Skip to content
Snippets Groups Projects
Commit 57d14cc7 authored by Seifert, Prof. Dr. Stephan's avatar Seifert, Prof. Dr. Stephan
Browse files

Projekt angelegt und Daten gespeichert

parent 9e3bbec4
No related branches found
No related tags found
No related merge requests found
File added
data
myTabl = function(data){
DT::datatable(data, rownames = FALSE,
class = 'cell-border stripe',
extensions = 'Buttons',
options = list(dom = 'Bfrtip',
buttons = c('copy', 'excel', 'pdf'),
autoWidth = TRUE))
}
myPlot = function(data){
}
\ No newline at end of file
*.pdf
*.RData
*.tex
*.log
load("/run/user/1000/gvfs/sftp:host=balin,user=stephan/home/stephan/VarSelMinDep/subprojects/12_experimental/data/gene_expression_array/experimental/classification/results/ntree_10000_mtry_prop_0.33/ranger_janitza/different_seeds/seq_seed1.RData")
array.seed1=saveLoadReference
load("/run/user/1000/gvfs/sftp:host=balin,user=stephan/home/stephan/VarSelMinDep/subprojects/12_experimental/data/gene_expression_array/experimental/classification/results/ntree_10000_mtry_prop_0.33/ranger_janitza/different_seeds/array_seed2.RData")
array.seed2=saveLoadReference
importance.array1=array.seed1$importance.array
importance.array2=array.seed2$importance.array
variables.array2=subset(importance.array2,importance.array2[,2]==0)
variables.array1=subset(importance.array1,importance.array1[,2]==0)
load("/run/user/1000/gvfs/sftp:host=balin,user=stephan/home/stephan/VarSelMinDep/subprojects/12_experimental/data/gene_expression_array/experimental/classification/results/ntree_10000_mtry_prop_0.33/ranger_janitza/different_seeds/seq_seed1.RData")
array.seq1=saveLoadReference
files.dir="sftp://stephan@balin/home/stephan/VarSelMinDep/subprojects/12_experimental/data/gene_expression_array/experimental/classification/results/ntree_10000_mtry_prop_0.33/ranger_janitza/different_seeds"
?loadObject
library(base)
?loadObject
require(R.utils)
?loadObject
seq.seed1=loadObject(file=paste(files.dir,"/seq_seed1.RData"))
files.dir="/home/stephan/Dokumente/VarSelMinDep/subprojects/12_experimental/data/gene_expression_array/experimental/classification/results/ntree_10000_mtry_prop_0.33/ranger_janitza"
seq.seed1=loadObject(file=paste(files.dir,"/seq_seed1.RData"))
seq.seed1=loadObject(file=paste0(files.dir,"/seq_seed1.RData"))
files.dir="/home/stephan/Dokumente/VarSelMinDep/subprojects/12_experimental/data/gene_expression_array/experimental/classification/results/ntree_10000_mtry_prop_0.33/ranger_janitza/different_seeds"
seq.seed1=loadObject(file=paste0(files.dir,"/seq_seed1.RData"))
files.dir="/home/stephan/Dokumente/VarSelMinDep/subprojects/12_experimental/data/gene_expression_array/experimental/classification/results/ntree_10000_mtry_prop_0.33/ranger_janitza/different_seeds"
require(R.utils)
seq.seed1=loadObject(file=paste0(files.dir,"/seq_seed1.RData"))
seq.seed2=loadObject(file=paste0(files.dir,"/seq_seed2.RData"))
seq.array1=loadObject(file=paste0(files.dir,"/array_seed1.RData"))
seq.array2=loadObject(file=paste0(files.dir,"/array_seed2.RData"))
array.seed1=loadObject(file=paste0(files.dir,"/array_seed1.RData"))
array.seed2=loadObject(file=paste0(files.dir,"/array_seed2.RData"))
importance.array1=array.seed1$importance.array
importance.array2=array.seed2$importance.array
importance.seq2=seq.seed2$importance.array
importance.seq1=seq.seed1$importance.array
variables.array1=subset(importance.array1,importance.array1[,2]==0)
variables.array2=subset(importance.array2,importance.array2[,2]==0)
variables.seq1=subset(importance.seq1,importance.seq1[,2]==0)
variables.seq2=subset(importance.seq2,importance.seq2[,2]==0)
load("/run/user/1000/gvfs/sftp:host=balin,user=stephan/home/stephan/VarSelMinDep/subprojects/13_frauke/data_input/breastcancer.array.RData")
load("/run/user/1000/gvfs/sftp:host=balin,user=stephan/home/stephan/VarSelMinDep/subprojects/13_frauke/output/classification/array/ntree_10000_mtry_prop_0.33/boruta/par_standard/results_rep_1.RData")
array1.boruta=saveLoadReference
load("/run/user/1000/gvfs/sftp:host=balin,user=stephan/home/stephan/VarSelMinDep/subprojects/13_frauke/output/classification/array/ntree_10000_mtry_prop_0.33/boruta/par_standard/results_rep_2.RData")
