -1.000000 + then dual = 0.000000 step size 8.000000, subgradient -1.000000 + then dual = 16.000000 step size 8.000000, subgradient 2.000000 + then dual = 0.000000 step size 8.000000, subgradient -1.000000 + then dual = 0.000000 step size 8.000000, subgradient -1.000000 + then dual = 0.000000 step size 8.000000, subgradient -1.000000 + then dual = 0.000000 step size 8.000000, subgradient -1.000000 + then dual = 0.000000 step size 8.000000, subgradient -1.000000 + then dual = 0.000000 step size 8.000000, subgradient -1.000000 + then dual = 0.000000 step size 8.000000, subgradient -1.000000 + then dual = 0.000000 step size 8.000000, subgradient -1.000000 + then dual = 16.000000 step size 8.000000, subgradient 2.000000 + then dual = 0.000000 step size 8.000000, subgradient -1.000000 + then dual = 0.000000 step size 8.000000, subgradient -1.000000 + then dual = 0.000000 step size 8.000000, subgradient -1.000000 + then dual = 0.000000 step size 8.000000, subgradient -1.000000 + then dual = 0.000000 step size 8.000000, subgradient -1.000000 + then dual = 0.000000 step size 8.000000, subgradient -1.000000 + then dual = 0.000000 step size 8.000000, subgradient -1.000000 + then dual = 0.000000 step size 8.000000, subgradient -1.000000 +objective value: 34 +t_x_{1}_{15} 1 (obj:15) +t_x_{2}_{15} 1 (obj:15) +t_x_{3}_{15} 1 (obj:15) +t_x_{4}_{15} 1 (obj:15) +t_x_{5}_{15} 1 (obj:15) +t_x_{6}_{15} 1 (obj:15) +dualbound = 90.000000, lowerbound=90.000000, norm of subgrad 6.952218 stepsize= 3.333333 + then dual = 4.666667 step size 3.333333, subgradient -1.000000 + then dual = 3.333333 step size 3.333333, subgradient 1.000000 + then dual = 0.000000 step size 3.333333, subgradient -1.000000 + then dual = 0.000000 step size 3.333333, subgradient -1.000000 + then dual = 0.000000 step size 3.333333, subgradient -1.000000 + then dual = 0.000000 step size 3.333333, subgradient -1.000000 + then dual = 0.000000 step size 3.333333, subgradient -1.000000 + then dual = 0.000000 step size 3.333333, subgradient -1.000000 + then dual = 0.000000 step size 3.333333, subgradient -1.000000 + then dual = 12.666667 step size 3.333333, subgradient -1.000000 + then dual = 6.666667 step size 3.333333, subgradient 2.000000 + then dual = 0.000000 step size 3.333333, subgradient -1.000000 + then dual = 0.000000 step size 3.333333, subgradient -1.000000 + then dual = 0.000000 step size 3.333333, subgradient -1.000000 + then dual = 0.000000 step size 3.333333, subgradient -1.000000 + then dual = 0.000000 step size 3.333333, subgradient -1.000000 + then dual = 0.000000 step size 3.333333, subgradient -1.000000 + then dual = 0.000000 step size 3.333333, subgradient -1.000000 + then dual = 12.666667 step size 3.333333, subgradient -1.000000 + then dual = 6.666667 step size 3.333333, subgradient 2.000000 + then dual = 0.000000 step size 3.333333, subgradient -1.000000 + then dual = 0.000000 step size 3.333333, subgradient -1.000000 + then dual = 0.000000 step size 3.333333, subgradient -1.000000 + then dual = 0.000000 step size 3.333333, subgradient -1.000000 + then dual = 0.000000 step size 3.333333, subgradient -1.000000 + then dual = 0.000000 step size 3.333333, subgradient -1.000000 + then dual = 0.000000 step size 3.333333, subgradient -1.000000 + then dual = 12.666667 step size 3.333333, subgradient -1.000000 + then dual = 6.666667 step size 3.333333, subgradient 2.000000 + then dual = 0.000000 step size 3.333333, subgradient -1.000000 + then dual = 0.000000 step size 3.333333, subgradient -1.000000 + then dual = 0.000000 step size 3.333333, subgradient -1.000000 + then dual = 0.000000 step size 3.333333, subgradient -1.000000 + then dual = 0.000000 step size 3.333333, subgradient -1.000000 + then dual = 0.000000 step size 3.333333, subgradient -1.000000 + then dual = 0.000000 step size 3.333333, subgradient -1.000000 +objective value: 58.3333333333333 +t_x_{1}_{0} 1 (obj:18.3333333333333) +t_x_{2}_{0} 1 (obj:17.3333333333333) +t_x_{3}_{0} 1 (obj:25.3333333333333) +t_x_{4}_{0} 1 (obj:25.3333333333333) +t_x_{5}_{0} 1 (obj:25.3333333333333) +t_x_{6}_{0} 1 (obj:12.6666666666667) +dualbound = 124.333333, lowerbound=1.000000, norm of subgrad 6.825198 stepsize= 1.583333 + then dual = 6.250000 step size 1.583333, subgradient 1.000000 + then dual = 1.750000 step size 1.583333, subgradient -1.000000 + then dual = 0.000000 step size 1.583333, subgradient -1.000000 + then dual = 0.000000 step size 1.583333, subgradient -1.000000 + then dual = 0.000000 step size 1.583333, subgradient -1.000000 + then dual = 0.000000 step size 1.583333, subgradient -1.000000 + then dual = 0.000000 step size 1.583333, subgradient -1.000000 + then dual = 0.000000 step size 1.583333, subgradient -1.000000 + then dual = 0.000000 step size 1.583333, subgradient -1.000000 + then dual = 15.833333 step size 1.583333, subgradient 2.000000 + then dual = 5.083333 step size 1.583333, subgradient -1.000000 + then dual = 0.000000 step size 1.583333, subgradient -1.000000 + then dual = 0.000000 step size 1.583333, subgradient -1.000000 + then dual = 0.000000 step size 1.583333, subgradient -1.000000 + then dual = 0.000000 step size 1.583333, subgradient -1.000000 + then dual = 0.000000 step size 1.583333, subgradient -1.000000 + then dual = 0.000000 step size 1.583333, subgradient -1.000000 + then dual = 0.000000 step size 1.583333, subgradient -1.000000 + then dual = 15.833333 step size 1.583333, subgradient 2.000000 + then dual = 5.083333 step size 1.583333, subgradient -1.000000 + then dual = 0.000000 step size 1.583333, subgradient -1.000000 + then dual = 0.000000 step size 1.583333, subgradient -1.000000 + then dual = 0.000000 step size 1.583333, subgradient -1.000000 + then dual = 0.000000 step size 1.583333, subgradient -1.000000 + then dual = 0.000000 step size 1.583333, subgradient -1.000000 + then dual = 0.000000 step size 1.583333, subgradient -1.000000 + then dual = 0.000000 step size 1.583333, subgradient -1.000000 + then dual = 15.833333 step size 1.583333, subgradient 2.000000 + then dual = 5.083333 step size 1.583333, subgradient -1.000000 + then dual = 0.000000 step size 1.583333, subgradient -1.000000 + then dual = 0.000000 step size 1.583333, subgradient -1.000000 + then dual = 0.000000 step size 1.583333, subgradient -1.000000 + then dual = 0.000000 step size 1.583333, subgradient -1.000000 + then dual = 0.000000 step size 1.583333, subgradient -1.000000 + then dual = 0.000000 step size 1.583333, subgradient -1.000000 + then dual = 0.000000 step size 1.583333, subgradient -1.000000 +objective value: 64.25 +t_x_{1}_{15} 1 (obj:21.8333333333333) +t_x_{2}_{15} 1 (obj:21.8333333333333) +t_x_{3}_{15} 1 (obj:25.1666666666667) +t_x_{4}_{15} 1 (obj:25.1666666666667) +t_x_{5}_{15} 1 (obj:25.1666666666667) +t_x_{6}_{0} 1 (obj:15.8333333333333) +dualbound = 135.000000, lowerbound=75.000000, norm of subgrad 6.489735 stepsize= 1.116667 + then dual = 5.133333 step size 1.116667, subgradient -1.000000 + then dual = 2.866667 step size 1.116667, subgradient 1.000000 + then dual = 0.000000 step size 1.116667, subgradient -1.000000 + then dual = 0.000000 step size 1.116667, subgradient -1.000000 + then dual = 0.000000 step size 1.116667, subgradient -1.000000 + then dual = 0.000000 step size 1.116667, subgradient -1.000000 + then dual = 0.000000 step size 1.116667, subgradient -1.000000 + then dual = 0.000000 step size 1.116667, subgradient -1.000000 + then dual = 0.000000 step size 1.116667, subgradient -1.000000 + then dual = 14.716667 step size 1.116667, subgradient -1.000000 + then dual = 7.316667 step size 1.116667, subgradient 2.000000 + then dual = 0.000000 step size 1.116667, subgradient -1.000000 + then dual = 0.000000 step size 1.116667, subgradient -1.000000 + then dual = 0.000000 step size 1.116667, subgradient -1.000000 + then dual = 0.000000 step size 1.116667, subgradient -1.000000 + then dual = 0.000000 step size 1.116667, subgradient -1.000000 + then dual = 0.000000 step size 1.116667, subgradient -1.000000 + then dual = 0.000000 step size 1.116667, subgradient -1.000000 + then dual = 14.716667 step size 1.116667, subgradient -1.000000 + then dual = 7.316667 step size 1.116667, subgradient 2.000000 + then dual = 0.000000 step size 1.116667, subgradient -1.000000 + then dual = 0.000000 step size 1.116667, subgradient -1.000000 + then dual = 0.000000 step size 1.116667, subgradient -1.000000 + then dual = 0.000000 step size 1.116667, subgradient -1.000000 + then dual = 0.000000 step size 1.116667, subgradient -1.000000 + then dual = 0.000000 step size 1.116667, subgradient -1.000000 + then dual = 0.000000 step size 1.116667, subgradient -1.000000 + then dual = 15.833333 step size 1.116667, subgradient 0.000000 + then dual = 6.200000 step size 1.116667, subgradient 1.000000 + then dual = 0.000000 step size 1.116667, subgradient -1.000000 + then dual = 0.000000 step size 1.116667, subgradient -1.000000 + then dual = 0.000000 step size 1.116667, subgradient -1.000000 + then dual = 0.000000 step size 1.116667, subgradient -1.000000 + then dual = 0.000000 step size 1.116667, subgradient -1.000000 + then dual = 0.000000 step size 1.116667, subgradient -1.000000 + then dual = 0.000000 step size 1.116667, subgradient -1.000000 +objective value: 68.9 +t_x_{1}_{0} 1 (obj:20.85) +t_x_{2}_{0} 1 (obj:19.85) +t_x_{3}_{0} 1 (obj:29.4333333333333) +t_x_{4}_{15} 1 (obj:28.5166666666667) +t_x_{5}_{15} 1 (obj:28.5166666666667) +t_x_{6}_{0} 1 (obj:15.8333333333333) +dualbound = 143.000000, lowerbound=31.000000, norm of subgrad 5.832619 stepsize= 1.019444 + then dual = 6.152778 step size 1.019444, subgradient 1.000000 + then dual = 1.847222 step size 1.019444, subgradient -1.000000 + then dual = 0.000000 step size 1.019444, subgradient -1.000000 + then dual = 0.000000 step size 1.019444, subgradient -1.000000 + then dual = 0.000000 step size 1.019444, subgradient -1.000000 + then dual = 0.000000 step size 1.019444, subgradient -1.000000 + then dual = 0.000000 step size 1.019444, subgradient -1.000000 + then dual = 0.000000 step size 1.019444, subgradient -1.000000 + then dual = 0.000000 step size 1.019444, subgradient -1.000000 + then dual = 15.736111 step size 1.019444, subgradient 1.000000 + then dual = 7.316667 step size 1.019444, subgradient 0.000000 + then dual = 0.000000 step size 1.019444, subgradient -1.000000 + then dual = 0.000000 step size 1.019444, subgradient -1.000000 + then dual = 0.000000 step size 1.019444, subgradient -1.000000 + then dual = 0.000000 step size 1.019444, subgradient -1.000000 + then dual = 0.000000 step size 1.019444, subgradient -1.000000 + then dual = 0.000000 step size 1.019444, subgradient -1.000000 + then dual = 0.000000 step size 1.019444, subgradient -1.000000 + then dual = 15.736111 step size 1.019444, subgradient 1.000000 + then dual = 7.316667 step size 1.019444, subgradient 0.000000 + then dual = 0.000000 step size 1.019444, subgradient -1.000000 + then dual = 0.000000 step size 1.019444, subgradient -1.000000 + then dual = 0.000000 step size 1.019444, subgradient -1.000000 + then dual = 0.000000 step size 1.019444, subgradient -1.000000 + then dual = 0.000000 step size 1.019444, subgradient -1.000000 + then dual = 0.000000 step size 1.019444, subgradient -1.000000 + then dual = 0.000000 step size 1.019444, subgradient -1.000000 + then dual = 15.833333 step size 1.019444, subgradient 0.000000 + then dual = 7.219444 step size 1.019444, subgradient 1.000000 + then dual = 0.000000 step size 1.019444, subgradient -1.000000 + then dual = 0.000000 step size 1.019444, subgradient -1.000000 + then dual = 0.000000 step size 1.019444, subgradient -1.000000 + then dual = 0.000000 step size 1.019444, subgradient -1.000000 + then dual = 0.000000 step size 1.019444, subgradient -1.000000 + then dual = 0.000000 step size 1.019444, subgradient -1.000000 + then dual = 0.000000 step size 1.019444, subgradient -1.000000 +objective value: 72.1583333333333 +t_x_{1}_{0} 1 (obj:22.8888888888889) +t_x_{2}_{0} 1 (obj:21.8888888888889) +t_x_{3}_{15} 1 (obj:29.6333333333333) +t_x_{4}_{15} 1 (obj:29.5361111111111) +t_x_{5}_{15} 1 (obj:29.5361111111111) +t_x_{6}_{0} 1 (obj:15.8333333333333) +dualbound = 149.316667, lowerbound=46.000000, norm of subgrad 5.831190 stepsize= 1.002778 + then dual = 7.155556 step size 1.002778, subgradient 1.000000 + then dual = 0.844444 step size 1.002778, subgradient -1.000000 + then dual = 0.000000 step size 1.002778, subgradient -1.000000 + then dual = 0.000000 step size 1.002778, subgradient -1.000000 + then dual = 0.000000 step size 1.002778, subgradient -1.000000 + then dual = 0.000000 step size 1.002778, subgradient -1.000000 + then dual = 0.000000 step size 1.002778, subgradient -1.000000 + then dual = 0.000000 step size 1.002778, subgradient -1.000000 + then dual = 0.000000 step size 1.002778, subgradient -1.000000 + then dual = 15.736111 step size 1.002778, subgradient 0.000000 + then dual = 