Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
C
CiS Projekt
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Ockenden, Samuel
CiS Projekt
Merge requests
!7
Main
Code
Review changes
Check out branch
Download
Patches
Plain diff
Merged
Main
bav1758/ci-s-projekt-verarbeitung:main
into
main
Overview
0
Commits
22
Pipelines
0
Changes
2
Merged
Große, Judith
requested to merge
bav1758/ci-s-projekt-verarbeitung:main
into
main
3 years ago
Overview
0
Commits
22
Pipelines
0
Changes
2
Expand
0
0
Merge request reports
Viewing commit
03baca25
Prev
Next
Show latest version
2 files
+
37
−
33
Inline
Compare changes
Side-by-side
Inline
Show whitespace changes
Show one file at a time
Files
2
Search (e.g. *.vue) (Ctrl+P)
03baca25
added groups to Processing and json
· 03baca25
Malte Schokolowski
authored
3 years ago
verarbeitung/Processing.py
+
219
−
89
Options
# -*- coding: utf-8 -*-
"""
Created on Wed Nov 3 16:54:43 2021
Functions to generate a graph representing citations between multiple ACS/Nature journals
@author: Malte Schokolowski
"""
__authors__
=
"
Donna Löding, Alina Molkentin, Xinyi Tang, Judith Große, Malte Schokolowski
"
__email__
=
"
cis-project2021@zbh.uni-hamburg.de
"
__status__
=
"
Production
"
#__copyright__ = ""
#__credits__ = ["", "", "", ""]
#__license__ = ""
#__version__ = ""
#__maintainer__ = ""
from
bs4
import
BeautifulSoup
as
bs
import
requests
as
req
import
sys
from
pathlib
import
Path
from
input_fj
import
input
from
input_test
import
input_test_func
from
json_demo
import
output_to_json
# adds every publication from input list to graph structure
# doi_input_list: list of publication dois from user
def
initialize_nodes_list
(
doi_input_list
,
search_depth_max
,
search_height_max
,
test_var
):
references_pub_obj_list
=
[]
citations_pub_obj_list
=
[]
for
pub_doi
in
doi_input_list
:
def
process_main
(
doi_input_array
,
depth
):
# ERROR-Handling doi_array = NULL
if
(
len
(
doi_input_array
)
==
0
):
print
(
"
Error, no input data
"
)
#checks if its a test and chooses input function accordingly
if
(
test_var
):
pub
=
input_test_func
(
pub_doi
)
else
:
pub
=
input
(
pub_doi
)
# checks if publication already exists in nodes
not_in_nodes
=
True
for
node
in
nodes
:
# checks if a pub is already in nodes
if
(
pub
.
doi_url
==
node
.
doi_url
):
not_in_nodes
=
False
break
if
(
not_in_nodes
):
nodes
.
append
(
pub
)
pub
.
group
=
"
input
"
else
:
doi_input_list
.
remove
(
pub_doi
)
# ERROR- wenn für die Tiefe eine negative Zahl eingegeben wird
if
(
depth
<
0
):
print
(
"
Error, depth of search must be positive
"
)
# inserts references as publication objects into list and
# inserts first depth references into nodes/edges if maximum search depth > 0
for
reference
in
create_graph_structure_references
(
pub
,
0
,
search_depth_max
,
test_var
):
references_pub_obj_list
.
append
(
reference
)
# inserts citations as publication objects into list and
# inserts first height citations into nodes if maximum search height > 0
for
citation
in
create_graph_structure_citations
(
pub
,
0
,
search_height_max
,
test_var
):
citations_pub_obj_list
.
append
(
citation
)
return
(
references_pub_obj_list
,
citations_pub_obj_list
)
# adds edges between citation and reference group
def
complete_inner_edges
(
test_var
):
for
node
in
nodes
:
if
(
node
.
group
==
"
depth
"
):
for
citation
in
node
.
citations
:
for
cit
in
nodes
:
if
(
citation
.
doi_url
==
cit
.
doi_url
and
[
citation
.
doi_url
,
node
.
doi_url
]
not
in
edges
):
edges
.
append
([
citation
.
doi_url
,
node
.
doi_url
])
if
(
node
.
group
==
"
height
"
):
for
reference
in
node
.
references
:
for
ref
in
nodes
:
if
(
reference
.
doi_url
==
ref
.
doi_url
and
[
node
.
doi_url
,
reference
.
doi_url
]
not
in
edges
):
edges
.
append
([
node
.
doi_url
,
reference
.
doi_url
])
# adds a node for every publication unknown
# adds edges for references between publications
def
create_graph_structure_references
(
pub
,
search_depth
,
search_depth_max
,
test_var
):
references_pub_obj_list
=
[]
for
reference
in
pub
.
references
:
not_in_nodes
=
True
for
node
in
nodes
:
# checks every reference for duplication
if
(
reference
.
doi_url
==
node
.
doi_url
):
not_in_nodes
=
False
break
if
(
not_in_nodes
):
if
(
search_depth
<
search_depth_max
):
#checks if its a test and chooses input function accordingly
if
(
test_var
):
reference_pub_obj
=
input_test_func
(
reference
.