array2.boruta=saveLoadReference
load("/run/user/1000/gvfs/sftp:host=balin,user=stephan/home/stephan/VarSelMinDep/subprojects/13_frauke/output/classification/array/ntree_10000_mtry_prop_0.33/boruta/par_standard/results_rep_42.RData")
array.frauke.boruta=saveLoadReference
load("/run/user/1000/gvfs/sftp:host=balin,user=stephan/home/stephan/VarSelMinDep/subprojects/13_frauke/output/classification/rna/ntree_10000_mtry_prop_0.33/boruta/par_standard/results_rep_1.RData")
seq1.boruta=saveLoadReference
load("/run/user/1000/gvfs/sftp:host=balin,user=stephan/home/stephan/VarSelMinDep/subprojects/13_frauke/output/classification/rna/ntree_10000_mtry_prop_0.33/boruta/par_standard/results_rep_2.RData")
seq2.boruta=saveLoadReference
load("/run/user/1000/gvfs/sftp:host=balin,user=stephan/home/stephan/VarSelMinDep/subprojects/13_frauke/output/classification/rna/ntree_10000_mtry_prop_0.33/boruta/par_standard/results_rep_42.RData")
seq.frauke.boruta=saveLoadReference
intersect(array.frauke.boruta$var, seq.frauke.boruta$var))
intersect(array.frauke.boruta$var, seq.frauke.boruta$var))
intersect(array.frauke.boruta$var, seq.frauke.boruta$var)
iarray.frauke.boruta$var
array.frauke.boruta$var
intersect(array.frauke.boruta$info$var, seq.frauke.boruta$info$var)
array.frauke.boruta$info$var
array.frauke.boruta
array.frauke.boruta$info
array.frauke.boruta[[1]]$info$var
array.frauke.boruta[[1]]$info
array.frauke.boruta[[1]]$var
intersect(array.frauke.boruta[[1]]$var, seq.frauke.boruta[[1]]$var)
load("/run/user/1000/gvfs/sftp:host=balin,user=stephan/home/stephan/VarSelMinDep/subprojects/13_frauke/data_input/breastcancer.array.RData")
load("/run/user/1000/gvfs/sftp:host=balin,user=stephan/home/stephan/VarSelMinDep/subprojects/13_frauke/data_input/breastcancer.array.RData")
saveLoadReference
View(saveLoadReference)
sim.file = file.path("/home/stephan/Dokumente/VarSelMinDep/subprojects/12_experimental/data_input/sum_exp_rna_array_common_genes_standardized.RData")
sim.data = loadObject(file = sim.file)
library(relVarId)
sim.data = loadObject(file = sim.file)
library(R.utils)
sim.data = loadObject(file = sim.file)
sim.file = file.path("/home/stephan/Dokumente/VarSelMinDep/subprojects/12_experimental/data_input/sum_exp_rna_array_common_genes_standardized.RData")
sim.data = loadObject(file = sim.file)
data.array=assays(sim.data)[[1]]
View(data.array)
y.array=colData(sim.data)$estrogen
data.array.use= data.array[,-which(is.na(y.array))]
y.array.use=y.array[-which(is.na(y.array))]
y.array
load("/run/user/1000/gvfs/sftp:host=balin,user=stephan/home/stephan/VarSelMinDep/subprojects/13_frauke/output/classification/array/ntree_10000_mtry_prop_0.33/boruta/par_standard/results_rep_1.RData")
boruta.array.1
boruta.array.1=saveLoadReference
load("/run/user/1000/gvfs/sftp:host=balin,user=stephan/home/stephan/VarSelMinDep/subprojects/13_frauke/output/classification/array/ntree_10000_mtry_prop_0.33/boruta/par_standard/results_rep_1.RData")
boruta.array.1=saveLoadReference
load("/run/user/1000/gvfs/sftp:host=balin,user=stephan/home/stephan/VarSelMinDep/subprojects/13_frauke/output/classification/array/ntree_10000_mtry_prop_0.33/boruta/par_standard/results_rep_2.RData")
boruta.array.1=saveLoadReference
boruta.array.2=saveLoadReference
load("/run/user/1000/gvfs/sftp:host=balin,user=stephan/home/stephan/VarSelMinDep/subprojects/13_frauke/output/classification/array/ntree_10000_mtry_prop_0.33/boruta/par_standard/results_rep_1.RData")
boruta.array.1=saveLoadReference
load("/run/user/1000/gvfs/sftp:host=balin,user=stephan/home/stephan/VarSelMinDep/subprojects/13_frauke/output/classification/array/ntree_10000_mtry_prop_0.33/boruta/par_standard/results_rep_42.RData")
boruta.array.f=saveLoadReference
var.boruta.array.1[[1]]$var
var.boruta.array.1=boruta-array.1[[1]]$var
var.boruta.array.1=boruta.array.1[[1]]$var
var.boruta.array.2=boruta.array.2[[1]]$var
var.boruta.array.f=boruta.array.f[[1]]$var
length(intersect(var.boruta.array.1,var.boruta.array.2)
length(intersect(var.boruta.array.1,var.boruta.array.2))
length(intersect(var.boruta.array.3,var.boruta.array.2))
