From 07cb0efaef92269873ba5d97a1fd1ee0c90384fd Mon Sep 17 00:00:00 2001 From: Vy <quynh.thanh.vy.nguyen@studium.uni-hamburg.de> Date: Tue, 20 Dec 2022 17:59:30 +0100 Subject: [PATCH] Erste Schritte zur Abgabe 1 --- demo.final.Rmd | 31 ++++++++++ demo.final.html | 57 ++++++++++-------- demo.final.md | 48 ++++++++++----- .../figure-html/unnamed-chunk-3-1.png | Bin 0 -> 4614 bytes 4 files changed, 97 insertions(+), 39 deletions(-) create mode 100644 demo.final_files/figure-html/unnamed-chunk-3-1.png diff --git a/demo.final.Rmd b/demo.final.Rmd index d99fe96..83e058c 100644 --- a/demo.final.Rmd +++ b/demo.final.Rmd @@ -15,4 +15,35 @@ output: knitr::opts_chunk$set(echo = TRUE) library(sozoeko1) ``` +# Thema 1 + +Wir wollen etwas analysieren: + +* x +* y +* z + +Dabei nutzen wir die Methode **OLS**. + +# Verwendeter Datensatz +Wir verwendet hier die Daten von Paket gfc. +```{r} +summary(gfc) +``` +# Analyse +Zur Analyse definieren wir eine neue Variable: +```{r} +gfc$gdpegdpu <- gfc$GDPE/gfc$GDPU +``` +Diese Variable ist interessant, weil: +1. Item 1 +2. Item 2 +3. Item 3 + + Item 3a + + Item 3b + +# Plot +```{r} +plot (gfc$gdpegdpu) +``` diff --git a/demo.final.html b/demo.final.html index 9d6dd33..33abd19 100644 --- a/demo.final.html +++ b/demo.final.html @@ -1493,31 +1493,40 @@ border-radius: 0px; <hr /> -<div id="r-markdown" class="section level2" number="0.1"> -<h2><span class="header-section-number">0.1</span> R Markdown</h2> -<p>This is an R Markdown document. Markdown is a simple formatting -syntax for authoring HTML, PDF, and MS Word documents. For more details -on using R Markdown see <a href="http://rmarkdown.rstudio.com" class="uri">http://rmarkdown.rstudio.com</a>.</p> -<p>When you click the <strong>Knit</strong> button a document will be -generated that includes both content as well as the output of any -embedded R code chunks within the document. You can embed an R code -chunk like this:</p> -<pre class="r"><code>summary(cars)</code></pre> -<pre><code>## speed dist -## Min. : 4.0 Min. : 2.00 -## 1st Qu.:12.0 1st Qu.: 26.00 -## Median :15.0 Median : 36.00 -## Mean :15.4 Mean : 42.98 -## 3rd Qu.:19.0 3rd Qu.: 56.00 -## Max. :25.0 Max. :120.00</code></pre> +<div id="thema-1" class="section level1" number="1"> +<h1><span class="header-section-number">1</span> Thema 1</h1> +<p>Wir wollen etwas analysieren:</p> +<ul> +<li>x</li> +<li>y</li> +<li>z</li> +</ul> +<p>Dabei nutzen wir die Methode <strong>OLS</strong>.