diff --git a/cami_src/cami_suite.py b/cami_src/cami_suite.py
index 91958a63aef68664b6a2823cef623cbf8d53dea8..0b4b7b5249666d6c2650f329357421bc2608b130 100644
--- a/cami_src/cami_suite.py
+++ b/cami_src/cami_suite.py
@@ -181,9 +181,9 @@ class cami():
         :rtype: set()
         """
         tool.create_tmp_output_dir(self.tmp_dir) # creates the temporary input directory
-        print(f"preparing {tool.name} input...")
+        if self.debug: print(f"preparing {tool.name} input...")
         inputparams = tool.prepare_input()
-        print(f'running {tool.name}...')
+        if self.debug: print(f'running {tool.name}...')
         preds = set(tool.run_algorithm(inputparams))
         if self.debug:
             print(f'{tool.name} predicted {len(preds)} active vertices (seeds not excluded):')
@@ -225,7 +225,8 @@ class cami():
                  to the corresponding tool
         :rtype: dict(AlgorithmWrapper():set(Graph.vertex()))
         """
-        print(f'Creating result sets of all {self.nof_tools} tools...')
+        if self.debug:
+            print(f'Creating result sets of all {self.nof_tools} tools...')
         pred_sets = {tool:None for tool in self.tool_wrappers}
         
         if self.threaded:
@@ -338,18 +339,23 @@ class cami():
             }},
         }
         
+        # transform all vertex indices to their corresponding gene names in a result set
+        for tool in result_sets:
+            self.result_gene_sets[tool.name] = set([gene_name_map[vertex] for vertex in result_sets[tool]])
+                
         # create integer codes for cami_versions (needed for predicted_by vertex property)
         recursion_limit = sys.getrecursionlimit()
         for cami_method_name, cami_params in camis.items():
-            print("Running " + cami_method_name)
+            if self.debug:
+                print("Running " + cami_method_name)
+            # create integer codes for cami_versions (needed for predicted_by vertex property)
             tool_code = max(list(tool_name_map.keys())) + 1
             tool_name_map[tool_code] = cami_method_name
             
             cami_vertices, putative_vertices, codes2tools = cami_params['function'](result_sets, ppi_graph, seed_list,
-                                                                                    predicted_by, cami_scores,
-                                                                                    tool_name_map, tool_code,
-                                                                                    cami_params['params'])
-
+                                                                                        predicted_by, cami_scores,
+                                                                                        tool_name_map, tool_code,
+                                                                                        cami_params['params'])
             # sort the resulting vertices according to their cami_score
             cami_vlist = sorted(cami_vertices, key=lambda v: cami_scores[v], reverse=True)
 
@@ -363,31 +369,31 @@ class cami():
                 for vertex in cami_vlist:
                     print(f'{gene_name_map[vertex]}\t{cami_scores[vertex]}\t{codes2tools[vertex]}')
             else:
-                print(f'With the {len(seed_genes)} seed genes CAMI ({cami_method_name}) proposes {len(cami_vlist)} to add to the Active Module')
-                
+                print(f'With the {len(seed_genes)} seed genes CAMI ({cami_method_name}) proposes {len(cami_vlist)} genes to add to the Active Module')
+            
             # for visualization with nvenn
-            self.result_gene_sets[cami_method_name] = cami_genes
-                
+            self.result_gene_sets[cami_method_name] = set(cami_genes)
+            
+            
             # transform all vertex indices to their corresponding gene names in a result set
             for tool in result_sets:
                 self.result_gene_sets[tool.name] = set([gene_name_map[vertex] for vertex in result_sets[tool]])
                 
             # add seeds to result sets for drugstone and digest
-            for tool in result_sets:
-                self.result_module_sets[tool.name] = set(gene_name_map[vertex] for vertex in set(result_sets[tool]).union(self.seed_lst))
-
-            assert(self.code2toolname == tool_name_map)
+            for toolname in self.result_gene_sets:
+                self.result_module_sets[toolname] = self.result_gene_sets[toolname].union(set([gene_name_map[svertex] for svertex in self.seed_lst]))
+                print(f'With the {len(seed_genes)} seed genes CAMI ({cami_method_name}) proposes {len(cami_vlist)} to add to the Active Module')
 
             sys.setrecursionlimit(recursion_limit)
             # save the results in outputfiles
             self.generate_output(cami_method_name, seed_genes, cami_vlist, cami_vertices, putative_vertices, cami_genes,
                                  gene_name_map, codes2tools, cami_scores)
 
