# -*- coding: utf-8 -*- """ Functions to generate a graph representing citations between multiple ACS/Nature journals """ __authors__ = "Donna Löding, Alina Molkentin, Xinyi Tang, Judith Große, Malte Schokolowski" __email__ = "cis-project2021@zbh.uni-hamburg.de" __status__ = "Production" #__copyright__ = "" #__credits__ = ["", "", "", ""] #__license__ = "" #__version__ = "" #__maintainer__ = "" from bs4 import BeautifulSoup as bs import requests as req import sys from pathlib import Path from input_fj import input from input_test import input_test_func from json_demo import output_to_json # adds every publication from input list to graph structure # doi_input_list: list of publication dois from user def initialize_nodes_list(doi_input_list, search_depth_max, search_height_max, test_var): references_pub_obj_list = [] citations_pub_obj_list = [] for pub_doi in doi_input_list: #checks if its a test and chooses input function accordingly if(test_var): pub = input_test_func(pub_doi) else: pub = input(pub_doi) # checks if publication already exists in nodes not_in_nodes = True for node in nodes: # checks if a pub is already in nodes if (pub.doi_url == node.doi_url): not_in_nodes = False break if (not_in_nodes): nodes.append(pub) pub.group = "input" else: doi_input_list.remove(pub_doi) # inserts references as publication objects into list and # inserts first depth references into nodes/edges if maximum search depth > 0 for reference in create_graph_structure_references(pub, 0, search_depth_max, test_var): references_pub_obj_list.append(reference) # inserts citations as publication objects into list and # inserts first height citations into nodes if maximum search height > 0 for citation in create_graph_structure_citations(pub, 0, search_height_max, test_var): citations_pub_obj_list.append(citation) return(references_pub_obj_list, citations_pub_obj_list) # adds edges between citation and reference group def complete_inner_edges(test_var): for node in nodes: if (node.group == "depth"): for citation in node.citations: for cit in nodes: if (citation.doi_url == cit.doi_url and [citation.doi_url, node.doi_url] not in edges): edges.append([citation.doi_url, node.doi_url]) if (node.group == "height"): for reference in node.references: for ref in nodes: if (reference.doi_url == ref.doi_url and [node.doi_url, reference.doi_url] not in edges): edges.append([node.doi_url,reference.doi_url]) # adds a node for every publication unknown # adds edges for references between publications def create_graph_structure_references(pub, search_depth, search_depth_max, test_var): references_pub_obj_list = [] for reference in pub.references: not_in_nodes = True for node in nodes: # checks every reference for duplication if (reference.doi_url == node.doi_url): not_in_nodes = False break if (not_in_nodes): if (search_depth < search_depth_max): #checks if its a test and chooses input function accordingly if (test_var): reference_pub_obj = input_test_func(reference.doi_url) else: reference_pub_obj = input(reference.doi_url) reference_pub_obj.group = "depth" nodes.append(reference_pub_obj) edges.append([pub.doi_url,reference_pub_obj.doi_url]) references_pub_obj_list.append(reference_pub_obj) # adds edge only if citation already exists elif [pub.doi_url,reference.doi_url] not in edges: edges.append([pub.doi_url,reference.doi_url]) return references_pub_obj_list # recursive function to implement height-first-search on references # references_pub_obj_list: input list of references as publication objects # search_depth: current search_depth of height-first-search # search_depth_max: maximal search_depth for dfs def process_references_rec(references_pub_obj_list, search_depth, search_depth_max, test_var): # adds next level to nodes/edges for pub in references_pub_obj_list: new_reference_pub_obj_list = create_graph_structure_references(pub, search_depth, search_depth_max, test_var) # If the maximum height has not yet been reached, calls function recursivly with increased height if (search_depth < search_depth_max): process_references_rec(new_reference_pub_obj_list, search_depth+1, search_depth_max, test_var) # adds a node for every publication unknown # adds edges for citations between publications def create_graph_structure_citations(pub, search_height, search_height_max, test_var): citations_pub_obj_list = [] for citation in pub.citations: not_in_nodes = True for node in nodes: # checks every citation for duplication if (citation.doi_url == node.doi_url): not_in_nodes = False break if (not_in_nodes): if (search_height < search_height_max): #checks if its a test and chooses input function accordingly if (test_var): citation_pub_obj = input_test_func(citation.doi_url) else: citation_pub_obj = input(citation.doi_url) citation_pub_obj.group = "height" nodes.append(citation_pub_obj) edges.append([citation_pub_obj.doi_url,pub.doi_url]) citations_pub_obj_list.append(citation_pub_obj) # adds only edge if citation already exists elif [citation.doi_url,pub.doi_url] not in edges: edges.append([citation.doi_url,pub.doi_url]) return citations_pub_obj_list # recursive function to implement height-first-search on citations # citations_pub_obj_list: input list of citations as publication objects # search_height: current search_height of height-first-search # search_height_max: maximal search_height for dfs def process_citations_rec(citations_pub_obj_list, search_height, search_height_max, test_var): # adds next level to nodes/edges for pub in citations_pub_obj_list: new_citation_pub_obj_list = create_graph_structure_citations(pub, search_height, search_height_max, test_var) # If the maximum height has not yet been reached, calls function recursivly with increased height if (search_height < search_height_max): process_citations_rec(new_citation_pub_obj_list, search_height+1, search_height_max, test_var) # main function to call. Needs as input: # doi_input_list: input list of dois # search_height: max search height to process to # search_depth: max search depth to process to # test_var: only needed for unit test as True, default is False def process_main(doi_input_list, search_height, search_depth, test_var = False): # ERROR-Handling doi_array = NULL if (len(doi_input_list) == 0): print("Error, no input data") # ERROR- if a negative number is entered for height if (search_height < 0): print("Error, search_height of search must be positive") # ERROR- if a negative number is entered for depth if (search_depth < 0): print("Error, search_depth of search must be positive") # create empty array for the nodes # create empty array for the edges global nodes, edges nodes = [] edges = [] # initializes nodes/edges from input and gets a list with publication objects for citations and references returned references_obj_list, citations_obj_list = initialize_nodes_list(doi_input_list,search_depth, search_height, test_var) # function calls to begin recursive processing up to max depth/height process_citations_rec(citations_obj_list, 1, search_height, test_var) process_references_rec(references_obj_list, 1, search_depth, test_var) # adds edges between reference group and citation group of known publications complete_inner_edges(test_var) # calls a skript to save nodes and edges of graph in .json file output_to_json(nodes,edges) # only for unit tests if (test_var == True): doi_nodes_list = [] for node in nodes: doi_nodes_list.append(node.doi_url) return(doi_nodes_list, edges) # a function to print nodes and edges from a graph def print_graph(nodes, edges): print("Knoten:\n") for node in nodes: print(node.title, "\n") print("\nKanten:\n") for edge in edges: print(edge,"\n") # program test, because there is no connection to UI yet. def try_known_publications(): doi_list = [] doi_list.append('https://pubs.acs.org/doi/10.1021/acs.jcim.9b00249') #arr.append('https://pubs.acs.org/doi/10.1021/acs.jcim.9b00249') doi_list.append('https://doi.org/10.1021/acs.jmedchem.0c01332') #arr.append('https://doi.org/10.1021/acs.jcim.0c00741') #arr.append('https://doi.org/10.1021/ci700007b') #arr.append('https://doi.org/10.1021/acs.jcim.5b00292') #url = sys.argv[1] #arr.append[url] nodes,edges = process_main(doi_list,2,2) print_graph(nodes, edges)