</p> </div> -<div id="including-plots" class="section level2" number="0.2"> -<h2><span class="header-section-number">0.2</span> Including Plots</h2> -<p>You can also embed plots, for example:</p> -<p><img src="" /><!-- --></p> -<p>Note that the <code>echo = FALSE</code> parameter was added to the -code chunk to prevent printing of the R code that generated the -plot.</p> +<div id="verwendeter-datensatz" class="section level1" number="2"> +<h1><span class="header-section-number">2</span> Verwendeter +Datensatz</h1> +<p>Wir verwendet hier die Daten von Paket gfc.</p> +<pre class="r"><code>summary(gfc)</code></pre> +<pre><code>## quarter GDPE GDPU +## Length:60 Min. : 86.70 Min. : 80.4 +## Class :character 1st Qu.: 93.95 1st Qu.: 93.2 +## Mode :character Median :102.95 Median :103.0 +## Mean :101.86 Mean :102.6 +## 3rd Qu.:109.47 3rd Qu.:114.9 +## Max. :115.70 Max. :119.5</code></pre> +</div> +<div id="analyse" class="section level1" number="3"> +<h1><span class="header-section-number">3</span> Analyse</h1> +<p>Zur Analyse definieren wir eine neue Variable:</p> +<pre class="r"><code>gfc$gdpegdpu <- gfc$GDPE/gfc$GDPU</code></pre> +<p>Diese Variable ist interessant, weil: 1. Item 1 2. Item 2 3. Item 3 + +Item 3a + Item 3b</p> +</div> +<div id="plot" class="section level1" number="4"> +<h1><span class="header-section-number">4</span> Plot</h1> +<pre class="r"><code>plot (gfc$gdpegdpu)</code></pre> +<p><img src="" /><!-- --></p> </div> diff --git a/demo.final.md b/demo.final.md index c7b26b6..d5b271d 100644 --- a/demo.final.md +++ b/demo.final.md @@ -12,32 +12,50 @@ output: --- +# Thema 1 -## R Markdown +Wir wollen etwas analysieren: -This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see <http://rmarkdown.rstudio.com>. +* x +* y +* z -When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this: +Dabei nutzen wir die Methode **OLS**. +# Verwendeter Datensatz +Wir verwendet hier die Daten von Paket gfc. ```r -summary(cars) +summary(gfc) ``` ``` -## speed dist -## Min. : 4.0 