Select Git revision
seed_variation_script.py
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
seed_variation_script.py 12.18 KiB
import matplotlib.pyplot as plt
import seaborn as sb
import pandas as pd
import os
import random
from cami_suite import cami
import utils.comparison_matrix as comparison_matrix
import numpy as np
from utils import kolmogorov_smirnoff
def predict_and_make_consensus(cami, vis=False):
result_sets = cami.make_predictions()
cami.create_consensus(result_sets, save_output=False)
if vis:
n_results = len(cami.result_gene_sets)
cami.visualize_and_save_comparison_matrix()
if vis:
cami.use_nvenn(download=True)
def make_seedvariation(cami, n_iterations, removal_frac=0.2, vis=False, plot=True):
identifier = cami.uid
base_seeds = cami.origin_seed_lst
original_seeds = [cami.ppi_vertex2gene[seed] for seed in base_seeds]
print(f'All given seeds:{original_seeds}')
random.seed(50)
removal_frac = removal_frac
nof_iterations = int(n_iterations)
used_tools = list(cami.result_gene_sets.keys())
prediction_tools = cami.prediction_tools
nof_seeds = len(base_seeds)
nof_removals = max([int(nof_seeds * removal_frac), 1])
redisc_seeds_file = f'{cami.output_dir}/00_seedvariation_rediscovered_seeds.tsv'
result_table_file = f'{cami.output_dir}/00_seedvariation_result_table.tsv'
n_results = len(cami.result_gene_sets)
redisc_intersection_matrix = pd.DataFrame([[0 for _ in range(n_results)] for __ in range(n_results)],
columns = list(cami.result_gene_sets.keys()),
index = list(cami.result_gene_sets.keys()),
dtype=int)
with open(redisc_seeds_file, 'w') as redisc_table:
with open(result_table_file, 'w') as res_table:
redisc_table.write('id')
for tool in used_tools:
redisc_table.write(f'\t{tool}')
redisc_table.write('\n')
res_table.write('tool\trdr\trdr_std\tsensitivity\tsensitivity_std\tprecision\tprecision_std')
for tool in prediction_tools:
res_table.write(f'\t{tool}_rdr_ks_pvalue')
for tool in prediction_tools:
res_table.write(f'\t{tool}_msr_ks_pvalue')
with open(os.path.join(cami.tmp_dir, f'{used_tools[0]}_{cami.uid}_relevance_scores.tsv'), 'r') as f:
for line in f:
val_name = line.split('\t')[0]
redisc_table.write(f'\t{val_name}')
res_table.write('\n')
# result dictionaries of the form {tool:list(value for each iteration)}
tp_rate_dict = {k:list() for k in used_tools}
redisc_rate_dict = {k:list() for k in used_tools}
module_size_dict = {k:list() for k in used_tools}
# removed and used seeds per iteration
all_removed_seeds = list()
all_used_seeds = list()
all_redisc_seeds = []
for ident in range(nof_iterations):
redisc_table.write(f'{ident}')
# update uid
new_identifier = identifier + f'_{ident}'
# reset cami
cami.reset_cami(new_uid=new_identifier)
# cami.ppi_graph = original_ppi
#remove seeds (again)
print(f'Removing {nof_removals} seeds from the original seed list...')
removed_seeds_idx = random.sample(list(range(nof_seeds)), nof_removals)
removed_seeds = cami.remove_seeds(removed_seeds_idx)
rem_seeds = [cami.ppi_vertex2gene[seed] for seed in removed_seeds]
print(f'Removed: {rem_seeds} from the seed list')
print('Updating tools and repeat CAMI')
# reinitialize tools
cami.initialize_all_tools()
# repeat consensus
if ident%20==0:
predict_and_make_consensus(cami)
else:
predict_and_make_consensus(cami)
used_seeds = [cami.ppi_vertex2gene[seed] for seed in cami.seed_lst]
redisc_seeds_dict = {}
result_dict = cami.result_gene_sets
for tool in result_dict:
nof_predictions = len(result_dict[tool]) + len(used_seeds)
redisc_seeds = set(result_dict[tool]).intersection(set(rem_seeds))
redisc_prev = len(redisc_seeds)
redisc_rate = redisc_prev / nof_removals
redisc_rate_dict[tool].append(redisc_rate)
redisc_seeds_dict[tool] = redisc_seeds
tp_rate = redisc_prev / len(removed_seeds)
tp_rate_dict[tool].append(tp_rate)
module_size_frac = redisc_prev / nof_predictions
assert module_size_frac <= 1
module_size_dict[tool].append(module_size_frac)
redisc_table.write('\t')
for idx,seed in enumerate(redisc_seeds):
if idx == 0:
redisc_table.write(f'{list(redisc_seeds)[0]}')
else:
redisc_table.write(f',{seed}')
print(f'{tool} rediscovered {redisc_seeds} after removing {rem_seeds}.')
