diff --git a/cami_src/evaluation_scripts/seed_variation_script.py b/cami_src/evaluation_scripts/seed_variation_script.py new file mode 100644 index 0000000000000000000000000000000000000000..aecc9cb9e2c92ae522c170ea29b1909d09931528 --- /dev/null +++ b/cami_src/evaluation_scripts/seed_variation_script.py @@ -0,0 +1,250 @@ +import matplotlib.pyplot as plt +import seaborn as sb +import pandas as pd +import os +import random +from cami_suite import cami +import utils.comparison_matrix as comparison_matrix +import numpy as np +from utils import kolmogorov_smirnoff + +def predict_and_make_consensus(cami, vis=False): + result_sets = cami.make_predictions() + cami.create_consensus(result_sets, save_output=False) + if vis: + n_results = len(cami.result_gene_sets) + cami.visualize_and_save_comparison_matrix() + if vis: + cami.use_nvenn(download=True) + +def make_seedvariation(cami, n_iterations, removal_frac=0.2, vis=False, plot=True): + identifier = cami.uid + base_seeds = cami.origin_seed_lst + original_seeds = [cami.ppi_vertex2gene[seed] for seed in base_seeds] + print(f'All given seeds:{original_seeds}') + + random.seed(50) + removal_frac = removal_frac + nof_iterations = int(n_iterations) + used_tools = list(cami.result_gene_sets.keys()) + prediction_tools = cami.prediction_tools + nof_seeds = len(base_seeds) + nof_removals = max([int(nof_seeds * removal_frac), 1]) + + redisc_seeds_file = f'{cami.output_dir}/00_seedvariation_rediscovered_seeds.tsv' + result_table_file = f'{cami.output_dir}/00_seedvariation_result_table.tsv' + n_results = len(cami.result_gene_sets) + + redisc_intersection_matrix = pd.DataFrame([[0 for _ in range(n_results)] for __ in range(n_results)], + columns = list(cami.result_gene_sets.keys()), + index = list(cami.result_gene_sets.keys()), + dtype=int) + + with open(redisc_seeds_file, 'w') as redisc_table: + with open(result_table_file, 'w') as res_table: + redisc_table.write('id') + for tool in used_tools: + redisc_table.write(f'\t{tool}') + redisc_table.write('\n') + res_table.write('tool\trdr\trdr_std\tsensitivity\tsensitivity_std\tprecision\tprecision_std') + for tool in prediction_tools: + res_table.write(f'\t{tool}_rdr_ks_pvalue') + for tool in prediction_tools: + res_table.write(f'\t{tool}_msr_ks_pvalue') + + with open(os.path.join(cami.tmp_dir, f'{used_tools[0]}_{cami.uid}_relevance_scores.tsv)'), 'r') as f: + for line in f: + val_name = line.split('\t')[0] + redisc_table.write(f'\t{val_name}') + res_table.write('\n') + # result dictionaries of the form {tool:list(value for each iteration)} + + tp_rate_dict = {k:list() for k in used_tools} + redisc_rate_dict = {k:list() for k in used_tools} + module_size_dict = {k:list() for k in used_tools} + + # removed and used seeds per iteration + all_removed_seeds = list() + all_used_seeds = list() + + all_redisc_seeds = [] + + for ident in range(nof_iterations): + redisc_table.write(f'{ident}') + # update uid + new_identifier = identifier + f'_{ident}' + # reset cami + cami.reset_cami(new_uid=new_identifier) +# cami.ppi_graph = original_ppi + + #remove seeds (again) + print(f'Removing {nof_removals} seeds from the original seed list...') + removed_seeds_idx = random.sample(list(range(nof_seeds)), nof_removals) + removed_seeds = cami.remove_seeds(removed_seeds_idx) + rem_seeds = [cami.ppi_vertex2gene[seed] for seed in removed_seeds] + print(f'Removed: {rem_seeds} from the seed list') + print('Updating tools and repeat CAMI') + # reinitialize tools + cami.initialize_all_tools() + + # repeat consensus + if ident%20==0: + predict_and_make_consensus(cami) + else: + predict_and_make_consensus(cami) + + used_seeds = [cami.ppi_vertex2gene[seed] for seed in cami.seed_lst] + + redisc_seeds_dict = {} + result_dict = cami.result_gene_sets + + for tool in result_dict: + nof_predictions = len(result_dict[tool]) + len(used_seeds) + redisc_seeds = set(result_dict[tool]).intersection(set(rem_seeds)) + redisc_prev = len(redisc_seeds) + redisc_rate = redisc_prev / nof_removals + redisc_rate_dict[tool].append(redisc_rate) + redisc_seeds_dict[tool] = redisc_seeds + tp_rate = redisc_prev / len(removed_seeds) + tp_rate_dict[tool].append(tp_rate) + module_size_frac = redisc_prev / nof_predictions + assert module_size_frac <= 1 + module_size_dict[tool].append(module_size_frac) + redisc_table.write('\t') + for idx,seed in enumerate(redisc_seeds): + if idx == 0: + redisc_table.write(f'{list(redisc_seeds)[0]}') + else: + redisc_table.write(f',{seed}') + print(f'{tool} rediscovered {redisc_seeds} after removing {rem_seeds}.') + all_redisc_seeds.append(redisc_seeds_dict) + redisc_table.write('\n') + all_used_seeds.append(used_seeds) + all_removed_seeds.append(rem_seeds) + for algo1 in redisc_seeds_dict: + for algo2 in redisc_seeds_dict: + redisc_intersection_matrix.loc[algo1,algo2] += len(redisc_seeds_dict[algo1].intersection(redisc_seeds_dict[algo2])) + + for tool in redisc_rate_dict: + res_table.write(f'{tool}\t') + res_table.write(f'{np.mean(redisc_rate_dict[tool])}\t') + res_table.write(f'{np.std(redisc_rate_dict[tool])}\t') + res_table.write(f'{np.mean(tp_rate_dict[tool])}\t') + res_table.write(f'{np.std(tp_rate_dict[tool])}\t') + res_table.write(f'{np.mean(module_size_dict[tool])}\t') + res_table.write(f'{np.std(module_size_dict[tool])}') + for pred_tool in prediction_tools: + p_val = kolmogorov_smirnoff.calculate_ks_p_value(list(redisc_rate_dict[tool]), + list(redisc_rate_dict[pred_tool])) + res_table.write(f'\t{p_val}') + for pred_tool in prediction_tools: + p_val = kolmogorov_smirnoff.calculate_ks_p_value(list(module_size_dict[tool]), + list(module_size_dict[pred_tool])) + res_table.write(f'\t{p_val}') + + with open(os.path.join(cami.tmp_dir, f'{tool}_{cami.uid}_relevance_scores.tsv)'), 'r') as f: + for line in f: + rel_score = line.split('\t')[1].strip() + res_table.write(f'\t{rel_score}') + res_table.write('\n') + + print(f'Result tables are saved in the following locations:') + + fig1,ax1, fig2,ax2 = comparison_matrix.plot_comparison_matrix(redisc_intersection_matrix, n_rows=cami.nof_tools, + title=f'number of times algorithms rediscovered the same seeds after removing {nof_removals} seeds') + fig1.savefig(f'{cami.output_dir}/same_rediscs_{identifier}_comparison_matrix.png') + fig2.savefig(f'{cami.output_dir}/same_rediscs_{identifier}_comparison_matrix_normalized.png') + # print(variation_results) + # print(rediscovery_rates_results) + tools = [tool for tool in redisc_rate_dict.keys()] + tool_labels = tools.copy() + + for idx,tool in enumerate(tools): + if '_' in tool: + # find the index of the second occurrence of the character + second_occurrence_index = tool.find('_', tool.find('_') + 1) + if second_occurrence_index > -1: + # replace the character at that index with the replacement