-
     def generate_output(self, cami_method, seed_genes, cami_vlist, cami_vertices, putative_vertices, cami_genes,
                         gene_name_map, codes2tools, cami_scores):
         # save all predictions by all tools
-        print('Saving the results...')
+        if self.debug:
+            print('Saving the results...')
         with open(f'{self.output_dir}/all_predictions_{self.uid}.tsv', 'w') as outputfile:
             outputfile.write(f'CAMI predictions with {len(self.seed_lst)} of initially {len(self.initial_seed_lst)} seeds: {seed_genes},\n'+
                              f'initially: {self.initial_seed_lst}\n')
@@ -401,7 +407,7 @@ class cami():
         ncbi_url = ('\tncbi_url' if self.ncbi else '')
         ncbi_summary = ('\tncbi_summary' if self.ncbi else '')
 
-        with open(f'{self.output_dir}/CAMI_output_{self.uid}.tsv', 'w') as outputfile:
+        with open(f'{self.output_dir}/{cami_method}_output_{self.uid}.tsv', 'w') as outputfile:
             outputfile.write(f'gene\tindex_in_graph\tcami_score\tdegree_in_graph{ncbi_url}{ncbi_summary}\n')     
             for vertex in cami_vlist:
                 if self.ncbi:
@@ -415,32 +421,28 @@ class cami():
                     url, summary = '',''
                 outputfile.write(f'{gene_name_map[vertex]}\t{str(vertex)}\t{cami_scores[vertex]}\t{vertex.out_degree()}{url}{summary}\n')
         
-        # save the whole module
-        whole_module = []
-        with open(f'{self.output_dir}/CAMI_module_{cami_method}_{self.uid}.txt', 'w') as modfile:
-                for vertex in seed_genes:
-                    modfile.write(f'{vertex}\n')
-                    whole_module.append(vertex)
-                for vertex in cami_genes:
-                    modfile.write(f'{vertex}\n')
-                    whole_module.append(vertex)
-
-        print(f'saved cami output in: {self.output_dir}/CAMI_output_{self.uid}.tsv')
-        print(f'saved the Consensus Active Module by CAMI in: {self.output_dir}/CAMI_nodes_{cami_method}_{self.uid}.txt')
+        # # save the whole module
+        # whole_module = []
+        # with open(f'{self.output_dir}/{cami_method}_module_{self.uid}.txt', 'w') as modfile:
+        #         for vertex in seed_genes:
+        #             modfile.write(f'{vertex}\n')
+        #             whole_module.append(vertex)
+        #         for vertex in cami_genes:
+        #             modfile.write(f'{vertex}\n')
+        #             whole_module.append(vertex)
+
+        # print(f'saved {cami_method} output in: {cami_method}_output_{self.uid}.tsv')
+        # print(f'saved the Consensus Active Module by CAMI in: {self.output_dir}/{cami_method}_module_{self.uid}.txt')
         
        
-        # save predictions by the other tools
-        for tool in self.result_gene_sets:
+        # save predicted modules by all other tools
+        for tool in self.result_module_sets:
             with open(f'{self.output_dir}/{tool}_output_{self.uid}.tsv', 'w') as outputfile:
                 outputfile.write('gene\n')
                 for gene in self.result_gene_sets[tool]:
                     outputfile.write(f'{gene}\n')
-            print(f'saved {tool} output in: {self.output_dir}/{tool}_output_{self.uid}.tsv')
-                    
-        # return values
-        consensus = {}
-        consensus['module'] = whole_module
-        consensus['seeds'] = self.seed_lst
+            if self.debug:
+                print(f'saved {tool} output in: {self.output_dir}/{tool}_output_{self.uid}.tsv')
 
 
     def use_nvenn(self):
@@ -489,7 +491,6 @@ class cami():
         #print(list(set(cami_symbol_edges)))
         url = drugstone.send_request(cami_symbols, cami_symbol_edges)
         print(f'You can find a network visualization of the CAMI module via: {url}')
-        print('The link was also saved in the outputfolder for later.')
         with open(f'{self.output_dir}/drugstone_link_{self.uid}.txt', 'w') as f:
             f.write(url)
         return url