all_redisc_seeds.append(redisc_seeds_dict)
redisc_table.write('\n')
all_used_seeds.append(used_seeds)
all_removed_seeds.append(rem_seeds)
for algo1 in redisc_seeds_dict:
for algo2 in redisc_seeds_dict:
redisc_intersection_matrix.loc[algo1,algo2] += len(redisc_seeds_dict[algo1].intersection(redisc_seeds_dict[algo2]))
for tool in redisc_rate_dict:
res_table.write(f'{tool}\t')
res_table.write(f'{np.mean(redisc_rate_dict[tool])}\t')
res_table.write(f'{np.std(redisc_rate_dict[tool])}\t')
res_table.write(f'{np.mean(tp_rate_dict[tool])}\t')
res_table.write(f'{np.std(tp_rate_dict[tool])}\t')
res_table.write(f'{np.mean(module_size_dict[tool])}\t')
res_table.write(f'{np.std(module_size_dict[tool])}')
for pred_tool in prediction_tools:
p_val = kolmogorov_smirnoff.calculate_ks_p_value(list(redisc_rate_dict[tool]),
list(redisc_rate_dict[pred_tool]))
res_table.write(f'\t{p_val}')
for pred_tool in prediction_tools:
p_val = kolmogorov_smirnoff.calculate_ks_p_value(list(module_size_dict[tool]),
list(module_size_dict[pred_tool]))
res_table.write(f'\t{p_val}')
with open(os.path.join(cami.tmp_dir, f'{tool}_{cami.uid}_relevance_scores.tsv)'), 'r') as f:
for line in f:
rel_score = line.split('\t')[1].strip()
res_table.write(f'\t{rel_score}')
res_table.write('\n')
print(f'Result tables are saved in the following locations:')
fig1,ax1, fig2,ax2 = comparison_matrix.plot_comparison_matrix(redisc_intersection_matrix, n_rows=cami.nof_tools,
title=f'number of times algorithms rediscovered the same seeds after removing {nof_removals} seeds')
fig1.savefig(f'{cami.output_dir}/same_rediscs_{identifier}_comparison_matrix.png')
fig2.savefig(f'{cami.output_dir}/same_rediscs_{identifier}_comparison_matrix_normalized.png')
# print(variation_results)
# print(rediscovery_rates_results)
tools = [tool for tool in redisc_rate_dict.keys()]
tool_labels = tools.copy()
for idx,tool in enumerate(tools):
if '_' in tool:
# find the index of the second occurrence of the character
second_occurrence_index = tool.find('_', tool.find('_') + 1)
if second_occurrence_index > -1:
# replace the character at that index with the replacement character
tool_name = tool[:second_occurrence_index] + '\n' + tool[second_occurrence_index + 1:]
tool_labels[idx] = tool_name
if plot:
#PLOT
# Create a figure instance
#print(sys.getrecursionlimit())
fig1, (ax1, ax5, ax4) = plt.subplots(3, 1, figsize=(20,20))
fig1.subplots_adjust(left=0.2)
# Extract Figure and Axes instance
# Create a plot
violins1 = ax1.violinplot([redisc_rate_dict[tool] for tool in tools], showmeans=True, showextrema=True)
for violinpart in list(violins1.keys())[2:]:
violins1[violinpart].set_color('k')
for violin, tool in zip(violins1['bodies'], tools):
if tool in [tw.name for tw in cami.tool_wrappers]:
violin.set_facecolor('saddlebrown')
elif tool == 'first_neighbors':
violin.set_facecolor('orange')
elif tool in ['union', 'intersection']:
violin.set_facecolor('peachpuff')
else:
violin.set_facecolor('red')
# Add title
ax1.set_title(f'Rediscovery rate after randomly removing {nof_removals} seeds {nof_iterations} times from {identifier} seeds.', wrap=True, fontsize=14)
ax1.set_xticks(list(range(1,len(tools)+1)))
ax1.set_xticklabels(tool_labels)
ax1.tick_params(axis='x', labelsize=11)
ax1.set_ylabel('Rediscovery rate (<rediscovered seeds>/<removed seeds>)', wrap=True, fontsize=14)
violins2 = ax4.violinplot([tp_rate_dict[tool] for tool in tools], showmeans=True, showextrema=True)
for violinpart in list(violins2.keys())[2:]:
violins2[violinpart].set_color('k')
for violin, tool in zip(violins2['bodies'], tools):
if tool in [tw.name for tw in cami.tool_wrappers]:
violin.set_facecolor('tan')
elif tool == 'first_neighbors':
violin.set_facecolor('peachpuff')
elif tool in ['union', 'intersection']:
violin.set_facecolor('orange')
else:
violin.set_facecolor('darkorange')
# Add title
ax4.set_title(f'True positive rates after randomly removing {nof_removals} seeds {nof_iterations} times from {identifier} seeds.', wrap=True, fontsize=14)
ax4.set_xticks(list(range(1,len(tools)+1)))
ax4.set_xticklabels(tool_labels)
ax4.tick_params(axis='x', labelsize=11)
ax4.set_ylabel('Sensitivity (TP/TP + FN)', wrap=True, fontsize=14)
violins3 = ax5.violinplot([module_size_dict[tool] for tool in tools], showmeans=True, showextrema=True)
# Add title
for violinpart in list(violins3.keys())[2:]:
violins3[violinpart].set_color('k')
for violin, tool in zip(violins3['bodies'], tools):
if tool in [tw.name for tw in cami.tool_wrappers]:
violin.set_facecolor('midnightblue')
elif tool == 'first_neighbors':
violin.set_facecolor('mediumblue')
elif tool in ['union', 'intersection']:
violin.set_facecolor('lightsteelblue')
else:
violin.set_facecolor('royalblue')
ax5.set_title(f'Ratio of number of rediscovered seeds and predicted module size after removing {nof_removals} seeds {nof_iterations} times from {identifier} seeds.', wrap=True, fontsize=14)
ax5.set_xticks(list(range(1,len(tools)+1)))
ax5.set_xticklabels(tool_labels)
ax5.set_ylabel('precision (<rediscovered seeds>/<module size>)', fontsize=14)
ax5.tick_params(axis='x', labelsize=11)
fig1.tight_layout()
fig1.savefig(f'{cami.output_dir}/00_{identifier}_seed_variation_result.png', bbox_inches="tight")
plt.close(fig1)
print(f'Violin plot saved under: 00_{identifier}_seed_variation_result.png')
return cami