length(intersect(var.boruta.array.f,var.boruta.array.2))
length(intersect(var.boruta.array.f,var.boruta.array.1))
load("/run/user/1000/gvfs/sftp:host=balin,user=stephan/home/stephan/VarSelMinDep/subprojects/13_frauke/output/classification/rna/ntree_10000_mtry_prop_0.33/boruta/par_standard/results_rep_1.RData")
boruta.seq.1=saveLoadReference
load("/run/user/1000/gvfs/sftp:host=balin,user=stephan/home/stephan/VarSelMinDep/subprojects/13_frauke/output/classification/rna/ntree_10000_mtry_prop_0.33/boruta/par_standard/results_rep_2.RData")
boruta.seq.2=saveLoadReference
load("/run/user/1000/gvfs/sftp:host=balin,user=stephan/home/stephan/VarSelMinDep/subprojects/13_frauke/output/classification/rna/ntree_10000_mtry_prop_0.33/boruta/par_standard/results_rep_42.RData")
boruta.seq.f=saveLoadReference
var.boruta.seq.f=boruta.seq.f[[1]]$var
var.boruta.seq.1=boruta.seq.1[[1]]$var
var.boruta.seq.2=boruta.seq.2[[1]]$var
length(intersect(var.boruta.seq.f,var.boruta.seq.1))
length(intersect(var.boruta.seq.2,var.boruta.seq.1))
length(intersect(var.boruta.seq.2,var.boruta.seq.f))
length(intersect(var.boruta.array.f,var.boruta.seq.f))
20/104
?wrapper.rf
library(Boruta)
?Boruta
Boruta
load("/home/stephan/Dokumente/VarSelMinDep/subprojects/12_experimental/data/results_silke.RData")
results.silke=saveLoadReference
info.res.silke=results.silke$info.var.sel
View(info.res.silke)
var.silke.array=colnames(subset(info.res.silke,info.res.silke$var.sel.boruta.array==1))
var.silke.array=rownames(subset(info.res.silke,info.res.silke$var.sel.boruta.array==1))
var.silke.seq=rownames(subset(info.res.silke,info.res.silke$var.sel.boruta.rna==1))
intersect(var.boruta.array.f,var.silke.array)
intersect(var.boruta.seq.f,var.silke.seq)
array.txt=read.table("/home/stephan/Dokumente/VarSelMinDep/subprojects/13_frauke/data_input/sum_exp_rna_array_common_genes_standardized_assay.txt")
View(array.txt)
array.col=read.table("/home/stephan/Dokumente/VarSelMinDep/subprojects/13_frauke/data_input/sum_exp_rna_array_common_genes_standardized_coldata.txt")
View(array.txt)
sim.file = file.path("/home/stephan/Dokumente/VarSelMinDep/subprojects/12_experimental/data_input/sum_exp_rna_array_common_genes_standardized.RData")
sim.data = loadObject(file = sim.file)
data.array=assays(sim.data)[[1]]
array.txt.matrix=as.matrix(array.txt)
View(array.txt.matrix)
View(data.array)
load("/home/stephan/Dokumente/VarSelMinDep/subprojects/12_experimental/data/gene_expression_array/experimental/classification/results/ntree_10000_mtry_prop_0.33/allmethods/Boruta_seedFrauke_relVarID0.41_VitaSMD_from_50100200/array_train/SMD100.RData")
load("/home/stephan/Dokumente/VarSelMinDep/subprojects/12_experimental/data/gene_expression_array/experimental/classification/results/ntree_10000_mtry_prop_0.33/allmethods/Boruta_seedFrauke_relVarID0.41_VitaSMD_from_50100200/array_train/Janitza.RData")
load("/home/stephan/Dokumente/VarSelMinDep/subprojects/12_experimental/data/gene_expression_array/experimental/classification/results/ntree_10000_mtry_prop_0.33/allmethods/Boruta_seedFrauke_relVarID0.41_VitaSMD_from_50100200/array_train/SMD100.RData")
load("/home/stephan/Dokumente/VarSelMinDep/subprojects/12_experimental/data/gene_expression_array/experimental/classification/results/ntree_10000_mtry_prop_0.33/allmethods/Boruta_seedFrauke_relVarID0.41_VitaSMD_from_50100200/array_train/Janitza.RData")
load("/home/stephan/Dokumente/VarSelMinDep/subprojects/12_experimental/data/gene_expression_array/experimental/classification/results/ntree_10000_mtry_prop_0.33/allmethods/Boruta_seedFrauke_relVarID0.41_VitaSMD_from_50100200/array_train/Boruta.RData")
load("/home/stephan/Dokumente/VarSelMinDep/subprojects/12_experimental/data/gene_expression_array/experimental/classification/results/ntree_10000_mtry_prop_0.33/allmethods/50100200/array_train/SMD50.RData")
var.array=saveLoadReference$var
load("/home/stephan/Dokumente/VarSelMinDep/subprojects/12_experimental/data/gene_expression_array/experimental/classification/results/ntree_10000_mtry_prop_0.33/allmethods/50100200/seq_train/SMD50.RData")
var.seq=saveLoadReference$var
intersect(var.array,var.seq)
