R Ubungen (Programmierung fiir Naturwissenschaften)

June 21

There are three parts to the Ubungen. You have two weeks. Divide your time as you
please. Parts 2 and 3 are more difficult, but there will be lots of help in the lectures and
Zoom sessions.

Bitte die Losungen zu diesen Aufgaben bis zum 9.07.2021 um 18:00 Uhr an
pfn2@zbh.uni-hamburg.de schicken.

1. Part 1 (Hello WOrld in R) ..o sssssssssssssssssssssssssssnss 1
B Y 0 o 1
0 5 U] TS 1
RS TR0 3 o U< 010 £) o PP 2

2. Part 2 Data FItliNG ... 5
/0 N D - v) PP 5
207 010 0 | V.0 6
2.3, FINESNINIE oot bbbt 7

3. Part 3 Statistical UNCEItAINEY ... ssssss s sssssssesssssssesssssssessssssnens 8
3.1, SUIMIIMIATY wooveteueereresssesessssesessssesssss s ssssessssesessssessssssesssssssssssssesssssssssssessssssssssnssesssnssssssssssssssssasssesssnsnes 9
3.2. OVEIVIEW Of COUC.cuiirieteecnt ettt ea e b s s e bbb s ne s n s 9
S 70 TR 010 o | 1 .30 9
34 FINESNINIE oo 10

1. Part 1 (Hello World in R)

The aim is to get a script running, fight with R syntax, make a plot and get ready for
something more interesting. It is meant to be as easy as "hello world" in C lectures.

Do not ignore this part because it looks too easy. Make sure you know the syntax for the
Klausur.

1.1. Setting up
In 2021 you are probably working on your own machine. Everything in this Ubung
should work with a basic R installation.
This means you know how to transfer a data file on to your private machine. This
description assumes one is writing an R script, but you can get the same results if you
use one of the graphical interfaces (Rcmdr, Rstudio, Jupyter, ...).

1.2. Help
Within R, ?etwas or apropos ('etwas"')
In general, you probably want a browser windows to be able to 'google R etwas'.

https://d.docs.live.net/3556a7f59f110da7 /summer_teaching_sync/summer_21_teaching/r/r_uebungen.docx 27.Jun.2021 [1/11]

1.3. The mission
Summary:

e Write a script that can be executed with Rscript that will
o Read a given data file with information in some columns
o Plota histogram of log1o of the distribution of values in a column
o Putthe plot output in a file
e Attach your script and the plot and mail them to the same address as for the
other Ubungen

1.3.1. Data
From a sequence search, one finds homologous sequences and ranks them according to
similarity to the query sequence. The measure is an e-value (expectation value) which
estimates the number of times you would see this much sequence similarity by chance.
The values range from nearly zero to nearly 1. A very similar sequence has an e-valuex0.
Some sequences are common and some are rare. We want to know if there are many
close homologues or if the sequence is somewhat exotic. The values are not accurate, so
we are only interested in the order of magnitude. We work with logio of the values.

There is example data gitlab (aufgabel/data)

Look at your Matrikelnummer. If it is an odd number (n mod 2 = 1) use the data file,
blast clupea harengus.out.Ifitis an even number use the data file, use the file

blast symphurus orientalis.out.

The files have come from a sequence search, so they are typical of real data. There is
much information that you do not want.

Have a look at the first few lines of the file (1ess xxxx.out).

¢ Note how many header lines should be skipped
e The third column is the only interesting one.

1.3.2. Steps
The aim is to write a script, but usually one starts working interactively (type R at the
command line). When you are happy, save the commands in a script.

1.3.3. Read data
Get the data into a data frame. Look up the function read. table () - eitherina
browser or by ?read. table. You want to store the name of the file in a variable
(f <= '/blah/blah/xx.out') and then a line like
b data <- read.table(file=f).You need to do abit more.

You have to tell R how many lines should be ignored at the start. Add skip=4 to the
parameters. You also want to give reasonable names to the columns. Before reading the

https://d.docs.live.net/3556a7f59f110da7 /summer_teaching_sync/summer_21_teaching/r/r_uebungen.docx 27.Jun.2021 [2 /11]

file, use the c () function to make a vector of names (like "id", "startend", "e_val"). If you
call this vector names, you can put col.name = names into the arguments when
reading the table. If this is confusing, it probably means you have not typed

?read.table.

Having the data, check that it seems sensible. If your data is in "b_data", then

summary (b_data) will give you summary statistics including the number of data
points. From the linux command line, you can count the number of input lines with wc.
This should agree with what R tells you.