Min. : 2.00 -## 1st Qu.:12.0 1st Qu.: 26.00 -## Median :15.0 Median : 36.00 -## Mean :15.4 Mean : 42.98 -## 3rd Qu.:19.0 3rd Qu.: 56.00 -## Max. :25.0 Max. :120.00 +## quarter GDPE GDPU +## Length:60 Min. : 86.70 Min. : 80.4 +## Class :character 1st Qu.: 93.95 1st Qu.: 93.2 +## Mode :character Median :102.95 Median :103.0 +## Mean :101.86 Mean :102.6 +## 3rd Qu.:109.47 3rd Qu.:114.9 +## Max. :115.70 Max. :119.5 ``` +# Analyse +Zur Analyse definieren wir eine neue Variable: -## Including Plots +```r +gfc$gdpegdpu <- gfc$GDPE/gfc$GDPU +``` +Diese Variable ist interessant, weil: +1. Item 1 +2. Item 2 +3. Item 3 + + Item 3a + + Item 3b + +# Plot -You can also embed plots, for example: +```r +plot (gfc$gdpegdpu) +``` -<!-- --> +<!-- --> -Note that the `echo = FALSE` parameter was added to the code chunk to prevent printing of the R code that generated the plot. diff --git a/demo.final_files/figure-html/unnamed-chunk-3-1.png b/demo.final_files/figure-html/unnamed-chunk-3-1.png new file mode 100644 index 0000000000000000000000000000000000000000..c0befed7ff8958a6e4623a56b2f028271ab8b615 GIT binary patch literal 4614 zcmeAS@N?(olHy`uVBq!ia0y~yU|PVy!1#cJnSp`9H%On2fq@}5z$e6&0R*fV7}6N5 ztQf2&Fr;m>VqmZWanh`;tgI&7P6NxOrKP29+m^QN{{$<B326)yCZtWc{eN2;!?yq1 zw*CKqdxF*N|F>`d|Nnnm+W*@V{{IJw{r~?zw^B!+fq{Xuz$3Dlfr0NZ2s0kfUy;JV zAn5Pu;uumf=k46?s>j;|-L|fKyCp1Y_12`))X4Y$XFT-Xl((cnGQhr}c%T04vu$z( zPai9$aWr+?HW+lf&u2Iw!ohV(LBpeYfdX$+lgY^89Ba~Jm{T!j!M2ABLIgyXI0j5$ zb99tqVa<ea+yVpopNUWDTd;up_eF*1FD$W3B>0M0Axgfmr1Ej8b8vZy^4n{0aTTyY zgww=IiWZs_`|ohlXpReiFTriq6!+c!rFr9~1to779UWz49oMgW!NC>O6nE9-jH9F1 zh1bn19<6qd3SeMi&HN-VCA)TOilWBVpuJBNH2yB@g1Bjx3`;6slwl-?muS3xB?s5l zCbX#XjcdA;x2kUq%hJSn`A(Kt``UN=<HWn;<<%bg?Pqgdt<<|<?)-X_qIc8Yvpqbw zkIiwlQs;u*PotGzdjGzC_VfD}1<&J~7lcmqxbXe&_g8EGzTI|m>BfiW_Ho$1R=TLV z@8mq`&pckD@rs!&cXj96?H1W3yLyrU?;MY-X}7-3*4Zb~+8lLq6+hS4#svz#N{;)( z|Ekt4X>$)KQ0ZMT`)Kt4*>4}32R>X7H;KdQi$iqIZJz+ylTu%qm-SYy;5X9nn4HCD zwdBHS%NI|wGZ@x+gdBZ8ZEu_M&&fPoeHYllvEixvqD@OK>4ZshQ0i5uc}<&&c1mp$ znUZe*iV+g-LU+6W?@XSuq$`~-iZ|2f#rLcd#SD)f((!dG9%(-3R=?Tw^y2b~PKSKk z4qlk#`TfG36VsFuAF3@*$T*l1sS@krc%jKLV1in{<IH9;|7T4>N2mL}YjS#sBUdct z@H)INfJ<;n^t`1(Z3}dyG{qpPM$<Xq*@B}%9ScG}E)D8h5TL=qbxA~B<NB{n8omLm zmLAgZ3Har^v=I_}#@w_1*m|CE<X*gi=hVLPrGax6EN4#0_%}sMWAa5Ohkyyk;x9b@ zckjDd;5JEfExV>P{{lAIYQa5UcNj81NdMOo|LA(T*-tYm^BR^_KZH2MP4rro_$>tW zUfjq|>OH=-dCDy1gH7+IJ(~U_S~)4BtR?