length(intersect(var.array,var.seq))/length(union(var.array,var.seq))
length(intersect(var.array,var.seq))/min(var.array,var.seq)
length(intersect(var.array,var.seq))/141
library(ranger)
?ranger
35*72
50*72
require(MASS)
# library(geoR)
# geoR has a _fast_ function for inverse chisquare draws
# geoR is not currently available on the compute servers
if(!require(geoR)){
rinvchisq <- function(n, df) {1/rchisq(n, df)}
}
############################################################################
data.gen.DJsim <- function(n.samp, n.case, n.path, n.assoc.path,
n.gene.path, n.metab.path, d1, d0, dd1, c1, c0, cc1,
corr.gg, corr.mm, corr.mg, gamma.range, eta.range) {
##########################################
### DATA PARAMETERS ###
# n.samp, number of samples
# n.case, number of cases
# n.path, number of pathways
# n.assoc.path, number of pathways associated with case status
# n.gene.path, number of genes per pathway
# n.metab.path, number of metabolties per pathway
# d1, probability of differential gene expression within associated pathway
# d0, probability of differential gene expression otherwise
# dd1, probability of up regulation
# c1, probability of differential metabolite intensity
# within associated pathway
# c0, probability of differential metabolite intensity otherwise
# cc1, probabiliy of up reguation
# gamma.range (a,b), draw gamma from uniform U(a,b), a>=0, b>0
# eta.range (c,d), draw gamma from uniform U(c,d), c>=0, d>0
# corr.gg, correlation between two genes
# corr.mm, correlation between two metabolites
# corr.mg, correlation between gene and metabolite
############################################
n.control <- n.samp - n.case
W.i <- c(rep(1, n.case), rep(0, n.control))
## GENE EXPRESSION ##
n.gene <- n.path * n.gene.path
#alpha = 0
#beta.j
mean.gene.var <- rinvchisq(n=n.gene, df=4)
beta.j <- rnorm(n=n.gene, mean=0, sd=2*sqrt(mean.gene.var))
#omega.j
abs.omega.j <- runif(n=n.gene, min=gamma.range[1], max=gamma.range[2])
bin.omega.j <- rbinom(n=n.gene, size=1, prob=dd1)
omega.j <- abs.omega.j * ifelse(bin.omega.j==1,1,-1)
#Dj
n.assoc.gene <- n.assoc.path*n.gene.path
dd <- c(rep(d1, n.assoc.gene), rep(d0, n.gene-n.assoc.gene))
Dj <- rbinom(n.gene, 1, dd)
## METABOLITE INTENSITY ##
n.metab <- n.path * n.metab.path
#theta = 0
#phi.k
mean.metab.var <- rinvchisq(n=n.metab, df=4)
phi.k <- rnorm(n=n.metab, mean=0, sd=2*sqrt(mean.metab.var))
#eta.k
abs.eta.k <- runif(n=n.metab, min=eta.range[1], max=eta.range[2])
bin.eta.k <- rbinom(n=n.metab, size=1, prob=cc1)
eta.k <- abs.eta.k * ifelse(bin.eta.k==1,1,-1)
#Ck
n.assoc.metab <- n.assoc.path*n.metab.path
cc <- c(rep(c1, n.assoc.metab), rep(c0, n.metab-n.assoc.metab))
Ck <- rbinom(n.metab, 1, cc)
## Draw multivariate normal vectors per pathway ##
y.ij.base <- z.ik.base <- vector()
for(l in 1:n.path){
start.g <- (l-1)*n.gene.path + 1
stop.g <- l*n.gene.path
start.m <- (l-1)*n.metab.path + 1
stop.m <- l*n.metab.path
# mean vector #
mean.vector <- c(beta.j[start.g:stop.g],phi.k[start.m:stop.m])
# variance-covariance matrix #
var.g <- mean.gene.var[start.g:stop.g]
var.m <- mean.metab.var[start.m:stop.m]
cov.gg <- corr.gg*(sqrt(var.g) %*% t(sqrt(var.g))) #Ng x Ng
cov.mm <- corr.mm*(sqrt(var.m) %*% t(sqrt(var.m))) #Nm x Nm
cov.mg <- corr.mg*(sqrt(var.m) %*% t(sqrt(var.g))) #Nm x Ng
cov.mat <- rbind(cbind(cov.gg, t(cov.mg)), cbind(cov.mg, cov.mm))
diag(cov.mat) <- c(var.g, var.m)
#
y.z.base <- mvrnorm(n=n.samp, mu=mean.vector, Sigma=cov.mat)
y.ij.base <- rbind(y.ij.base, t(y.z.base)[1:n.gene.path,])
z.ik.base <- rbind(z.ik.base,
t(y.z.base)[(n.gene.path+1):(n.gene.path+n.metab.path),])
}
y.ij <- y.ij.base + (omega.j*Dj) %*% t(W.i)
z.ik <- z.ik.base + (eta.k*Ck) %*% t(W.i)
dat1 <- list(y.ij = y.ij, z.ik=z.ik)
return(dat1)
}
set.seed(7492391)
for(cycle in 1:2){
print(cycle);print(Sys.time())
sim <- data.gen.DJsim(n.samp=30, n.case=15, n.path=50, n.assoc.path=10,
n.gene.path=20, n.metab.path=4, d1=0.5, d0=0, dd1=0.5, c1=0.5,
c0=0, cc1=0.5, corr.gg=0.2, corr.mm=0.2, corr.mg=0.1,
gamma.range=c(0.5,2.5), eta.range=c(0.5,1.5))
}
View(data.gen.DJsim)
sim