1.3.4. Afirstplot
You can make a basic histogram with a line like hist (b_data$e val), or whatever
name you chose for the data frame. You will see immediately that this is not a good
representation of the data. You should work with logarithms of the data, but log1o, not
natural logarithms (In). We want 10-15 to become -15, not In(1071%) ~ —34.

Look up the help for the log function and find how to set it to base 10.
Make a vector of the logarithms with one line by invoking the log function on the
column from the data frame. Plot this data using hist ().

1.3.5. Nicer histogram
You want to take care of the axes and put an informative title on the plot. At this point, it
becomes easier to put the commands in a file which you can edit. At first, we will just
manually read the lines into R. Then will we check that we have a script that works with
Rscript.

In your favourite editor, insert commands to read the data and make a histogram with
defaults. If you put the commands into a file called makehist. r, then start R and from
the command prompt, type source ('makehist.r').Make sure this works and
produces a histogram on your screen.

Improve the x-axis label. Before you use the histogram command, insert
xlab text = expression(paste("log"["10"], italic(' e'), '-value'))

in your command file. In your histogram command, insert xlab=xlab text into the
parameters for the histogram command. From the R command line, use the source
command to check that you have a better label.

Show that you can put an arbitrary title on the plot. Put the number of rows and your
name in a variable like

nr <- nrow (b data)

myname <- "a;drew"

info = paste(nr, " sequences\n", myname)

and add this to the histogram by adding main=info to the list of parameters to hist.
Please put your name and not "andrew" in the title.

https://d.docs.live.net/3556a7f59f110da7 /summer_teaching_sync/summer_21_teaching/r/r_uebungen.docx 27.Jun. 2021 [3 /11]

Check that this produces a nice histogram when you plot it out.

Finally, get the output into a file. Before the histogram function add,
png (file="somename.png")

After the histogram function, add
dev.off ()

This flushes the output and closes the file.

If your script is in makehist.r, then
Rscript makehist.r

should produce a file in png format.

1.3.6. Finishing:
Check that your script works when you run Rscript.

Check your png file. Does it have your name on the plot and the number of sequences ?
If yes, then mail the script and plot as attachments to the same address as for other
Ubungen.

https://d.docs.live.net/3556a7f59f110da7 /summer_teaching_sync/summer_21_teaching/r/r_uebungen.docx 27.Jun. 2021 [4 /11]

2. Part 2 Data Fitting

The aim is to take a data set of x,y points and fit them to a decaying periodic function
using R's built-in, non-linear fitting routines.

The world is full of harmonic oscillators, which ring and disappear over time. This could
be a piano string vibrating or the "free induction decay"” in nuclear magnetic resonance
spectroscopy. If we have periodic motion, we are talking about y = sin (x) where x is
our time. To avoid debates over units, we will write

Yy, = sin 2nwx (D
Where w is the frequency in s™1. You usually cannot control when you start recording,
so one has to account for a phase shift (¢) and usually write

Yy, = sin(2rwx + @) (2)
Now we have to account for damping, so the final version is

y = e P*sin(Qrwx + ¢) (3)
where f is a decay constant.

The job in a data fitting exercise is to | ¢
read all the points and find values ﬁ

for ¢, w, and B. Given some data frequency 93.1

phase 5.7
points, you should be able to make a it oeay 320
plot like this one, with the data set §

marked by points and the fit to the

05

amplitude

data (prediction) shown by a
continuous line.

-0.5

2.1. Data set]
Everybody should get their own data T
0

set based on their Matrikelnummer.

e Ifyou canlogin to the ZBH machine, running the program
/home/torda/uebung r2/sin exp -o sinexp.dat 999

will make a few hundred data points and put them in a file called sinexp.dat. Do
not use "999". Use your matrikelnummer.

e Ifyou have a linux, windows or mac there are executables in gitlab under in the
same directory as the PDF file in sub-directories 1inux 386 or windows 386 or

darwin amd64.

https://d.docs.live.net/3556a7f59f110da7 /summer_teaching_sync/summer_21_teaching/r/r_uebungen.docx 27.Jun.2021 [5/11]

e Ifyoudo not want to run a binary, then you have to use a default set in gitlab in
R/uebung fitting/default.dat.Make anote in the assignment that you
used the default values.

Run the program (sin_exp), have a quick look at the data file and in an x, y plot. The data
are sorted, but not regularly spaced. There is a small amount of synthetic noise. There is
a title line which should be used when reading the data.

Given your matrikelnummer, we can have the program print out your ¢, w, and . This
is only for checking the assigments that are sent in.

You do not know the exact parameter values until the fitting, but you have a rough idea
of the ranges

¢ [0:2m)
w 100+10%
B 30+10%

Use the w and f values as starting points in the fitting.