*8`TgmV*SSvpveDeiZ)KG5UHkg49*y`5 zj>qL4cV2t$(y`#KtKB;;`}vCQvghv}x!}VgQ1bir;-96L|IVtr<FRi28;)6`|C;L7 z|C%ndZgJ5IW)|7M!UAdwy8dtWpId42D*wd^858wG#xK;md8)kKSN-VWnAu#WZ*=cY z<=l-|cU)YMe9c8?dv{b}yU7EWpS2e_J=XoYqN8y&h^>MvtGM>Nq`B;u*+mK~JgRQX z-}?IUxG#ItGY5~^E92A6Z>HTck=(ZW)A6ugu8PJ5mI6UXzyDpj(yg{yeoMT8mX1d8 z1sRT$3-a&oSI;Z`)?TxImhu$VrCsM6KDhloBJ*WJigf!@R@T}{I@_&PZvOqn>ZsUd zQhT9!TJI?iE<=^9EAsEI)UOv1N$S`oF26B`#qnV02e-eEYPZ*T+v{EN4Ov{bC;b23 zUB%WSjt4texc$voU$<GJ=yjRlq!dAsIUM;{@{i4)bKLCm58gl)R`sN33);K?ingol zmfx?arK(XrrGzu@iut3p$Jc$BnHuo!B=_VMf%PvOV$V5F-ruIi5N4_g5-4vsRFoG8 znR&qb&*%5075rDS?|e~MVU!qs-^BRz486VQcNia#37N6M>~dPt(&v_uYtkmo5;`oI z*!wH&g3Y#ljb}K|FR09sW1A^#!+tjHwe*Qu58P_+1Rv+%%Db{>Ge?SpkfZE3dB=bP zrIXIZkNvBD^mCUAhpD`M|2EKm*M*bSF)L<IFq?c@?(1!9*E-&&OaILk76i_}D)*JY z#d?KUOZo+$Z!790);Jm}*1VRM`g&Pm1!v&-qnq9TvT$TE_5MmRVBgB%c)2k2Xz;b) zk2NzqtFN5r(==`PaJ+Bx{l#^8Gp4i&Z2fvx=J7P<CS=yWue{o?Y7_aS94Z#ivs__* zTx(v@y_qJb-|`%<<;mn#n!3wb{)-qN+fR*}LY>Kh`~qL598_U%u9@`U=|+xMj#u{n zxb$sB{2Tw=Syry{$Jh0_2Jjz}{`&N7V7-X?#sy~_Z9B5AxPN&iy5HVj?XIbYU%;x0 z@<mc#1@~4R&A-s;S<c%vv$=`=VehX_+gG~B=T6R^e9U^fV5m)nfHC{t-!GOO-LbhS z^U}qLNe>ot<X!Q98<=nTPWj`CSx)W>+wV2ny<j=Xs%m(j)lr>8_=>Ieye+&ZmMB+n z-_lLGb)@uV?Xg-7#o~bT&i(cbl{HG6A8Ti9?^qe@`~Pdy;pF3Xuls*FJ6SE+zOQZ0 zt;d=#@_rU&TxDO&9$Mo+Nw9ft-R8!N>lK&tRdDT!n<MmbUjHMzKPz)AK88+@yk5K0 zOSK~X!uG?Ti`J~LSI)AlG`;S6fq7r?g|C;>>s#e(FK+v|W2Zp)#CSD77TX8$N56N! zG%u_Z`*Ab+jFi8Qc}Ez_7e`yk^Zjg7?|)6%@+(Wu@vq06o9hmR&-Zj@$vwUJgl5J% z`Cn_>CS-O!{<xHziRJC-@9UJU4)2JH;ht=ERB^@r1)=YCid21)ngy=JUwGW~REl-4 z*Nm0CNqn#B6ZZf7em#3`?S-A{ogp9pvDfYWwC<ep)#W>mTuAF$`b}iI#QW-x@7uqt zoHfzA()&M2kfl}f<K83rHx|o1Q(3_8#n$?Bfd^Bj(>oQ>-MeL92u^V9zI&ICg>&cC z$XD;mZiU>+?~T$4y78{;(v_;?T1gu{DtF)J41T+5*$m5!%H6kLHZ722w|bMeJx(WX zU$}5<U8{Vl2uD^~f_Jp-T5<iu#a}KyY_ME$xAAx4tXui-4Z>br{}FlIQ8d5gL7m2z z-$M0kF0B7_n63WA0tMekmM<2ni;DBTQoWcYxT<19<5eGUGpUp1t={`!?oR?Db3Bw^ zT$h*sdya3h`D_sPdRms&(r4Gdo_Jfu!m57B^wsY);ohnarA)S3$@>R69S?T8^#1y$ z7i2BC_s)`y53XNu5E2Ugc)RZVvX8zlf+BMk@Ppf9lcNH<REl5CIxyL>c=4vCUpZz; zZnd4$vS4Q8f{pBDGGg65cHbk<tLN}E9h19JR5SVci{JZR{cKsA$R}0#;NKfZ{&}88 z?OJy44*Wg;&9{2qD<2QpMUxzhmrnAoU1j-Vg44|AWsjCbXjx5FTlI+lwn2ZMLevL$ zD}MVXt))S~=ZpSYFtbP`WaaxQ57Jp3i=Wz5dd0jB{<B6QV;hgvx$?F9U)whw;>}xf zX~|<B`NjnWCquP-jk}yHo-HuwYgiES(ZKPRWyXyE7mq1rI4)WH$oWtI|Cx>f1y5h> z|IFWXa1FELLGkZfIu;akf0<r&JYS*d5bv7qrQG*x*Cg|Cg-2|kt*83=m3iRN!