
Excursion to hash functions

– one of the very basic tasks in computer science is to efficiently store
values associated with keys

– one usually wants to access the value for any key as fast a possible

– a very common way to achieve this is to uniquely associate a key with
an index of an array where to store the value

– this association is established by a hash function:
a hash function maps any kind of (hashable) object to a unique
integer

– see example for string-keys below

Excursion to hash functions 25/55

Excursion to hash functions

acc

taa

t

aaa

aaaa

gaa

cc

atg

cg

c

14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

keys hash values
hash function
h : A∗ → N

– collision when h(w) = h(w ′) for
w 6= w ′, as in h(cc) = 10 = h(aaaa) or
h(c) = 6 = h(t)

– strategies to solve such conflicts:
hashing with chaining, double hashing,
open addressing, cuckoo hashing . . .

– a hash function is used in a
Python-dictionary or a Ruby-Hash or a
map in the C++-standard template
library

– it is hidden from the user

– Python: obtain hash-value via method
hash, e.g. hash(’atcg’) ⇒
1 231 534 521 241 347 127

– can be applied to any hashable object
(e.g. strings, numbers, functions)

Excursion to hash functions 26/55

Examples of hash functions for strings

js(s) = h1(s, |s|) where

h1(s, i) =





0 if i = 0

(ord(s[i]) + h1(s, i − 1) · 25 + h1(s, i − 1)/4)

ˆ h1(s, i − 1)
otherwise

sdbm(s) = h2(s, |s|) where

h2(s, i) =

{
0 if i = 0

ord(s[i]) + h2(s, i − 1) · (26 + 216 − 1) otherwise

bp(s) = h3(s, |s|) where

h3(s, i) =

{
0 if i = 0

ord(s[i]) ˆ (h3(s, i − 1) · 27) otherwise

– ord maps characters to integers

– ˆ stands for exclusive or

Examples of hash functions for strings 27/55