8.319444 step size 1.002778, subgradient 1.000000 + then dual = 0.000000 step size 1.002778, subgradient -1.000000 + then dual = 0.000000 step size 1.002778, subgradient -1.000000 + then dual = 0.000000 step size 1.002778, subgradient -1.000000 + then dual = 0.000000 step size 1.002778, subgradient -1.000000 + then dual = 0.000000 step size 1.002778, subgradient -1.000000 + then dual = 0.000000 step size 1.002778, subgradient -1.000000 + then dual = 0.000000 step size 1.002778, subgradient -1.000000 + then dual = 15.736111 step size 1.002778, subgradient 0.000000 + then dual = 8.319444 step size 1.002778, subgradient 1.000000 + then dual = 0.000000 step size 1.002778, subgradient -1.000000 + then dual = 0.000000 step size 1.002778, subgradient -1.000000 + then dual = 0.000000 step size 1.002778, subgradient -1.000000 + then dual = 0.000000 step size 1.002778, subgradient -1.000000 + then dual = 0.000000 step size 1.002778, subgradient -1.000000 + then dual = 0.000000 step size 1.002778, subgradient -1.000000 + then dual = 0.000000 step size 1.002778, subgradient -1.000000 + then dual = 15.833333 step size 1.002778, subgradient 0.000000 + then dual = 8.222222 step size 1.002778, subgradient 1.000000 + then dual = 0.000000 step size 1.002778, subgradient -1.000000 + then dual = 0.000000 step size 1.002778, subgradient -1.000000 + then dual = 0.000000 step size 1.002778, subgradient -1.000000 + then dual = 0.000000 step size 1.002778, subgradient -1.000000 + then dual = 0.000000 step size 1.002778, subgradient -1.000000 + then dual = 0.000000 step size 1.002778, subgradient -1.000000 + then dual = 0.000000 step size 1.002778, subgradient -1.000000 +objective value: 72.45 +t_x_{1}_{0} 1 (obj:23.8916666666667) +t_x_{2}_{0} 1 (obj:22.8916666666667) +t_x_{3}_{30} 1 (obj:30) +t_x_{4}_{30} 1 (obj:30) +t_x_{5}_{30} 1 (obj:30) +t_x_{6}_{0} 1 (obj:15.8333333333333) +dualbound = 152.616667, lowerbound=91.000000, norm of subgrad 5.830982 stepsize= 1.000347 + then dual = 8.155903 step size 1.000347, subgradient 1.000000 + then dual = 0.000000 step size 1.000347, subgradient -1.000000 + then dual = 0.000000 step size 1.000347, subgradient -1.000000 + then dual = 0.000000 step size 1.000347, subgradient -1.000000 + then dual = 0.000000 step size 1.000347, subgradient -1.000000 + then dual = 0.000000 step size 1.000347, subgradient -1.000000 + then dual = 0.000000 step size 1.000347, subgradient -1.000000 + then dual = 0.000000 step size 1.000347, subgradient -1.000000 + then dual = 0.000000 step size 1.000347, subgradient -1.000000 + then dual = 15.736111 step size 1.000347, subgradient 0.000000 + then dual = 7.319097 step size 1.000347, subgradient -1.000000 + then dual = 1.000347 step size 1.000347, subgradient 1.000000 + then dual = 0.000000 step size 1.000347, subgradient -1.000000 + then dual = 0.000000 step size 1.000347, subgradient -1.000000 + then dual = 0.000000 step size 1.000347, subgradient -1.000000 + then dual = 0.000000 step size 1.000347, subgradient -1.000000 + then dual = 0.000000 step size 1.000347, subgradient -1.000000 + then dual = 0.000000 step size 1.000347, subgradient -1.000000 + then dual = 15.736111 step size 1.000347, subgradient 0.000000 + then dual = 7.319097 step size 1.000347, subgradient -1.000000 + then dual = 1.000347 step size 1.000347, subgradient 1.000000 + then dual = 0.000000 step size 1.000347, subgradient -1.000000 + then dual = 0.000000 step size 1.000347, subgradient -1.000000 + then dual = 0.000000 step size 1.000347, subgradient -1.000000 + then dual = 0.000000 step size 1.000347, subgradient -1.000000 + then dual = 0.000000 step size 1.000347, subgradient -1.000000 + then dual = 0.000000 step size 1.000347, subgradient -1.000000 + then dual = 15.833333 step size 1.000347, subgradient 0.000000 + then dual = 7.221875 step size 1.000347, subgradient -1.000000 + then dual = 1.000347 step size 1.000347, subgradient 1.000000 + then dual = 0.000000 step size 1.000347, subgradient -1.000000 + then dual = 0.000000 step size 1.000347, subgradient -1.000000 + then dual = 0.000000 step size 1.000347, subgradient -1.000000 + then dual = 0.000000 step size 1.000347, subgradient -1.000000 + then dual = 0.000000 step size 1.000347, subgradient -1.000000 + then dual = 0.000000 step size 1.000347, subgradient -1.000000 +objective value: 68.8690972222222 +t_x_{1}_{15} 1 (obj:22.3190972222222) +t_x_{2}_{15} 1 (obj:22.3190972222222) +t_x_{3}_{15} 1 (obj:29.6381944444444) +t_x_{4}_{15} 1 (obj:29.5409722222222) +t_x_{5}_{15} 1 (obj:29.5409722222222) +t_x_{6}_{0} 1 (obj:15.8333333333333) +dualbound = 149.191667, lowerbound=75.000000, norm of subgrad 6.480744 stepsize= 1.000039 + then dual = 7.155864 step size 1.000039, subgradient -1.000000 + then dual = 1.000039 step size 1.000039, subgradient 1.000000 + then dual = 0.000000 step size 1.000039, subgradient -1.000000 + then dual = 0.000000 step size 1.000039, subgradient -1.000000 + then dual = 0.000000 step size 1.000039, subgradient -1.000000 + then dual = 0.000000 step size 1.000039, subgradient -1.000000 + then dual = 0.000000 step size 1.000039, subgradient -1.000000 + then dual = 0.000000 step size 1.000039, subgradient -1.000000 + then dual = 0.000000 step size 1.000039, subgradient -1.000000 + then dual = 14.736073 step size 1.000039, subgradient -1.000000 + then dual = 9.319174 step size 1.000039, subgradient 2.000000 + then dual = 0.000309 step size 1.000039, subgradient -1.000000 + then dual = 0.000000 step size 1.000039, subgradient -1.000000 + then dual = 0.000000 step size 1.000039, subgradient -1.000000 + then dual = 0.000000 step size 1.000039, subgradient -1.000000 + then dual = 0.000000 step size 1.000039, subgradient -1.000000 + then dual = 0.000000 step size 1.000039, subgradient -1.000000 + then dual = 0.000000 step size 1.000039, subgradient -1.000000 + then dual = 14.736073 step size 1.000039, subgradient -1.000000 + then dual = 9.319174 step size 1.000039, subgradient 2.000000 + then dual = 0.000309 step size 1.000039, subgradient -1.000000 + then dual = 0.000000 step size 1.000039, subgradient -1.000000 + then dual = 0.000000 step size 1.000039, subgradient -1.000000 + then dual = 0.000000 step size 1.000039, subgradient -1.000000 + then dual = 0.000000 step size 1.000039, subgradient -1.000000 + then dual = 0.000000 step size 1.000039, subgradient -1.000000 + then dual = 0.000000 step size 1.000039, subgradient -1.000000 + then dual = 15.833333 step