doi_url
)
else
:
reference_pub_obj
=
input
(
reference
.
doi_url
)
reference_pub_obj
.
group
=
"
depth
"
nodes
.
append
(
reference_pub_obj
)
edges
.
append
([
pub
.
doi_url
,
reference_pub_obj
.
doi_url
])
references_pub_obj_list
.
append
(
reference_pub_obj
)
# adds edge only if citation already exists
elif
[
pub
.
doi_url
,
reference
.
doi_url
]
not
in
edges
:
edges
.
append
([
pub
.
doi_url
,
reference
.
doi_url
])
return
references_pub_obj_list
# recursive function to implement height-first-search on references
# references_pub_obj_list: input list of references as publication objects
# search_depth: current search_depth of height-first-search
# search_depth_max: maximal search_depth for dfs
def
process_references_rec
(
references_pub_obj_list
,
search_depth
,
search_depth_max
,
test_var
):
# adds next level to nodes/edges
for
pub
in
references_pub_obj_list
:
new_reference_pub_obj_list
=
create_graph_structure_references
(
pub
,
search_depth
,
search_depth_max
,
test_var
)
# If the maximum height has not yet been reached, calls function recursivly with increased height
if
(
search_depth
<
search_depth_max
):
process_references_rec
(
new_reference_pub_obj_list
,
search_depth
+
1
,
search_depth_max
,
test_var
)
# Leeres Array für die Knoten(nodes) wird erstellt.
# Leeres Array für die Kanten(edges) wird erstellt.
global
nodes
,
edges
nodes
=
[]
edges
=
[]
# Jede Publikation aus dem Input-Array wird in den Knoten-Array(nodes) eingefügt.
for
pub_doi
in
doi_input_array
:
pub
=
input
(
pub_doi
)
# adds a node for every publication unknown
# adds edges for citations between publications
def
create_graph_structure_citations
(
pub
,
search_height
,
search_height_max
,
test_var
):
citations_pub_obj_list
=
[]
for
citation
in
pub
.
citations
:
not_in_nodes
=
True
for
node
in
nodes
:
if
(
pub
.
doi_url
==
node
.
doi_url
):
# checks every citation for duplication
if
(
citation
.
doi_url
==
node
.
doi_url
):
not_in_nodes
=
False
break
if
(
not_in_nodes
):
nodes
.
append
(
pub
)
else
:
doi_input_array
.
remove
(
pub_doi
)
if
(
search_height
<
search_height_max
):
#checks if its a test and chooses input function accordingly
if
(
test_var
):
citation_pub_obj
=
input_test_func
(
citation
.
doi_url
)
else
:
citation_pub_obj
=
input
(
citation
.
doi_url
)
citation_pub_obj
.
group
=
"
height
"
nodes
.
append
(
citation_pub_obj
)
edges
.
append
([
citation_pub_obj
.
doi_url
,
pub
.
doi_url
])
citations_pub_obj_list
.
append
(
citation_pub_obj
)
# adds only edge if citation already exists
elif
[
citation
.
doi_url
,
pub
.
doi_url
]
not
in
edges
:
edges
.
append
([
citation
.
doi_url
,
pub
.
doi_url
])
return
citations_pub_obj_list
# recursive function to implement height-first-search on citations
# citations_pub_obj_list: input list of citations as publication objects
# search_height: current search_height of height-first-search
# search_height_max: maximal search_height for dfs
def
process_citations_rec
(
citations_pub_obj_list
,
search_height
,
search_height_max
,
test_var
):
# adds next level to nodes/edges
for
pub
in
citations_pub_obj_list
:
new_citation_pub_obj_list
=
create_graph_structure_citations
(
pub
,
search_height
,
search_height_max
,
test_var
)
# If the maximum height has not yet been reached, calls function recursivly with increased height
if
(
search_height
<
search_height_max
):
process_citations_rec
(
new_citation_pub_obj_list
,
search_height
+
1
,
search_height_max
,
test_var
)
# main function to call. Needs as input:
# doi_input_list: input list of dois
# search_height: max search height to process to
# search_depth: max search depth to process to
# test_var: only needed for unit test as True, default is False
def
process_main
(
doi_input_list
,
search_height
,
search_depth
,
test_var
=
False
):
# ERROR-Handling doi_array = NULL
if
(
len
(
doi_input_list
)
==
0
):
print
(
"
Error, no input data
"
)
# ERROR- if a negative number is entered for height
if
(
search_height
<
0
):
print
(
"
Error, search_height of search must be positive
"
)
# ERROR- if a negative number is entered for depth
if
(
search_depth
<
0
):
print
(
"
Error, search_depth of search must be positive
"
)
process_rec_depth
(
doi_input_array
,
0
,
depth
)
# create empty array for the nodes
# create empty array for the edges
global
nodes
,
edges
nodes
=
[]
edges
=
[]
# initializes nodes/edges from input and gets a list with publication objects for citations and references returned
references_obj_list
,
citations_obj_list
=
initialize_nodes_list
(
doi_input_list
,
search_depth
,
search_height
,
test_var
)
# function calls to begin recursive processing up to max depth/height
process_citations_rec
(
citations_obj_list
,
1
,
search_height
,
test_var
)
process_references_rec
(
references_obj_list
,
1
,
search_depth
,
test_var
)
# adds edges between reference group and citation group of known publications
complete_inner_edges
(
test_var
)
# calls a skript to save nodes and edges of graph in .json file
output_to_json
(
nodes
,
edges
)
return
(
nodes
,
edges
)
# only for unit tests
if
(
test_var
==
True
):
doi_nodes_list
=
[]
for
node
in
nodes
:
doi_nodes_list
.