load("/run/user/1000/gvfs/sftp:host=balin,user=stephan/home/stephan/Confounding_Celltypes_RF/02_smd_confounding/data/results/confounding_same_independent/ntree_10000_mtry_prop_0.33/smd/par_3000/results_rep_1_data_set_1.RData")
data=saveLoadReference
data$var
length(data$var)
load("/run/user/1000/gvfs/sftp:host=balin,user=stephan/home/stephan/Confounding_Celltypes_RF/02_smd_confounding/data/results/confounding_same_independent/ntree_10000_mtry_prop_0.33/smd/par_3000/results_rep_4_data_set_1.RData")
data2=saveLoadReference
data2$trees[[1]]
load("/run/user/1000/gvfs/sftp:host=balin,user=stephan/home/stephan/Confounding_Celltypes_RF/02_smd_confounding/data/results/confounding_same_independent/ntree_10000_mtry_prop_0.33/smd/par_3000/results_rep_7_data_set_1.RData")
1200*12
14400*15
load("/home/stephan/Dokumente/Confounding_Celltypes_RF/01_simulation_confounding/data/confounding_only/input/sum_exp_object_rep_1_test.RData")
data=saveLoadReference
colData=colData(data)
library(SummarizedExperiment)
colData=colData(data)
View(colData)
View(rowRanges())
View(rowRanges
View(rowRanges)
rowRanges=rowRanges(data)
View(colData)
info = as.data.frame(mcols(se.sim))
info = as.data.frame(mcols(data))
View(info)
pheno = as.data.frame(colData(data))
View(pheno)
meth = assays(sim.se)$meth
meth = assays(data)$meth
meth = assays(data)
View(info)
colnames(meth)
names=rownames(meth)
meth = assays(data)$meth
colnames(meth)
View(meth)
data.gen.DJsim <- function(n.samp, n.case, n.path, n.assoc.path,
n.gene.path, n.metab.path, d1, d0, dd1, c1, c0, cc1,
corr.gg, corr.mm, corr.mg, gamma.range, eta.range) {
##########################################
### DATA PARAMETERS ###
# n.samp, number of samples
# n.case, number of cases
# n.path, number of pathways
# n.assoc.path, number of pathways associated with case status
# n.gene.path, number of genes per pathway
# n.metab.path, number of metabolties per pathway
# d1, probability of differential gene expression within associated pathway
# d0, probability of differential gene expression otherwise
# dd1, probability of up regulation
# c1, probability of differential metabolite intensity
# within associated pathway
# c0, probability of differential metabolite intensity otherwise
# cc1, probabiliy of up reguation
# gamma.range (a,b), draw gamma from uniform U(a,b), a>=0, b>0
# eta.range (c,d), draw gamma from uniform U(c,d), c>=0, d>0
# corr.gg, correlation between two genes
# corr.mm, correlation between two metabolites
# corr.mg, correlation between gene and metabolite
############################################
n.control <- n.samp - n.case
W.i <- c(rep(1, n.case), rep(0, n.control))
## GENE EXPRESSION ##
n.gene <- n.path * n.gene.path
#alpha = 0
#beta.j
mean.gene.var <- rinvchisq(n=n.gene, df=4)
beta.j <- rnorm(n=n.gene, mean=0, sd=2*sqrt(mean.gene.var))
#omega.j
abs.omega.j <- runif(n=n.gene, min=gamma.range[1], max=gamma.range[2])
bin.omega.j <- rbinom(n=n.gene, size=1, prob=dd1)
omega.j <- abs.omega.j * ifelse(bin.omega.j==1,1,-1)
#Dj
n.assoc.gene <- n.assoc.path*n.gene.path
dd <- c(rep(d1, n.assoc.gene), rep(d0, n.gene-n.assoc.gene))
Dj <- rbinom(n.gene, 1, dd)
## METABOLITE INTENSITY ##
n.metab <- n.path * n.metab.path
#theta = 0
#phi.k
mean.metab.var <- rinvchisq(n=n.metab, df=4)
phi.k <- rnorm(n=n.metab, mean=0, sd=2*sqrt(mean.metab.var))
#eta.k
abs.eta.k <- runif(n=n.metab, min=eta.range[1], max=eta.range[2])
bin.eta.k <- rbinom(n=n.metab, size=1, prob=cc1)
eta.k <- abs.eta.k * ifelse(bin.eta.k==1,1,-1)
#Ck
n.assoc.metab <- n.assoc.path*n.metab.path
cc <- c(rep(c1, n.assoc.metab), rep(c0, n.metab-n.assoc.metab))
Ck <- rbinom(n.metab, 1, cc)
## Draw multivariate normal vectors per pathway ##
y.ij.base <- z.ik.base <- vector()
for(l in 1:n.path){
start.g <- (l-1)*n.gene.path + 1
stop.g <- l*n.gene.path
start.m <- (l-1)*n.metab.path + 1
stop.m <- l*n.metab.path
# mean vector #
mean.vector <- c(beta.j[start.g:stop.g],phi.k[start.m:stop.m])
# variance-covariance matrix #
var.g <- mean.gene.var[start.g:stop.g]
var.m <- mean.metab.var[start.m:stop.m]
cov.gg <- corr.gg*(sqrt(var.g) %*% t(sqrt(var.g))) #Ng x Ng
cov.mm <- corr.mm*(sqrt(var.m) %*% t(sqrt(var.m))) #Nm x Nm
cov.mg <- corr.mg*(sqrt(var.m) %*% t(sqrt(var.g))) #Nm x Ng