>VCT zec%4eURo3@<bL6ifl$dKzE^Y1p9*fV@ws&U;zrGz$9!A^W*l17^}jIZ&i9M|n-@%& zC48LelS*+wfuh>fd*yFbPR8{nU+Z$c(A0T4`Q6e9r!5v9Q_9#GVeXR8SFpTimxW0V z&uwOTA-=o`F&7kdt$Kv(v^b*lUb2?Tu{%CwE8AM~#)5-u`;6C?PkujsV#NN`*7K9f zuX_PUn>mYpxnmpyEK=7UIwi@nwyQmdPl&bYn#-voYe9}E!R=xVG0#GtE$}?l$ZbCD zLhNsiYl)5*x-6paKCF?py?S!TUj>B>(K$BpC1v0L6gKVhQx(|4R=4hjIR7DAhk)m- zYSq`BZTM?EEM`2q)z)eGg6H|8&yyP$h!z}X`(HaP$Dh^lA^XB-&u%_R`q6(<UXW!i z<J@P@JeOw|e)?S<|3Ky@PjCNfsghZ<r`z2-{f>j{^P`=jl1)zMn<wcsH3{?2US`D3 z%AWGRQb}VAN9m$-jsY2t7q&c95SttJ(vpMA)@tn~V@N}o&CzkzlBT-7`=Z;LxjdC# z<o(=y^z7yI5{nfxOe9NoS7iTpWowNPihWdm`uTkhu8%6So7dIXDrmS&UgvR3=bnH_ zl4r!x`n~^{9Tg`{$zAsTDwCrkpVZd{ht6JQ=w!*Al+G?G60>vfJgwdZ@%1$(p_eW{ zud}_h+&y4NLW*makmLUF*!gvL|Lm&k<YzZESiWF)YI){;oB#LncV6Z6vr%f^_vQM} z8wCNZ#pfK&_uKvIe34gK*ZJJm)8N#c&_CNG-(251f8oOgQ7@Xootq_MQ<OLtDL^<1 z8Xl7?HlDb#wt|J#T*&m*@AhYX{^##<us?9&a%_*DJ9pLF!^Le2ZBJ<BgsE#wnk8)X zIDI2&;)M%xDWYbpCr{<^X7iN-GhSP=%Lcu8A!A~(#X7R}?5h;j!@u(GTsU7K`)T>J z`0{rfBImA2xzSRqcy#}}JBgdEB2RAMm}LSsRm^d68(4!<#wD<_h<CnVr{ZXSqV&*K zvfM5EZ6fvg>v{jrH|{R}m;Wr$yglKW{E=PNa}Jv1{9kaSyY$B2>)G<AYB@@d+t2>Y zS<8D@cXzs{Z*u+mSst^$C7bZx&Rchl)%d@{w!5Frwk7VKo?LR!_i)~9<G0%;^>WU3 zyYTPl`HkkfESuhzn{4d8yZ_q8k0(vu<o&!h??v}t_KPaJpWV)r`Sw9zXYLKVs5kDj z-7Y-de%Ihx*~e?O6Figt|JuNRn=4DM^z)zlZUK)s%swc4d&BWPGNNV^7u?;s^Ub>l zuKF2GH(oFI|GnXD-@j{tvn$@pT(NlbEB>#|9kVyzUan8Axna`uO_=YqXU6w(AA#Mq zXYO0Q+4lRMgnO?3w6zPiC6=Eqi`u>IACKAFo;7=WTv}Z(Tw6L_ByoTE`Tf0%w@L51 z!F}s;&5mPD|9%;8oK~&7p{9CJbGvc$<rT48Sf>B5`|)~r?v1)jlG0}Ll``uEu2_8A zuso$HIB&oCvOx30*IJJyR!jBf9RB8ZtnKWIvnGG0_9n}Jn{C8<yWV@-v9qh^ZLOTG zdGY4A*^0;7&aMo!|Kl_3*uN^<oaQvCZy6K+vTxj$f2I80nzQH2l0Pag*>!cNXW{DN z8OI`y$*r4}YjZg`ZhQEn#0HV=R=J1OtZu)3s8{3?A=ceMqmKBsn75Ns_jgA5Dy%T& z$l_{>YF@BRVTEaL|L&*t)Be`Az1`RRU;0~FPPtOfcFA{fi&**;R+!FR@b>lVS@qZ6 zaz7V4T)(CI>9*fH^LFvt9pq)%x=i@X+m!ZSUq7(l{kQw}^8NpwbiHS6in`4C>t61~ zx;vZp%x^2(w@&<;_4nz#O;N>4FP>?<c=%Q3?Y0~5`|S>|aR|shW}I>Q`>Xrc^q*@= zvuu6la^WGX<6-%doO%EEFY5Tt;JDUOaEtc6{?M9u-MzQ>H>}SPxH2o)@%--vy)*v) po~$wX4y2ci=((eG<4NZHls+GQ>AS<vSq-4^98Xt2mvv4FO#rqAa>M`t literal 0 HcmV?d00001 -- GitLab