character + tool_name = tool[:second_occurrence_index] + '\n' + tool[second_occurrence_index + 1:] + tool_labels[idx] = tool_name + if plot: + #PLOT + # Create a figure instance + #print(sys.getrecursionlimit()) + fig1, (ax1, ax5, ax4) = plt.subplots(3, 1, figsize=(20,20)) + fig1.subplots_adjust(left=0.2) + # Extract Figure and Axes instance + + # Create a plot + violins1 = ax1.violinplot([redisc_rate_dict[tool] for tool in tools], showmeans=True, showextrema=True) + + for violinpart in list(violins1.keys())[2:]: + violins1[violinpart].set_color('k') + + for violin, tool in zip(violins1['bodies'], tools): + if tool in [tw.name for tw in cami.tool_wrappers]: + violin.set_facecolor('saddlebrown') + elif tool == 'first_neighbors': + violin.set_facecolor('orange') + elif tool in ['union', 'intersection']: + violin.set_facecolor('peachpuff') + else: + violin.set_facecolor('red') + + # Add title + ax1.set_title(f'Rediscovery rate after randomly removing {nof_removals} seeds {nof_iterations} times from {identifier} seeds.', wrap=True, fontsize=14) + + ax1.set_xticks(list(range(1,len(tools)+1))) + ax1.set_xticklabels(tool_labels) + ax1.tick_params(axis='x', labelsize=11) + + ax1.set_ylabel('Rediscovery rate (<rediscovered seeds>/<removed seeds>)', wrap=True, fontsize=14) + + violins2 = ax4.violinplot([tp_rate_dict[tool] for tool in tools], showmeans=True, showextrema=True) + for violinpart in list(violins2.keys())[2:]: + violins2[violinpart].set_color('k') + for violin, tool in zip(violins2['bodies'], tools): + if tool in [tw.name for tw in cami.tool_wrappers]: + violin.set_facecolor('tan') + elif tool == 'first_neighbors': + violin.set_facecolor('peachpuff') + elif tool in ['union', 'intersection']: + violin.set_facecolor('orange') + else: + violin.set_facecolor('darkorange') + # Add title + ax4.set_title(f'True positive rates after randomly removing {nof_removals} seeds {nof_iterations} times from {identifier} seeds.', wrap=True, fontsize=14) + + ax4.set_xticks(list(range(1,len(tools)+1))) + ax4.set_xticklabels(tool_labels) + ax4.tick_params(axis='x', labelsize=11) + + ax4.set_ylabel('Sensitivity (TP/TP + FN)', wrap=True, fontsize=14) + + violins3 = ax5.violinplot([module_size_dict[tool] for tool in tools], showmeans=True, showextrema=True) + # Add title + for violinpart in list(violins3.keys())[2:]: + violins3[violinpart].set_color('k') + + for violin, tool in zip(violins3['bodies'], tools): + if tool in [tw.name for tw in cami.tool_wrappers]: + violin.set_facecolor('midnightblue') + elif tool == 'first_neighbors': + violin.set_facecolor('mediumblue') + elif tool in ['union', 'intersection']: + violin.set_facecolor('lightsteelblue') + else: + violin.set_facecolor('royalblue') + + ax5.set_title(f'Ratio of number of rediscovered seeds and predicted module size after removing {nof_removals} seeds {nof_iterations} times from {identifier} seeds.', wrap=True, fontsize=14) + + ax5.set_xticks(list(range(1,len(tools)+1))) + ax5.set_xticklabels(tool_labels) + + ax5.set_ylabel('precision (<rediscovered seeds>/<module size>)', fontsize=14) + ax5.tick_params(axis='x', labelsize=11) + fig1.tight_layout() + fig1.savefig(f'{cami.output_dir}/00_{identifier}_seed_variation_result.png', bbox_inches="tight") + plt.close(fig1) + print(f'Violin plot saved under: 00_{identifier}_seed_variation_result.png') + return cami \ No newline at end of file