size 1.000039, subgradient 0.000000 + then dual = 8.221914 step size 1.000039, subgradient 1.000000 + then dual = 0.000309 step size 1.000039, subgradient -1.000000 + then dual = 0.000000 step size 1.000039, subgradient -1.000000 + then dual = 0.000000 step size 1.000039, subgradient -1.000000 + then dual = 0.000000 step size 1.000039, subgradient -1.000000 + then dual = 0.000000 step size 1.000039, subgradient -1.000000 + then dual = 0.000000 step size 1.000039, subgradient -1.000000 + then dual = 0.000000 step size 1.000039, subgradient -1.000000 +objective value: 69.7680169753086 +t_x_{1}_{0} 1 (obj:22.8919367283951) +t_x_{2}_{0} 1 (obj:21.8919367283951) +t_x_{3}_{0} 1 (obj:29.4721450617284) +t_x_{4}_{30} 1 (obj:30.0006172839506) +t_x_{5}_{30} 1 (obj:30.0006172839506) +t_x_{6}_{0} 1 (obj:15.8333333333333) +dualbound = 150.090586, lowerbound=61.000000, norm of subgrad 5.830952 stepsize= 1.000004 + then dual = 8.155868 step size 1.000004, subgradient 1.000000 + then dual = 0.000035 step size 1.000004, subgradient -1.000000 + then dual = 0.000000 step size 1.000004, subgradient -1.000000 + then dual = 0.000000 step size 1.000004, subgradient -1.000000 + then dual = 0.000000 step size 1.000004, subgradient -1.000000 + then dual = 0.000000 step size 1.000004, subgradient -1.000000 + then dual = 0.000000 step size 1.000004, subgradient -1.000000 + then dual = 0.000000 step size 1.000004, subgradient -1.000000 + then dual = 0.000000 step size 1.000004, subgradient -1.000000 + then dual = 15.736076 step size 1.000004, subgradient 1.000000 + then dual = 8.319171 step size 1.000004, subgradient -1.000000 + then dual = 0.000309 step size 1.000004, subgradient 0.000000 + then dual = 0.000000 step size 1.000004, subgradient -1.000000 + then dual = 0.000000 step size 1.000004, subgradient -1.000000 + then dual = 0.000000 step size 1.000004, subgradient -1.000000 + then dual = 0.000000 step size 1.000004, subgradient -1.000000 + then dual = 0.000000 step size 1.000004, subgradient -1.000000 + then dual = 0.000000 step size 1.000004, subgradient -1.000000 + then dual = 15.736076 step size 1.000004, subgradient 1.000000 + then dual = 8.319171 step size 1.000004, subgradient -1.000000 + then dual = 0.000309 step size 1.000004, subgradient 0.000000 + then dual = 0.000000 step size 1.000004, subgradient -1.000000 + then dual = 0.000000 step size 1.000004, subgradient -1.000000 + then dual = 0.000000 step size 1.000004, subgradient -1.000000 + then dual = 0.000000 step size 1.000004, subgradient -1.000000 + then dual = 0.000000 step size 1.000004, subgradient -1.000000 + then dual = 0.000000 step size 1.000004, subgradient -1.000000 + then dual = 15.833333 step size 1.000004, subgradient 0.000000 + then dual = 7.221910 step size 1.000004, subgradient -1.000000 + then dual = 1.000312 step size 1.000004, subgradient 1.000000 + then dual = 0.000000 step size 1.000004, subgradient -1.000000 + then dual = 0.000000 step size 1.000004, subgradient -1.000000 + then dual = 0.000000 step size 1.000004, subgradient -1.000000 + then dual = 0.000000 step size 1.000004, subgradient -1.000000 + then dual = 0.000000 step size 1.000004, subgradient -1.000000 + then dual = 0.000000 step size 1.000004, subgradient -1.000000 +objective value: 73.2319521604938 +t_x_{1}_{15} 1 (obj:23.3192052469136) +t_x_{2}_{15} 1 (obj:23.3192052469136) +t_x_{3}_{30} 1 (obj:30.0006172839506) +t_x_{4}_{15} 1 (obj:30.5410802469136) +t_x_{5}_{15} 1 (obj:30.5410802469136) +t_x_{6}_{0} 1 (obj:15.8333333333333) +dualbound = 153.554522, lowerbound=90.000000, norm of subgrad 5.830952 stepsize= 1.000000 + then dual = 7.155868 step size 1.000000, subgradient -1.000000 + then dual = 1.000035 step size 1.000000, subgradient 1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 14.736076 step size 1.000000, subgradient -1.000000 + then dual = 9.319171 step size 1.000000, subgradient 1.000000 + then dual = 0.000309 step size 1.000000, subgradient 0.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 14.736076 step size 1.000000, subgradient -1.000000 + then dual = 9.319171 step size 1.000000, subgradient 1.000000 + then dual = 0.000309 step size 1.000000, subgradient 0.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 15.833333 step size 1.000000, subgradient 0.000000 + then dual = 8.221910 step size 1.000000, subgradient 1.000000 + then dual = 0.000312 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 +objective value: 69.76804503367 +t_x_{1}_{0} 1 (obj:22.8919437429854) +t_x_{2}_{0} 1 (obj:21.8919437429854) +t_x_{3}_{0} 1 (obj:29.4721520763187) +t_x_{4}_{30} 1 (obj:30.0006207912458) +t_x_{5}_{30} 1 (obj:30.0006207912458) +t_x_{6}_{0} 1 (obj:15.8333333333333) +dualbound = 150.090614, lowerbound=61.000000, norm of subgrad 5.830952 stepsize= 1.000000 + then dual = 8.155868 step size 1.000000, subgradient 1.000000 + then dual = 0.000035 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 15.736076 step size 1.000000, subgradient 1.000000 + then dual = 8.319171 step size 1.000000, subgradient -1.000000 + then dual = 0.000309 step size 1.000000, subgradient 0.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 15.736076 step size 1.000000, subgradient 1.000000 + then dual = 8.319171 step size 1.000000, subgradient -1.000000 + then dual = 0.000309 step size 1.000000, subgradient 0.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 15.833333 step size 1.000000, subgradient 0.000000 + then dual = 7.221910 step size 1.000000, subgradient -1.000000 + then dual = 1.000312 step size 1.000000, subgradient 1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 +objective value: 73.2319547325103 +t_x_{1}_{15} 1 (obj:23.3192058899177) +t_x_{2}_{15} 1 (obj:23.3192058899177) +t_x_{3}_{30} 1 (obj:30.0006172839506) +t_x_{4}_{15} 1 (obj:30.5410808899177) +t_x_{5}_{15} 1 (obj:30.5410808899177) +t_x_{6}_{0} 1 (obj:15.8333333333333) +dualbound = 153.554524, lowerbound=90.000000, norm of subgrad 5.830952 stepsize= 1.000000 + then dual = 7.155868 step size 1.000000, subgradient -1.000000 + then dual = 1.000035 step size 1.000000, subgradient 1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 14.736076 step size 1.000000, subgradient -1.000000 + then dual = 9.319171 step size 1.000000, subgradient 1.000000 + then dual = 0.000309 step size 1.000000, subgradient 0.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 14.736076 step size 1.000000, subgradient -1.000000 + then dual = 9.319171 step size 1.000000, subgradient 1.000000 + then dual = 0.000309 step size 1.000000, subgradient 0.