append
(
node
.
doi_url
)
return
(
doi_nodes_list
,
edges
)
def
process_rec_depth
(
array
,
depth
,
depth_max
):
# Die Tiefe wird bei jedem rekursiven Aufruf um 1 erhöht.
depth
+=
1
# Für jede Publikation im Input-Array wird ein Klassenobjekt erstellt.
for
pub_doi
in
array
:
pub
=
input
(
pub_doi
)
# Für jede citation, die in der entsprecheneden Klasseninstanz der Publikation gespeichert sind,
# wird geprüft, ob diese bereits als Knoten existiert.
for
citation
in
pub
.
_citations
:
# Wenn die citation noch nicht im Knoten-Array(nodes) existiert UND die maximale Tiefe
# noch nicht erreicht wurde, wird diese als Knoten im Knoten-Array gespeichert. Zusätzlich
# wird die Verbindung zur Publikation als Tupel im Kanten-Array(edges) gespeichert.
not_in_nodes
=
True
for
node
in
nodes
:
if
(
citation
.
doi_url
==
node
.
doi_url
):
not_in_nodes
=
False
break
if
(
not_in_nodes
):
if
(
depth
<=
depth_max
):
nodes
.
append
(
citation
)
edges
.
append
([
pub
.
doi_url
,
citation
.
doi_url
])
# Wenn die citaion bereits im Knoten-Array existiert, wird nur die Verbindung zur Publikation
# als Tupel im Kanten-Array(edges) gespeichert.
else
:
edges
.
append
([
pub
.
doi_url
,
citation
.
doi_url
])
# Wenn die maximale Tiefe noch nicht erreicht wurde, werden alle citations aus der Publikation
# in ein Array geschrieben und mit diesem die Funktion erneut aufgerufen.
if
(
depth
<
depth_max
):
cit_arr
=
[]
for
citation
in
pub
.
_citations
:
# Momentan werden nur die citations mit acs in der URL gespeichert, da wir von anderen
# Quellen die Infotmationen nicht extrahieren können.
if
(
"
acs
"
in
citation
.
doi_url
):
cit_arr
.
append
(
citation
.
doi_url
)
# Rekusriver Aufruf der Funktion.
process_rec_depth
(
cit_arr
,
depth
,
depth_max
)
# a function to print nodes and edges from a graph
def
print_graph
(
nodes
,
edges
):
print
(
"
Knoten:
\n
"
)
for
node
in
nodes
:
print
(
node
.
title
,
"
\n
"
)
print
(
"
\n
Kanten:
\n
"
)
for
edge
in
edges
:
print
(
edge
,
"
\n
"
)
# Programmtest, weil noch keine Verbindung zum Input besteht.
arr
=
[]
arr
.
append
(
'
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00249
'
)
arr
.
append
(
'
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00249
'
)
arr
.
append
(
'
https://doi.org/10.1021/acs.jmedchem.0c01332
'
)
#arr.append('https://doi.org/10.1021/acs.jcim.0c00741')
#arr.append('https://doi.org/10.1021/ci700007b')
#arr.append('https://doi.org/10.1021/acs.jcim.5b00292')
#url = sys.argv[1]
#arr.append[url]
nodes
,
edges
=
process_main
(
arr
,
1
)
print
(
"
Knoten:
\n
"
)
for
node
in
nodes
:
print
(
node
.
title
,
"
\n
"
)
print
(
"
\n
Kanten:
\n
"
)
for
edge
in
edges
:
print
(
edge
,
"
\n
"
)
\ No newline at end of file
# program test, because there is no connection to UI yet.
def
try_known_publications
():
doi_list
=
[]
doi_list
.
append
(
'
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00249
'
)
#arr.append('https://pubs.acs.org/doi/10.1021/acs.jcim.9b00249')
doi_list
.
append
(
'
https://doi.org/10.1021/acs.jmedchem.0c01332
'
)
#arr.append('https://doi.org/10.1021/acs.jcim.0c00741')
#arr.append('https://doi.org/10.1021/ci700007b')
#arr.append('https://doi.org/10.1021/acs.jcim.5b00292')
#url = sys.argv[1]
#arr.append[url]
nodes
,
edges
=
process_main
(
doi_list
,
2
,
2
)
print_graph
(
nodes
,
edges
)
\ No newline at end of file
Loading