cov.mat <- rbind(cbind(cov.gg, t(cov.mg)), cbind(cov.mg, cov.mm))
diag(cov.mat) <- c(var.g, var.m)
#
y.z.base <- mvrnorm(n=n.samp, mu=mean.vector, Sigma=cov.mat)
y.ij.base <- rbind(y.ij.base, t(y.z.base)[1:n.gene.path,])
z.ik.base <- rbind(z.ik.base,
t(y.z.base)[(n.gene.path+1):(n.gene.path+n.metab.path),])
}
y.ij <- y.ij.base + (omega.j*Dj) %*% t(W.i)
z.ik <- z.ik.base + (eta.k*Ck) %*% t(W.i)
dat1 <- list(y.ij = y.ij, z.ik=z.ik)
return(dat1)
}
?rinvchisq
require(MASS)
# library(geoR)
# geoR has a _fast_ function for inverse chisquare draws
# geoR is not currently available on the compute servers
if(!require(geoR)){
rinvchisq <- function(n, df) {1/rchisq(n, df)}
}
View(rinvchisq)
?rchisq
set.seed(7492391)
for(cycle in 1:2){
print(cycle);print(Sys.time())
sim <- data.gen.DJsim(n.samp=30, n.case=15, n.path=50, n.assoc.path=10,
n.gene.path=20, n.metab.path=4, d1=0.5, d0=0, dd1=0.5, c1=0.5,
c0=0, cc1=0.5, corr.gg=0.2, corr.mm=0.2, corr.mg=0.1,
gamma.range=c(0.5,2.5), eta.range=c(0.5,1.5))
}
sim
library(relVarId)
?is.na
32
is.na(as.numeric(31))
is.na(as.numeric("test"))
round("test")
test = "test"
if (is.na(test) {
mtry.prop = as.numeric(test)
} else {
mtry.prop = test
}
if (is.na(test) {
mtry.prop = as.numeric(test)
} else {
mtry.prop = test
}
test=42
if (is.na(test) {
mtry.prop = as.numeric(test)
} else {
mtry.prop = test
}
load("/run/user/1000/gvfs/sftp:host=balin/home/stephan/VarSelMinDep/subprojects/04_Comparison/data/gene_expression_array/simulation/classification/effects_-2_-1_-0.5_0.5_1_2/samples_200/causal.var_150/results/ntree_10000_mtry_prop_sqrt_nodesize_prop_7.94155e-05/boruta/par_0.01/results_rep_1_data_set_1.RData")
load("/home/stephan/Dokumente/VarSelMinDep/subprojects/04_Comparison/data/gene_expression_array/simulation/classification/effects_-2_-1_-0.5_0.5_1_2/samples_200/causal.var_150/results/ntree_10000_mtry_prop_^(3/4)_nodesize_prop_7.94155e-05/janitza/par_0/results_rep_1_data_set_1.RData")
load("/home/stephan/Dokumente/VarSelMinDep/subprojects/04_Comparison/data/gene_expression_array/simulation/classification/effects_-2_-1_-0.5_0.5_1_2/samples_200/causal.var_150/results/ntree_10000_mtry_prop_^(3/4)_nodesize_prop_7.94155e-05/janitza/par_0/results_rep_1_data_set_2.RData")
load("/home/stephan/Dokumente/VarSelMinDep/subprojects/04_Comparison/data/gene_expression_array/simulation/classification/effects_-2_-1_-0.5_0.5_1_2/samples_200/causal.var_150/results/ntree_10000_mtry_prop_^(3/4)_nodesize_prop_7.94155e-05/janitza/par_0/results_rep_2_data_set_1.RData")
load("/home/stephan/Dokumente/VarSelMinDep/subprojects/04_Comparison/data/gene_expression_array/simulation/classification/effects_-2_-1_-0.5_0.5_1_2/samples_200/causal.var_150/results/ntree_10000_mtry_prop_^(3/4)_nodesize_prop_7.94155e-05/janitza/par_0/results_rep_2_data_set_2.RData")
load("/home/stephan/Dokumente/VarSelMinDep/subprojects/04_Comparison/data/gene_expression_array/simulation/classification/effects_-2_-1_-0.5_0.5_1_2/samples_200/causal.var_150/results/ntree_10000_mtry_prop_^(3/4)_nodesize_prop_7.94155e-05/janitza/par_0/results_rep_3_data_set_1.RData")
load("/home/stephan/Dokumente/VarSelMinDep/subprojects/04_Comparison/data/gene_expression_array/simulation/classification/effects_-2_-1_-0.5_0.5_1_2/samples_200/causal.var_150/results/ntree_10000_mtry_prop_0.33/janitza/par_0/results_rep_1_data_set_1.RData")
load("/home/stephan/Dokumente/VarSelMinDep/subprojects/04_Comparison/data/gene_expression_array/simulation/classification/effects_-2_-1_-0.5_0.5_1_2/samples_200/causal.var_150/results/ntree_10000_mtry_prop_0.33/janitza/par_0/results_rep_1_data_set_2.RData")
load("/run/user/1000/gvfs/sftp:host=balin/home/stephan/VarSelMinDep/subprojects/04_Comparison/data/gene_expression_array/simulation/classification/effects_-2_-1_-0.5_0.5_1_2/samples_200/causal.var_150/results/ntree_10000_mtry_prop_sqrt_nodesize_prop_7.94155e-05/boruta/par_0.01/results_rep_1_data_set_2.RData")
load("/run/user/1000/gvfs/sftp:host=balin/home/stephan/VarSelMinDep/subprojects/04_Comparison/data/gene_expression_array/simulation/classification/effects_-2_-1_-0.5_0.5_1_2/samples_200/causal.var_150/results/ntree_10000_mtry_prop_sqrt_nodesize_prop_7.94155e-05/boruta/par_0.01/results_rep_1_data_set_1.RData")