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 15.833333 step size 1.000000, subgradient 0.000000 + then dual = 8.221910 step size 1.000000, subgradient 1.000000 + then dual = 0.000312 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 + then dual = 0.000000 step size 1.000000, subgradient -1.000000 +>>>>>>> 3d92d06a76cc6c4667871c4c3b4d0e3184fc9a3b diff --git a/lowerbounds.txt b/lowerbounds.txt index 2aa87b782f9b97b49f75845ae77419d8fb71d0e5..ed24e07562869cb965d499b601349bb1004254a7 100644 --- a/lowerbounds.txt +++ b/lowerbounds.txt @@ -1,3 +1,4 @@ +<<<<<<< HEAD 969553.451655 911613.111366 947154.171486 @@ -649,3 +650,449 @@ 1336062.871911 1336062.125530 1336062.948754 +======= +hi1.000000 +1 iteration +objective value: 1 +t_x_{1}_{0} 1 (obj:1) +t_x_{2}_{0} 1 (obj:0) +t_x_{3}_{0} 1 (obj:0) +t_x_{4}_{0} 1 (obj:0) +t_x_{5}_{0} 1 (obj:0) +t_x_{6}_{0} 1 (obj:0) +34.000000 +2 iteration +objective value: 34 +t_x_{1}_{15} 1 (obj:15) +t_x_{2}_{15} 1 (obj:15) +t_x_{3}_{15} 1 (obj:15) +t_x_{4}_{15} 1 (obj:15) +t_x_{5}_{15} 1 (obj:15) +t_x_{6}_{15} 1 (obj:15) +objective value: 105 +t_x_{1}_{0} 1 (obj:25) +t_x_{2}_{0} 1 (obj:24) +t_x_{3}_{0} 1 (obj:32) +t_x_{4}_{0} 1 (obj:32) +t_x_{5}_{0} 1 (obj:32) +t_x_{6}_{0} 1 (obj:16) +58.333333 +3 iteration +objective value: 58.3333333333333 +t_x_{1}_{0} 1 (obj:18.3333333333333) +t_x_{2}_{0} 1 (obj:17.3333333333333) +t_x_{3}_{0} 1 (obj:25.3333333333333) +t_x_{4}_{0} 1 (obj:25.3333333333333) +t_x_{5}_{0} 1 (obj:25.3333333333333) +t_x_{6}_{0} 1 (obj:12.6666666666667) +objective value: 90.6666666666667 +t_x_{1}_{15} 1 (obj:25) +t_x_{2}_{15} 1 (obj:25) +t_x_{3}_{15} 1 (obj:28.3333333333333) +t_x_{4}_{15} 1 (obj:28.3333333333333) +t_x_{5}_{15} 1 (obj:28.3333333333333) +t_x_{6}_{15} 1 (obj:21.6666666666667) +64.250000 +4 iteration +objective value: 64.25 +t_x_{1}_{15} 1 (obj:21.8333333333333) +t_x_{2}_{15} 1 (obj:21.8333333333333) +t_x_{3}_{15} 1 (obj:25.1666666666667) +t_x_{4}_{15} 1 (obj:25.1666666666667) +t_x_{5}_{15} 1 (obj:25.1666666666667) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 68.5 +t_x_{1}_{15} 1 (obj:21.8333333333333) +t_x_{2}_{15} 1 (obj:21.8333333333333) +t_x_{3}_{15} 1 (obj:25.1666666666667) +t_x_{4}_{15} 1 (obj:25.1666666666667) +t_x_{5}_{15} 1 (obj:25.1666666666667) +t_x_{6}_{15} 1 (obj:20.0833333333333) +objective value: 85.25 +t_x_{1}_{0} 1 (obj:23.0833333333333) +t_x_{2}_{0} 1 (obj:22.0833333333333) +t_x_{3}_{0} 1 (obj:31.6666666666667) +t_x_{4}_{0} 1 (obj:31.6666666666667) +t_x_{5}_{0} 1 (obj:31.6666666666667) +t_x_{6}_{0} 1 (obj:15.8333333333333) +68.900000 +5 iteration +objective value: 68.9 +t_x_{1}_{0} 1 (obj:20.85) +t_x_{2}_{0} 1 (obj:19.85) +t_x_{3}_{0} 1 (obj:29.4333333333333) +t_x_{4}_{15} 1 (obj:28.5166666666667) +t_x_{5}_{15} 1 (obj:28.5166666666667) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 72.9666666666666 +t_x_{1}_{0} 1 (obj:20.85) +t_x_{2}_{0} 1 (obj:19.85) +t_x_{3}_{0} 1 (obj:29.4333333333333) +t_x_{4}_{0} 1 (obj:30.55) +t_x_{5}_{0} 1 (obj:30.55) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 78.7666666666667 +t_x_{1}_{15} 1 (obj:25.1833333333333) +t_x_{2}_{15} 1 (obj:25.1833333333333) +t_x_{3}_{15} 1 (obj:29.6333333333333) +t_x_{4}_{15} 1 (obj:28.5166666666667) +t_x_{5}_{15} 1 (obj:28.5166666666667) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 84.1333333333333 +t_x_{1}_{15} 1 (obj:25.1833333333333) +t_x_{2}_{15} 1 (obj:25.1833333333333) +t_x_{3}_{15} 1 (obj:29.6333333333333) +t_x_{4}_{15} 1 (obj:28.5166666666667) +t_x_{5}_{15} 1 (obj:28.5166666666667) +t_x_{6}_{15} 1 (obj:21.2) +72.158333 +6 iteration +objective value: 72.1583333333333 +t_x_{1}_{0} 1 (obj:22.8888888888889) +t_x_{2}_{0} 1 (obj:21.8888888888889) +t_x_{3}_{15} 1 (obj:29.6333333333333) +t_x_{4}_{15} 1 (obj:29.5361111111111) +t_x_{5}_{15} 1 (obj:29.5361111111111) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 73.9972222222222 +t_x_{1}_{0} 1 (obj:22.8888888888889) +t_x_{2}_{0} 1 (obj:21.8888888888889) +t_x_{3}_{0} 1 (obj:31.4722222222222) +t_x_{4}_{15} 1 (obj:29.5361111111111) +t_x_{5}_{15} 1 (obj:29.5361111111111) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 75.7083333333333 +t_x_{1}_{15} 1 (obj:24.1638888888889) +t_x_{2}_{15} 1 (obj:24.1638888888889) +t_x_{3}_{15} 1 (obj:29.6333333333333) +t_x_{4}_{15} 1 (obj:29.5361111111111) +t_x_{5}_{15} 1 (obj:29.5361111111111) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 78.0638888888889 +t_x_{1}_{0} 1 (obj:22.8888888888889) +t_x_{2}_{0} 1 (obj:21.8888888888889) +t_x_{3}_{0} 1 (obj:31.4722222222222) +t_x_{4}_{0} 1 (obj:31.5694444444444) +t_x_{5}_{0} 1 (obj:31.5694444444444) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 82.0944444444444 +t_x_{1}_{15} 1 (obj:24.1638888888889) +t_x_{2}_{15} 1 (obj:24.1638888888889) +t_x_{3}_{15} 1 (obj:29.6333333333333) +t_x_{4}_{15} 1 (obj:29.5361111111111) +t_x_{5}_{15} 1 (obj:29.5361111111111) +t_x_{6}_{15} 1 (obj:22.2194444444444) +72.450000 +7 iteration +objective value: 72.45 +t_x_{1}_{0} 1 (obj:23.8916666666667) +t_x_{2}_{0} 1 (obj:22.8916666666667) +t_x_{3}_{30} 1 (obj:30) +t_x_{4}_{30} 1 (obj:30) +t_x_{5}_{30} 1 (obj:30) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 77.0055555555556 +t_x_{1}_{0} 1 (obj:23.8916666666667) +t_x_{2}_{0} 1 (obj:22.8916666666667) +t_x_{3}_{0} 1 (obj:31.4722222222222) +t_x_{4}_{15} 1 (obj:31.5416666666667) +t_x_{5}_{15} 1 (obj:31.5416666666667) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 77.0611111111111 +t_x_{1}_{0} 1 (obj:23.8916666666667) +t_x_{2}_{0} 1 (obj:22.8916666666667) +t_x_{3}_{0} 1 (obj:31.4722222222222) +t_x_{4}_{0} 1 (obj:31.5694444444444) +t_x_{5}_{0} 1 (obj:31.5694444444444) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 77.1722222222222 +t_x_{1}_{0} 1 (obj:23.8916666666667) +t_x_{2}_{0} 1 (obj:22.8916666666667) +t_x_{3}_{15} 1 (obj:31.6388888888889) +t_x_{4}_{15} 1 (obj:31.5416666666667) +t_x_{5}_{15} 1 (obj:31.5416666666667) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 78.7166666666667 +t_x_{1}_{15} 1 (obj:24.1638888888889) +t_x_{2}_{15} 1 (obj:24.1638888888889) +t_x_{3}_{15} 1 (obj:31.6388888888889) +t_x_{4}_{15} 1 (obj:31.5416666666667) +t_x_{5}_{15} 1 (obj:31.5416666666667) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 86.1055555555556 +t_x_{1}_{15} 1 (obj:24.1638888888889) +t_x_{2}_{15} 1 (obj:24.1638888888889) +t_x_{3}_{15} 1 (obj:31.6388888888889) +t_x_{4}_{15} 1 (obj:31.5416666666667) +t_x_{5}_{15} 