2.2. Coding
You define a function which is passed to R's non-linear least squares routine, along with

starting guesses for the parameters. It is easy to write this in less than 30 lines of simple
R.

There are two parts:

2.2.1. The function for fitting
R's fitting routines want a function which acts on a vector and returns a vector of
results. One should define a function whose signature might look like
sinexp <- function (x, phase, freq, decay).
x is a vector. The next three arguments are scalars. At the start of the function, define a
vector to hold the resultlike v = vector (mode='numeric').There are many
strategies. An R enthusiast would code eq. 3 as a series of vector operations. Weak-
hearted weaklings who do not care about slow code would write an explicit loop like
for (a in x) then calculate the function value for a and just append to the result
vector,v = c (v, dd).Make sure the function ends with return (v).

Your first attempt at a function will probably not work (everybody makes typing
mistakes). Write a test that plots out the function. If you choose a range for x from 0 to
0.1 and the values in the table on page 6, you should get a plot similar to the one on the
first page.

2.2.2. Fitting / non-linear least squares

Read the data and then try fitting:
d <- read.table ('/where/you/stored/the/data', header=TRUE)

https://d.docs.live.net/3556a7f59f110da7 /summer_teaching_sync/summer_21_teaching/r/r_uebungen.docx 27.Jun. 2021 [6 / 11]

will store a data table in d. Do say header=TRUE since the columns have names in the
data file.

Check that you have a table with about 500 entries for x and y.
You can now do least squares regression with one function call, but first you should
suffer a bit. Type

?nls
at an R prompt to see what you are doing. In your program, you will need a line like
nlmod <- nls (y~sinexp(x, phase, freq, decay), data = d,

start = list (phase=3, freg=150, decay=30))
If your data is in d and your function was called sinexp, this will take the initial values
from the start list and put the result into an R structure called n1mod. If this has worked,
you can type nlmod at the command line and see its structure. You can get a better idea

of the results by typing

coef (nlmod)
or putting this in your script. The coef () function knows how to get the fit coefficients
from a regression object.

Finally, you should make a plot. This is most easily done in two steps.
plot (d$x, dSy, xlab = expression (italic(x)), ylab="amplitude")

will plot the x, y points from the data frame. If this is followed by
lines (d$x, predict(nlmod), col = 3, lwd = 3)

you will get a nice line joining points which are predicted by the model. The plot should

look like the one page 5. To save your plot, add a line like
png (file="yourname fit.png')
before the plot command and a dev.off () after the plot is finished.

2.3. Finishing
Send a mail message to the same address as for the other Ubungen including

e Your matrikelnummer

e Your fit values for phase, frequency and decay rate
e Animage of your plot (attachment)

¢ Your R-script that did the fitting (attachment)

https://d.docs.live.net/3556a7f59f110da7 /summer_teaching_sync/summer_21_teaching/r/r_uebungen.docx 27.Jun.2021 [7 / 11]

3. Part 3 Statistical uncertainty
The aim is to use R's sampling command to estimate statistical error.

ZDF Politbarometer asks the question, what if the election were held next Sunday ?
They try to correct for some sociological biases. We cannot do that, but we can estimate
sampling error. There are more than 107 voters in Germany, but the ZDF Politbarometer
survey is based on less than 1300 people.! With R it is easy to estimate the error that is
due to small sampling. The philosophy is, one sets up a large array with known
probabilities. One then sample a number like 1300 from this array. You repeat the
process and see much the samples vary.

You could use a plot to convey the uncertainty. On the left are the results of surveying
500 people. Each time we repeat the survey, we get a different result. Our uncertainty
depends on how different the results are. The line in the middle of each box marks the
median. For the greens, it is 21%. The boxes show the 25 and 75% quartiles, so half the
estimates lie within the box. This is also known as the interquartile range. The whiskers
show 1 %2 times the interquartile range and the dots mark a few outliers. The next two
plots show the same data, but after sampling 1000 and 2000 people. The median values
hardly change, but the spread of data is much smaller.

500 people 1000 people 2000 people

0 04 o
i
03 J; i i 03 i n A 03 n 0
B ' | ! H ' l i
frequency] ; | frequency| | T frequency -+ T
SR B S T S A . T T
: e 4 ° +
El ' = -+ = e
04 T = 01 L == 04 * %'
Jr -
.
green spd cdu afd oth green spd cdu afd oth green spd cdu afd oth

At the end of the exercise, you should be able to make a plot like this, for an arbitrary n
people, but a neat table would also be fine.