load("/home/stephan/Dokumente/VarSelMinDep/subprojects/04_Comparison/data/gene_expression_array/simulation/classification/effects_-2_-1_-0.5_0.5_1_2/samples_200/causal.var_150/results/ntree_10000_mtry_prop_^(3/4)_nodesize_prop_7.94155e-05/janitza/par_0/results_rep_5_data_set_1.RData")
load("/home/stephan/Dokumente/VarSelMinDep/subprojects/04_Comparison/data/gene_expression_array/simulation/classification/effects_-2_-1_-0.5_0.5_1_2/samples_200/causal.var_150/results/ntree_10000_mtry_prop_^(3/4)_nodesize_prop_7.94155e-05/janitza/par_0/results_rep_5_data_set_2.RData")
load("/home/stephan/Dokumente/VarSelMinDep/subprojects/04_Comparison/data/gene_expression_array/simulation/classification/effects_-2_-1_-0.5_0.5_1_2/samples_200/causal.var_150/results/ntree_10000_mtry_prop_^(3/4)_nodesize_prop_7.94155e-05/janitza/par_0/results_rep_4_data_set_2.RData")
load("/home/stephan/Dokumente/VarSelMinDep/subprojects/04_Comparison/data/gene_expression_array/simulation/classification/effects_-2_-1_-0.5_0.5_1_2/samples_200/causal.var_150/results/ntree_10000_mtry_prop_^(3/4)_nodesize_prop_7.94155e-05/janitza/par_0/results_rep_4_data_set_1.RData")
load("/home/stephan/Dokumente/VarSelMinDep/subprojects/04_Comparison/data/gene_expression_array/simulation/classification/effects_-2_-1_-0.5_0.5_1_2/samples_200/causal.var_150/results/ntree_10000_mtry_prop_^(3/4)_nodesize_prop_7.94155e-05/janitza/par_0/results_rep_3_data_set_1.RData")
load("/home/stephan/Dokumente/VarSelMinDep/subprojects/04_Comparison/data/gene_expression_array/simulation/classification/effects_-2_-1_-0.5_0.5_1_2/samples_200/causal.var_150/results/ntree_10000_mtry_prop_^(3/4)_nodesize_prop_7.94155e-05/janitza/par_0/results_rep_3_data_set_2.RData")
load("/home/stephan/Dokumente/VarSelMinDep/subprojects/04_Comparison/data/gene_expression_array/simulation/classification/effects_-2_-1_-0.5_0.5_1_2/samples_200/causal.var_150/results/ntree_10000_mtry_prop_^(3/4)_nodesize_prop_7.94155e-05/janitza/par_0/results_rep_2_data_set_1.RData")
load("/home/stephan/Dokumente/VarSelMinDep/subprojects/04_Comparison/data/gene_expression_array/simulation/classification/effects_-2_-1_-0.5_0.5_1_2/samples_200/causal.var_150/results/ntree_10000_mtry_prop_^(3/4)_nodesize_prop_7.94155e-05/janitza/par_0/results_rep_2_data_set_2.RData")
load("/home/stephan/Dokumente/VarSelMinDep/subprojects/04_Comparison/data/gene_expression_array/simulation/classification/effects_-2_-1_-0.5_0.5_1_2/samples_200/causal.var_150/results/ntree_10000_mtry_prop_^(3/4)_nodesize_prop_7.94155e-05/janitza/par_0/results_rep_1_data_set_1.RData")
load("/home/stephan/Dokumente/VarSelMinDep/subprojects/04_Comparison/data/gene_expression_array/simulation/classification/effects_-2_-1_-0.5_0.5_1_2/samples_200/causal.var_150/results/ntree_10000_mtry_prop_^(3/4)_nodesize_prop_7.94155e-05/janitza/par_0/results_rep_1_data_set_2.RData")
load("/home/stephan/Dokumente/VarSelMinDep/subprojects/04_Comparison/data/gene_expression_array/simulation/classification/effects_-2_-1_-0.5_0.5_1_2/samples_200/causal.var_150/results/ntree_10000_mtry_prop_^(3/4)_nodesize_prop_7.94155e-05/janitza/par_0/results_rep_7_data_set_1.RData")
load("/run/user/1000/gvfs/sftp:host=balin/home/stephan/VarSelMinDep/subprojects/04_Comparison/data/gene_expression_array/simulation/classification/effects_-2_-1_-0.5_0.5_1_2/samples_200/causal.var_150/results/ntree_10000_mtry_prop_sqrt_nodesize_prop_7.94155e-05/boruta/par_0.02/results_rep_1_data_set_1.RData")
8350*12
7650*12
91800*0.8
myTabl()
? myTabl()
install.packages("webshot")
install.packages("htmlwidgets","PhantomJS")
setwd("~/Dokumente/Projektstruktur_markdown/project_template/subprojects/01_subproject/scripts")
library(SurrogateMinimalDepth)
data("SMD_example_data")
data = data("SMD_example_data")
data
dim(SMD_example_data)
library(DT)
install.packages("DT")
?library
?require
?datatable
View(SMD_example_data)
source("init.R")
## functions
files = dir(functions.dir, pattern = ".R*", full.name = TRUE)
if (length(files) > 0) {
print(paste("loading", length(files), "file(s) ..."))