1 (obj:31.5416666666667) +t_x_{6}_{15} 1 (obj:23.2222222222222) +68.869097 +8 iteration +objective value: 68.8690972222222 +t_x_{1}_{15} 1 (obj:22.3190972222222) +t_x_{2}_{15} 1 (obj:22.3190972222222) +t_x_{3}_{15} 1 (obj:29.6381944444444) +t_x_{4}_{15} 1 (obj:29.5409722222222) +t_x_{5}_{15} 1 (obj:29.5409722222222) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 73.0149305555556 +t_x_{1}_{0} 1 (obj:24.8920138888889) +t_x_{2}_{0} 1 (obj:23.8920138888889) +t_x_{3}_{15} 1 (obj:29.6381944444444) +t_x_{4}_{15} 1 (obj:29.5409722222222) +t_x_{5}_{15} 1 (obj:29.5409722222222) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 74.8489583333333 +t_x_{1}_{0} 1 (obj:24.8920138888889) +t_x_{2}_{0} 1 (obj:23.8920138888889) +t_x_{3}_{0} 1 (obj:31.4722222222222) +t_x_{4}_{15} 1 (obj:29.5409722222222) +t_x_{5}_{15} 1 (obj:29.5409722222222) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 75.2576388888889 +t_x_{1}_{15} 1 (obj:22.3190972222222) +t_x_{2}_{15} 1 (obj:22.3190972222222) +t_x_{3}_{15} 1 (obj:29.6381944444444) +t_x_{4}_{15} 1 (obj:29.5409722222222) +t_x_{5}_{15} 1 (obj:29.5409722222222) +t_x_{6}_{15} 1 (obj:22.221875) +objective value: 78.9059027777778 +t_x_{1}_{0} 1 (obj:24.8920138888889) +t_x_{2}_{0} 1 (obj:23.8920138888889) +t_x_{3}_{0} 1 (obj:31.4722222222222) +t_x_{4}_{0} 1 (obj:31.5694444444444) +t_x_{5}_{0} 1 (obj:31.5694444444444) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 80.296875 +t_x_{1}_{0} 1 (obj:24.8920138888889) +t_x_{2}_{0} 1 (obj:23.8920138888889) +t_x_{3}_{30} 1 (obj:32.0006944444444) +t_x_{4}_{30} 1 (obj:32.0006944444444) +t_x_{5}_{30} 1 (obj:32.0006944444444) +t_x_{6}_{0} 1 (obj:15.8333333333333) +69.768017 +9 iteration +objective value: 69.7680169753086 +t_x_{1}_{0} 1 (obj:22.8919367283951) +t_x_{2}_{0} 1 (obj:21.8919367283951) +t_x_{3}_{0} 1 (obj:29.4721450617284) +t_x_{4}_{30} 1 (obj:30.0006172839506) +t_x_{5}_{30} 1 (obj:30.0006172839506) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 70.2964891975308 +t_x_{1}_{0} 1 (obj:22.8919367283951) +t_x_{2}_{0} 1 (obj:21.8919367283951) +t_x_{3}_{30} 1 (obj:30.0006172839506) +t_x_{4}_{30} 1 (obj:30.0006172839506) +t_x_{5}_{30} 1 (obj:30.0006172839506) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 70.9055941358024 +t_x_{1}_{0} 1 (obj:22.8919367283951) +t_x_{2}_{0} 1 (obj:21.8919367283951) +t_x_{3}_{0} 1 (obj:29.4721450617284) +t_x_{4}_{0} 1 (obj:30.5694058641975) +t_x_{5}_{0} 1 (obj:30.5694058641975) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 74.8489583333333 +t_x_{1}_{0} 1 (obj:22.8919367283951) +t_x_{2}_{0} 1 (obj:21.8919367283951) +t_x_{3}_{0} 1 (obj:29.4721450617284) +t_x_{4}_{15} 1 (obj:32.541087962963) +t_x_{5}_{15} 1 (obj:32.541087962963) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 79.015162037037 +t_x_{1}_{0} 1 (obj:22.8919367283951) +t_x_{2}_{0} 1 (obj:21.8919367283951) +t_x_{3}_{15} 1 (obj:33.6383487654321) +t_x_{4}_{15} 1 (obj:32.541087962963) +t_x_{5}_{15} 1 (obj:32.541087962963) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 84.8697145061728 +t_x_{1}_{15} 1 (obj:25.319212962963) +t_x_{2}_{15} 1 (obj:25.319212962963) +t_x_{3}_{15} 1 (obj:33.6383487654321) +t_x_{4}_{15} 1 (obj:32.541087962963) +t_x_{5}_{15} 1 (obj:32.541087962963) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 92.2582947530864 +t_x_{1}_{15} 1 (obj:25.319212962963) +t_x_{2}_{15} 1 (obj:25.319212962963) +t_x_{3}_{15} 1 (obj:33.6383487654321) +t_x_{4}_{15} 1 (obj:32.541087962963) +t_x_{5}_{15} 1 (obj:32.541087962963) +t_x_{6}_{15} 1 (obj:23.2219135802469) +73.231952 +10 iteration +objective value: 73.2319521604938 +t_x_{1}_{15} 1 (obj:23.3192052469136) +t_x_{2}_{15} 1 (obj:23.3192052469136) +t_x_{3}_{30} 1 (obj:30.0006172839506) +t_x_{4}_{15} 1 (obj:30.5410802469136) +t_x_{5}_{15} 1 (obj:30.5410802469136) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 74.8696759259259 +t_x_{1}_{15} 1 (obj:23.3192052469136) +t_x_{2}_{15} 1 (obj:23.3192052469136) +t_x_{3}_{15} 1 (obj:31.6383410493827) +t_x_{4}_{15} 1 (obj:30.5410802469136) +t_x_{5}_{15} 1 (obj:30.5410802469136) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 76.296512345679 +t_x_{1}_{0} 1 (obj:24.8919444444444) +t_x_{2}_{0} 1 (obj:23.8919444444444) +t_x_{3}_{30} 1 (obj:30.0006172839506) +t_x_{4}_{30} 1 (obj:31.0006211419753) +t_x_{5}_{30} 1 (obj:31.0006211419753) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 76.8489660493827 +t_x_{1}_{0} 1 (obj:24.8919444444444) +t_x_{2}_{0} 1 (obj:23.8919444444444) +t_x_{3}_{0} 1 (obj:31.4721527777778) +t_x_{4}_{15} 1 (obj:30.5410802469136) +t_x_{5}_{15} 1 (obj:30.5410802469136) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 77.0151543209876 +t_x_{1}_{0} 1 (obj:24.8919444444444) +t_x_{2}_{0} 1 (obj:23.8919444444444) +t_x_{3}_{15} 1 (obj:31.6383410493827) +t_x_{4}_{15} 1 (obj:30.5410802469136) +t_x_{5}_{15} 1 (obj:30.5410802469136) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 77.7680478395062 +t_x_{1}_{0} 1 (obj:24.8919444444444) +t_x_{2}_{0} 1 (obj:23.8919444444444) +t_x_{3}_{0} 1 (obj:31.4721527777778) +t_x_{4}_{30} 1 (obj:31.0006211419753) +t_x_{5}_{30} 1 (obj:31.0006211419753) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 78.905625 +t_x_{1}_{0} 1 (obj:24.8919444444444) +t_x_{2}_{0} 1 (obj:23.8919444444444) +t_x_{3}_{0} 1 (obj:31.4721527777778) +t_x_{4}_{0} 1 (obj:31.5694097222222) +t_x_{5}_{0} 1 (obj:31.5694097222222) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 81.2582523148148 +t_x_{1}_{15} 1 (obj:23.3192052469136) +t_x_{2}_{15} 1 (obj:23.3192052469136) +t_x_{3}_{15} 1 (obj:31.6383410493827) +t_x_{4}_{15} 1 (obj:30.5410802469136) +t_x_{5}_{15} 1 (obj:30.5410802469136) +t_x_{6}_{15} 1 (obj:22.2219097222222) +69.768045 +11 iteration +objective value: 69.76804503367 +t_x_{1}_{0} 1 (obj:22.8919437429854) +t_x_{2}_{0} 1 (obj:21.8919437429854) +t_x_{3}_{0} 1 (obj:29.4721520763187) +t_x_{4}_{30} 1 (obj:30.0006207912458) +t_x_{5}_{30} 1 (obj:30.0006207912458) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 70.2965102413019 +t_x_{1}_{0} 1 (obj:22.8919437429854) +t_x_{2}_{0} 1 (obj:21.8919437429854) +t_x_{3}_{30} 1 (obj:30.0006172839506) +t_x_{4}_{30} 1 (obj:30.0006207912458) +t_x_{5}_{30} 1 (obj:30.0006207912458) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 70.9056221941638 +t_x_{1}_{0} 1 (obj:22.8919437429854) +t_x_{2}_{0} 1 (obj:21.8919437429854) +t_x_{3}_{0} 1 (obj:29.4721520763187) +t_x_{4}_{0} 1 (obj:30.5694093714927) +t_x_{5}_{0} 1 (obj:30.5694093714927) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 