We use R’s sampling method to generate the data based on probabilities from the
survey results. The greens get 25%, the AFD 11% and so on. We then simulate 500
people by drawing 500 random votes, but with the correct probabilities. R’s sample ()
function does this in one step.

This would give us one set of survey results, but the statistical question is different. If
we repeat the survey, the results will be different. This difference determines the
uncertainty. This means there will be two parameters. First, we have n_people, the
number of people in the survey. Second, we have to repeat the survey n sampling

t www.forschungsgruppe.de/Umfragen/Politbarometer/Methodik/

https://d.docs.live.net/3556a7f59f110da7 /summer_teaching_sync/summer_21_teaching/r/r_uebungen.docx 27.Jun. 2021 [8/11]

times. This should simply be a large enough number (103) that it gives us a good
estimate of the error due ton_people.

3.1. Summary
Code up the following probabilities

green spd csu afd others
025 014 024 0.11 1— Z
pi

i€others
So, "others" takes the leftover probabilities.

For 500, 1000 and 2000 people
survey 20000 times

Print results for each size of survey
Optional: make a nice plot

3.2. Overview of code

e Setup constants
o Names of parties
o True probabilities of parties
o Number of samplings for a given number of people

¢ a function for sampling a given number of people

e perform sampling and collect median results for each party, estimate the

uncertainty or plot it

3.3. Coding
You can structure the code as you want, but here are some guidelines. The code used to
make the plots above and print out the results took less than 50 lines of R.

3.3.1. Settings constants

It is easiest to store the probabilities for the parties in an array. Something like
true prob <- c¢(0.25, 0.14, 0.24, 0.11)

works, but then you must write another line to set up the probability of "others". You
can also store the party names in a vector

parties <- c('green', 'spd', 'cdu', 'afd', 'others').

3.3.2. Sampling
Read the documentation for sample () and think about something like
s <- sample (l:nparty, n, replace=TRUE, true prob)
The first argument says you want a vector of size nparty. The next says how many
times to repeat the sampling.

https://d.docs.live.net/3556a7f59f110da7 /summer_teaching_sync/summer_21_teaching/r/r_uebungen.docx 27.Jun. 2021 [9 / 11]

When we perform sampling from a collection, we can sample without replacement.
Every time we take something from the collection, it disappears. Alternatively, you can
sample with replacement. You draw an object, count it and put it back. In our case, the
population is so big (107) that our sampling has no effect, so we say, replace=TRUE.
The last argument is a vector of probabilities.

If you write a line like this, have a look at the contents of s. It should be a vector of
length n people. Each entry is how a person voted. You have to take this vector and
store the number of people who voted green, spd, ...

3.3.3. Repeating the sampling
You can do one survey using the steps above. Now write a loop to sample 20 000 times.
Put all the results into a matrix or data frame. The easiest approach is to use a line like
ms <- replicate (n sampling, onesamp(n people, true prob))
where onesamp () is a function you have written to do one survey over n_people. The
replicate () call will call your function n_sample times and append the results to a
matrix, which happens to be called ms here.

If you have got this far, you have all the information you need. Imagine build a matrix
where each row has the results for a party. You can give names to the rows, like,
rownames (ms) <- parties. This would let you get all the result for a party in a
structure like ms ['name ',]. If you would like to get the 95 % confidence limits, you

would take this vector and write something like,
cat (quantile (ms['name',], c(0.025)), quantile(ms['name',],c(0.975)))

This gives you the data between 2.5% and 97.5%. In other words, you can be sure (95%
confidence) that the real result lies here. In a nice presentation, we have a result that
looks like,

Data collected from 1000 people and with 20000 resampling
party expected median (95% limits)
green 0.250 0.250 0.224 - 0.277

spd 0.140 0.140 0.119 - 0.162

cdu 0.240 0.240 0.214 - 0.266

afd 0.110 0.110 0.091 - 0.130

oth 0.260 0.260 0.233 - 0.287

[t clearly says that with a sample of 1000 people, we estimate the green vote to be
between 22.4 % and 27.7% with 95% certainty.

You must repeat the calculation for 500, 1000 and 2000 people.

3.4. Finishing
Send a mail message to the same address as for the other Ubungen including

e Your name and matrikelnummer

https://d.docs.live.net/3556a7f59f110da7 /summer_teaching_sync/summer_21_teaching/r/r_uebungen.docx 27.Jun.2021 [10 /11]

¢ Your R-script that did the fitting (attachment)
e The output in a form that resembles the table in the box above.

https://d.docs.live.net/3556a7f59f110da7 /summer_teaching_sync/summer_21_teaching/r/r_uebungen.docx 27.Jun.2021 [11 /11]