for (f in files) {
source(f)
}
}
data("SMD_example_data") %>% myTabl()
class(SMD_example_data)
%>% myTabl()
data("SMD_example_data")
%>% myTabl()+
data("SMD_example_data")
%>% myTabl()
myTabl(data)
data
View(SMD_example_data)
str(SMD_example_data)
source("init.R")
source("init.R")
View(SMD_example_data)
?apply
data.plot = apply(data,1,floor)
dim(data.plot = apply(SMD_example_data,1,floor))
data.plot = apply(SMD_example_data,1,floor)
View(data.plot)
?floor
data.plot = apply(SMD_example_data,1,floor(digits = 3))
data.plot = apply(SMD_example_data,1,round(digits = 3))
data.plot = round(SMD_example_data, digits = 3)
View(data.plot)
?datatable
install.packages("metricsgraphic")
devtools::install_github("hrbrmstr/metricsgraphics")
View(data.plot)
?mjs_plot
require(metricsgraphic)
require(metricsgraphics)
?mjs_plot
?mjs_point
source("init.R")
?mjs_plot
?mjs_points
?mjs_point
devtools::install_github("homerhanumat/bpexploder")
library(bpexploder)
View(data.plot)
data("iris")
iris
View(iris)
data = data.plot[,1]
1/9000000000
cache
simulation_binary.Rnw
simulation_quantitative.Rnw
## information about directories
subproject.dir = dirname(getwd())
project.dir = dirname(dirname(subproject.dir))
## data
input.dir = file.path(project.dir, "data_input")
data.dir = file.path(subproject.dir, "data")
## analysis
plots.dir = file.path(subproject.dir, "img")
## functions
functions.dir = file.path(subproject.dir, "R_functions")
## load libraries
require(DT) ## interactive tables
require(R.utils) ## loadObject(), saveObject()
require(metricsgraphics) ## interactive graphs
require(summarytools)
require(SummarizedExperiment)
## replace = with <-; set code/output width to be 68
#options(replace.assign=TRUE)
## functions
files = dir(functions.dir, pattern = ".R*", full.name = TRUE)
if (length(files) > 0) {
print(paste("loading", length(files), "file(s) ..."))
for (f in files) {
source(f)
}
}
set.dir = function(dir) {
if (!file.exists(dir)) {
dir.create(dir, recursive = TRUE)
}
return(dir)
}
get.no.lines = function(f) {
temp = system(paste("wc -l", f), intern = TRUE)
return(as.numeric(unlist(strsplit(temp, " "))[1]))
}
---
title: "Example of title"
author: "Dr. Stephan Seifert"
date: '`r Sys.Date()`'
output:
html_document:
code_folding: hide
highlight: textmate
toc: yes
toc_float: yes
pdf_document:
toc: yes
---
\clearpage
```{r echo = FALSE, results = "hide", message = FALSE}
source("init.R")
```
\clearpage
```{r child = "subscript.Rmd"}
```
\clearpage
# Session information
```{r}
sessionInfo()
```
Source diff could not be displayed: it is too large. Options to address this: view the blob.
```{r, echo=F, message=F, warning=F}
library(DT, quietly = T)
```
# Tables
This is an example how you can create interactive Tables with datatable function, Kable and Xtable can be used for "normal" tables.
```{r}
data("iris")
datatable(iris, rownames = FALSE,
caption = "Table 1: This is a Table",
class = 'cell-border stripe',
extensions = 'Buttons',
options = list(dom = 'Bfrtip',
buttons = c('copy', 'excel', 'pdf'),
autoWidth = TRUE))
```
# Graphs
Here you can see how interactive graphs can be created based on mjs_plot function
```{r}
mjs_plot(iris[,1:2], x = colnames(iris)[1], y = colnames(iris)[2]) %>%
mjs_point() %>%
mjs_labs(x = colnames(iris)[1], y = colnames(iris)[2])
```
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please to comment