74.8489653479237 +t_x_{1}_{0} 1 (obj:22.8919437429854) +t_x_{2}_{0} 1 (obj:21.8919437429854) +t_x_{3}_{0} 1 (obj:29.4721520763187) +t_x_{4}_{15} 1 (obj:32.5410809483726) +t_x_{5}_{15} 1 (obj:32.5410809483726) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 79.0151550224467 +t_x_{1}_{0} 1 (obj:22.8919437429854) +t_x_{2}_{0} 1 (obj:21.8919437429854) +t_x_{3}_{15} 1 (obj:33.6383417508418) +t_x_{4}_{15} 1 (obj:32.5410809483726) +t_x_{5}_{15} 1 (obj:32.5410809483726) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 81.23195496633 +t_x_{1}_{15} 1 (obj:25.3192059483726) +t_x_{2}_{15} 1 (obj:25.3192059483726) +t_x_{3}_{30} 1 (obj:30.0006172839506) +t_x_{4}_{15} 1 (obj:32.5410809483726) +t_x_{5}_{15} 1 (obj:32.5410809483726) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 84.8696794332211 +t_x_{1}_{15} 1 (obj:25.3192059483726) +t_x_{2}_{15} 1 (obj:25.3192059483726) +t_x_{3}_{15} 1 (obj:33.6383417508418) +t_x_{4}_{15} 1 (obj:32.5410809483726) +t_x_{5}_{15} 1 (obj:32.5410809483726) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 92.2582561728395 +t_x_{1}_{15} 1 (obj:25.3192059483726) +t_x_{2}_{15} 1 (obj:25.3192059483726) +t_x_{3}_{15} 1 (obj:33.6383417508418) +t_x_{4}_{15} 1 (obj:32.5410809483726) +t_x_{5}_{15} 1 (obj:32.5410809483726) +t_x_{6}_{15} 1 (obj:23.2219100729517) +73.231955 +12 iteration +objective value: 73.2319547325103 +t_x_{1}_{15} 1 (obj:23.3192058899177) +t_x_{2}_{15} 1 (obj:23.3192058899177) +t_x_{3}_{30} 1 (obj:30.0006172839506) +t_x_{4}_{15} 1 (obj:30.5410808899177) +t_x_{5}_{15} 1 (obj:30.5410808899177) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 74.8696791409465 +t_x_{1}_{15} 1 (obj:23.3192058899177) +t_x_{2}_{15} 1 (obj:23.3192058899177) +t_x_{3}_{15} 1 (obj:31.6383416923868) +t_x_{4}_{15} 1 (obj:30.5410808899177) +t_x_{5}_{15} 1 (obj:30.5410808899177) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 76.2965104166667 +t_x_{1}_{0} 1 (obj:24.8919438014403) +t_x_{2}_{0} 1 (obj:23.8919438014403) +t_x_{3}_{30} 1 (obj:30.0006172839506) +t_x_{4}_{30} 1 (obj:31.0006208204733) +t_x_{5}_{30} 1 (obj:31.0006208204733) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 76.8489654063786 +t_x_{1}_{0} 1 (obj:24.8919438014403) +t_x_{2}_{0} 1 (obj:23.8919438014403) +t_x_{3}_{0} 1 (obj:31.4721521347737) +t_x_{4}_{15} 1 (obj:30.5410808899177) +t_x_{5}_{15} 1 (obj:30.5410808899177) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 77.0151549639918 +t_x_{1}_{0} 1 (obj:24.8919438014403) +t_x_{2}_{0} 1 (obj:23.8919438014403) +t_x_{3}_{15} 1 (obj:31.6383416923868) +t_x_{4}_{15} 1 (obj:30.5410808899177) +t_x_{5}_{15} 1 (obj:30.5410808899177) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 77.7680452674897 +t_x_{1}_{0} 1 (obj:24.8919438014403) +t_x_{2}_{0} 1 (obj:23.8919438014403) +t_x_{3}_{0} 1 (obj:31.4721521347737) +t_x_{4}_{30} 1 (obj:31.0006208204733) +t_x_{5}_{30} 1 (obj:31.0006208204733) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 78.9056224279835 +t_x_{1}_{0} 1 (obj:24.8919438014403) +t_x_{2}_{0} 1 (obj:23.8919438014403) +t_x_{3}_{0} 1 (obj:31.4721521347737) +t_x_{4}_{0} 1 (obj:31.5694094007202) +t_x_{5}_{0} 1 (obj:31.5694094007202) +t_x_{6}_{0} 1 (obj:15.8333333333333) +objective value: 81.2582558513375 +t_x_{1}_{15} 1 (obj:23.3192058899177) +t_x_{2}_{15} 1 (obj:23.3192058899177) +t_x_{3}_{15} 1 (obj:31.6383416923868) +t_x_{4}_{15} 1 (obj:30.5410808899177) +t_x_{5}_{15} 1 (obj:30.5410808899177) +t_x_{6}_{15} 1 (obj:22.2219100437243) +>>>>>>> 3d92d06a76cc6c4667871c4c3b4d0e3184fc9a3b diff --git a/sol.txt b/sol.txt index d99c9014604eb0b877903d0b144a778b3a8d2c54..132ed3bbab48a51539a990b1d111708b18d6e3a2 100644 --- a/sol.txt +++ b/sol.txt @@ -1,3 +1,4 @@ +<<<<<<< HEAD number of solutions 1, first iteration bound=969553.451655, objsol=969553.451655 number of solutions 2, first iteration bound=911613.111366, objsol=911613.111366 number of solutions 4, first iteration bound=947154.171486, objsol=947154.171486 @@ -649,3 +650,30 @@ number of solutions 11, first iteration bound=1336062.455449, objsol=1336062 number of solutions 9, first iteration bound=1336062.871911, objsol=1336062.871911 number of solutions 11, first iteration bound=1336062.125530, objsol=1336062.125530 number of solutions 9, first iteration bound=1336062.948754, objsol=1336062.948754 +======= +number of solutions 1, first iteration bound=1.000000, objsol=1.000000 +lowerbound = 1.000000 + number of solutions 2, first iteration bound=34.000000, objsol=34.000000 +lowerbound = 90.000000 + number of solutions 2, first iteration bound=58.333333, objsol=58.333333 +lowerbound = 1.000000 + number of solutions 3, first iteration bound=64.250000, objsol=64.250000 +lowerbound = 75.000000 + number of solutions 4, first iteration bound=68.900000, objsol=68.900000 +lowerbound = 31.000000 + number of solutions 5, first iteration bound=72.158333, objsol=72.158333 +lowerbound = 46.000000 + number of solutions 6, first iteration bound=72.450000, objsol=72.450000 +lowerbound = 91.000000 + number of solutions 6, first iteration bound=68.869097, objsol=68.869097 +lowerbound = 75.000000 + number of solutions 7, first iteration bound=69.768017, objsol=69.768017 +lowerbound = 61.000000 + number of solutions 8, first iteration bound=73.231952, objsol=73.231952 +lowerbound = 90.000000 + number of solutions 8, first iteration bound=69.768045, objsol=69.768045 +lowerbound = 61.000000 + number of solutions 8, first iteration bound=73.231955, objsol=73.231955 +lowerbound = 90.000000 + +>>>>>>> 3d92d06a76cc6c4667871c4c3b4d0e3184fc9a3b diff --git a/src/relax_lagr.cpp b/src/relax_lagr.cpp index dcc27e4dcc6fe23462e4560089a84088c06cfeda..c9304b341ffe70e5f5182fe26781bac9eead9a0d 100644 --- a/src/relax_lagr.cpp +++ b/src/relax_lagr.cpp @@ -304,13 +304,21 @@ SCIP_DECL_RELAXINIT(relaxInitlagr) iter=fopen("iter.txt","wr"); +<<<<<<< HEAD //fprintf(lower, "hi"); +======= + fprintf(lower, "hi"); +>>>>>>> 3d92d06a76cc6c4667871c4c3b4d0e3184fc9a3b SCIP_Real* solvals; SCIP_CALL(SCIPallocBufferArray(relaxscip,&solvals,nvars+2)); solvals[nvars+1]=0; //for last solutions solvals[nvars]=0; //for best solution +<<<<<<< HEAD int maxiter=1500; +======= + int maxiter=12; +>>>>>>> 3d92d06a76cc6c4667871c4c3b4d0e3184fc9a3b int oscilatecounter=0; int improvementcounter = 0; @@ -352,7 +360,11 @@ SCIP_DECL_RELAXINIT(relaxInitlagr) SCIPinfoMessage(relaxscip, TimeCollector, "\n finished changing the variable's weight after (sec) : %f\n", SCIPgetClockTime(relaxscip, totaliteration)); SCIP_CALL(SCIPaddOrigObjoffset(relaxscip,-1*sumofduals)); +<<<<<<< HEAD //SCIP_CALL(SCIPprintOrigProblem(relaxscip, AfterPreProcessing, "lp", FALSE)); +======= + SCIP_CALL(SCIPprintOrigProblem(relaxscip, AfterPreProcessing, "lp", FALSE)); +>>>>>>> 3d92d06a76cc6c4667871c4c3b4d0e3184fc9a3b SCIPsetMessagehdlrQuiet(relaxscip, TRUE); // fclose(AfterPreProcessing); @@ -390,10 +402,17 @@ SCIP_DECL_RELAXINIT(relaxInitlagr) SCIP_SOL** sols = SCIPgetSols(relaxscip); int nsols = SCIPgetNSols(relaxscip); +<<<<<<< HEAD //fprintf(lower,"%d iteration \n",iter); for(int n=0; n<nsols; n++) { //SCIP_CALL(SCIPprintSol(relaxscip,sols[n],lower,FALSE)); +======= + fprintf(lower,"%d iteration \n",iter); + for(int n=0; n<nsols; n++) + { + SCIP_CALL(SCIPprintSol(relaxscip,sols[n],lower,FALSE)); +>>>>>>> 3d92d06a76cc6c4667871c4c3b4d0e3184fc9a3b } @@ -466,11 +485,16 @@ SCIP_DECL_RELAXINIT(relaxInitlagr) // fprintf(dual,"dualbound = %f, lowerbound=%f, norm of subgrad %f\t",SCIPgetPrimalbound(relaxscip),lowerbound, getnorm(subgradients,nSlotConss,stepsize)); // fprintf(lower,"%f\n",lowerbound); +<<<<<<< HEAD SCIP_Real difference = 3000000-SCIPgetPrimalbound(relaxscip); if(improvementcounter<5){stepsize = 0.25*(difference)/(getnorm(subgradients,nSlotConss,stepsize)*getnorm(subgradients,nSlotConss,stepsize));} else{stepsize = 0.1*(difference)/(getnorm(subgradients,nSlotConss,stepsize)*getnorm(subgradients,nSlotConss,stepsize));} //fprintf(dual,"dualbound = %f, lowerbound=%f, norm of subgrad %f\t stepsize= %f \n" ,SCIPgetPrimalbound(relaxscip),lowerbound, getnorm(subgradients,nSlotConss,stepsize), stepsize); +======= + // stepsize = (SCIPgetPrimalbound(relaxscip)-lowerbound)/getnorm(subgradients,nSlotConss,stepsize); + fprintf(dual,"dualbound = %f, lowerbound=%f, norm of subgrad %f\t stepsize= %f \n" ,SCIPgetPrimalbound(relaxscip),lowerbound, getnorm(subgradients,nSlotConss,stepsize), stepsize); +>>>>>>> 3d92d06a76cc6c4667871c4c3b4d0e3184fc9a3b SCIP_CALL( SCIPfreeTransform(relaxscip) ); //fprintf(solutions, "lowerbound = %f \n ", lowerbound); @@ -487,7 +511,11 @@ SCIP_DECL_RELAXINIT(relaxInitlagr) if(dualmultipliers[r]<0){dualmultipliers[r]=0;} sumofduals+=dualmultipliers[r]; +<<<<<<< HEAD //fprintf(dual," then dual = %f step size %f, subgradient %f \n",dualmultipliers[r], stepsize,subgradients[r]); +======= + fprintf(dual," then dual = %f step size %f, subgradient %f \n",dualmultipliers[r], stepsize,subgradients[r]); +>>>>>>> 3d92d06a76cc6c4667871c4c3b4d0e3184fc9a3b } // sumofduals=sum; // fprintf(dual,"iteration %d, sumofduals=%f\n",iter, sumofduals); diff --git a/time.txt b/time.txt index f2b1d97262164ff8c5e6d514d1424b8f06d787a3..ae7ae1c06588c4cf6e567fa4753b2b0bd1e558f9 100644 --- a/time.txt +++ b/time.txt @@ -1,4 +1,5 @@ +<<<<<<< HEAD row and column identified in (sec) : 5.892216 finished changing the variable's weight after (sec) : 0.000992 @@ -1952,3 +1953,114 @@ 187.977834 finished changing the variable's weight after (sec) : 187.978965 +======= + row and column identified in (sec) : 0.001725 + + finished changing the variable's weight after (sec) : 0.001725 + + first iteration: problem solved after (sec) : 0.001725 + + subgradients found after (sec) : 0.001725 +, lowerbound = 1.000000 + + new dual found after (sec) : 0.001725 + + finished changing the variable's weight after (sec) : 0.001725 + + first iteration: problem solved after (sec) : 0.001725 + + subgradients found after (sec) : 0.001725 +, lowerbound = 90.000000 + + new dual found after (sec) : 0.001725 + + finished changing the variable's weight after (sec) : 0.001725 + + first iteration: problem solved after (sec) : 0.001725 + + subgradients found after (sec) : 0.001725 +, lowerbound = 1.000000 + + new dual found after (sec) : 0.001725 + + finished changing the variable's weight after (sec) : 0.001725 + + first iteration: problem solved after (sec) : 0.001725 + + subgradients found after (sec) : 0.001725 +, lowerbound = 75.000000 + + new dual found after (sec) : 0.001725 + + finished changing the variable's weight after (sec) : 0.001725 + + first iteration: problem solved after (sec) : 0.001725 + + subgradients found after (sec) : 0.001725 +, lowerbound = 31.000000 + + new dual found after (sec) : 0.001725 + + finished changing the variable's weight after (sec) : 0.001725 + + first iteration: problem solved after (sec) : 0.001725 + + subgradients found after (sec) : 0.001725 +, lowerbound = 46.000000 + + new dual found after (sec) : 0.001725 + + finished changing the variable's weight after (sec) : 0.001725 + + first iteration: problem solved after (sec) : 0.001725 + + subgradients found after (sec) : 0.001725 +, lowerbound = 91.000000 + + new dual found after (sec) : 0.001725 + + finished changing the variable's weight after (sec) : 0.001725 + + first iteration: problem solved after (sec) : 0.001725 + + subgradients found after (sec) : 0.001725 +, lowerbound = 75.000000 + + new dual found after (sec) : 0.001725 + + finished changing the variable's weight after (sec) : 0.001725 + + first iteration: problem solved after (sec) : 0.001725 + + subgradients found after (sec) : 0.001725 +, lowerbound = 61.000000 + + new dual found after (sec) : 0.001725 + + finished changing the variable's weight after (sec) : 0.001725 + + first iteration: problem solved after (sec) : 0.001725 + + subgradients found after (sec) : 0.001725 +, lowerbound = 90.000000 + + new dual found after (sec) : 0.001725 + + finished changing the variable's weight after (sec) : 0.001725 + + first iteration: problem solved after (sec) : 0.001725 + + subgradients found after (sec) : 0.001725 +, lowerbound = 61.000000 + + new dual found after (sec) : 0.001725 + + finished changing the variable's weight after (sec) : 0.001725 + + first iteration: problem solved after (sec) : 0.001725 + + subgradients found after (sec) : 0.001725 +, lowerbound = 90.000000 + + new dual found after (sec) : 0.001725 +>>>>>>> 3d92d06a76cc6c4667871c4c3b4d0e3184fc9a3b diff --git a/var.txt b/var.txt index d628d834b7cb6a1ddc7e9cad90a9e0535ec5420e..d5534745f553a9f0352ed4e0291ee68428341d9e 100644 --- a/var.txt +++ b/var.txt @@ -1,3 +1,4 @@ +<<<<<<< HEAD 969553.451655 969553.451655 969553.451655 @@ -649,3 +650,17 @@ 1336062.871911 1336062.871911 1336062.948754 +======= +1.000000 +34.000000 +58.333333 +64.250000 +68.900000 +72.158333 +72.450000 +72.450000 +72.450000 +73.231952 +73.231952 +73.231955 +>>>>>>> 3d92d06a76cc6c4667871c4c3b4d0e3184fc9a3b