From fe47f98f779764e7114fa426dbd8144c7a6b0c71 Mon Sep 17 00:00:00 2001
From: bartsimo <bartke.simon@gmail.com>
Date: Thu, 7 Jul 2022 18:23:36 +0200
Subject: [PATCH] Erste Schritte zur Abgabe 1

---
 demo_final.Rmd                                |  32 ++++++++++++++++++
 demo_final.html                               |  18 ++++++----
 demo_final.md                                 |  30 ++++++++--------
 .../figure-html/unnamed-chunk-3-1.png         | Bin 0 -> 11198 bytes
 4 files changed, 57 insertions(+), 23 deletions(-)
 create mode 100644 demo_final_files/figure-html/unnamed-chunk-3-1.png

diff --git a/demo_final.Rmd b/demo_final.Rmd
index 3bd0d0e..3560fd7 100644
--- a/demo_final.Rmd
+++ b/demo_final.Rmd
@@ -14,6 +14,38 @@ output:
 knitr::opts_chunk$set(echo = TRUE)
 library(sozoeko1)
 ```
+# Thema 1
+
+Wir wollen etwas analysieren:
+
+* x
+* y
+* z
+
+Dabei nutzen wir die Methode **OLS**.
+
+## Verwendeter Datensatz
+Wir verwenden hier die Daten vom Paket gfc.
+```{r}
+summary(gfc)
+```
+## Analyse
+Zur Analyse definieren eine neue Variable:
+```{r}
+gfc$gdpeegdpuu = gfc$GDPE/gfc$GDPU
+```
+Diese Variable ist interessant, weil:
+1. Item 1
+2. Item 2
+3. Item 3
+    + Item 3a
+    + Item 3b
+
+## Plot
+```{r}
+plot(gfc$gdpeegdpuu)
+```
+
 
 
 
diff --git a/demo_final.html b/demo_final.html
index 2fada5c..c27d3e7 100644
--- a/demo_final.html
+++ b/demo_final.html
@@ -1518,7 +1518,7 @@ div.tocify {
 
 <div id="thema-1" class="section level1" number="1">
 <h1><span class="header-section-number">1</span> Thema 1</h1>
-<p>Wir wollen x y z analysieren:</p>
+<p>Wir wollen etwas analysieren:</p>
 <ul>
 <li>x</li>
 <li>y</li>
@@ -1528,7 +1528,7 @@ div.tocify {
 <div id="verwendeter-datensatz" class="section level2" number="1.1">
 <h2><span class="header-section-number">1.1</span> Verwendeter
 Datensatz</h2>
-<p>Datensatz abc</p>
+<p>Wir verwenden hier die Daten vom Paket gfc.</p>
 <pre class="r"><code>summary(gfc)</code></pre>
 <pre><code>##    quarter               GDPE             GDPU      
 ##  Length:60          Min.   : 86.70   Min.   : 80.4  
@@ -1540,11 +1540,15 @@ Datensatz</h2>
 </div>
 <div id="analyse" class="section level2" number="1.2">
 <h2><span class="header-section-number">1.2</span> Analyse</h2>
-<p>Wir erstellen wir folgende neue Variable:</p>
-<pre class="r"><code>gfc$gdpegdpu &lt;- gfc$GDPE/gfc$GDPU</code></pre>
-<p>Diese Variable ist interessant, weil: 1. a 2. b 3. und so weiter</p>
-<pre class="r"><code>plot(gfc$gdpegdpu)</code></pre>
-<p><img src="" /><!-- --></p>
+<p>Zur Analyse definieren eine neue Variable:</p>
+<pre class="r"><code>gfc$gdpeegdpuu = gfc$GDPE/gfc$GDPU</code></pre>
+<p>Diese Variable ist interessant, weil: 1. Item 1 2. Item 2 3. Item 3 +
+Item 3a + Item 3b</p>
+</div>
+<div id="plot" class="section level2" number="1.3">
+<h2><span class="header-section-number">1.3</span> Plot</h2>
+<pre class="r"><code>plot(gfc$gdpeegdpuu)</code></pre>
+<p><img src="" /><!-- --></p>
 </div>
 </div>
 
diff --git a/demo_final.md b/demo_final.md
index 2649251..1d623d2 100644
--- a/demo_final.md
+++ b/demo_final.md
@@ -13,18 +13,16 @@ output:
 
 # Thema 1
 
-Wir wollen x y z analysieren:
+Wir wollen etwas analysieren:
 
-* x 
-* y 
+* x
+* y
 * z
 
 Dabei nutzen wir die Methode **OLS**.
 
 ## Verwendeter Datensatz
-
-Datensatz abc
-
+Wir verwenden hier die Daten vom Paket gfc.
 
 ```r
 summary(gfc)
@@ -39,26 +37,26 @@ summary(gfc)
 ##                     3rd Qu.:109.47   3rd Qu.:114.9  
 ##                     Max.   :115.70   Max.   :119.5
 ```
-
 ## Analyse
-Wir erstellen wir folgende neue Variable:
+Zur Analyse definieren eine neue Variable:
 
 ```r
-gfc$gdpegdpu <- gfc$GDPE/gfc$GDPU
+gfc$gdpeegdpuu = gfc$GDPE/gfc$GDPU
 ```
-
 Diese Variable ist interessant, weil:
-1.  a
-2.  b
-3.  und so weiter
+1. Item 1
+2. Item 2
+3. Item 3
+    + Item 3a
+    + Item 3b
 
+## Plot
 
 ```r
-plot(gfc$gdpegdpu)
+plot(gfc$gdpeegdpuu)
 ```
 
-![](demo_final_files/figure-html/unnamed-chunk-2-1.png)<!-- -->
-
+![](demo_final_files/figure-html/unnamed-chunk-3-1.png)<!-- -->
 
 
 
diff --git a/demo_final_files/figure-html/unnamed-chunk-3-1.png b/demo_final_files/figure-html/unnamed-chunk-3-1.png
new file mode 100644
index 0000000000000000000000000000000000000000..6d91df0ca0a278a2039ef2e320e7f86e9baef72a
GIT binary patch
literal 11198
zcmeAS@N?(olHy`uVBq!ia0y~yU|PVy!1#cJnSp`9H%On2fq|JJz$e6&fq{XMk&%gs
ziJ6(1g@uKcm6eT+jh&sHgM)*Ulaq^!i<_I9hlhukmzR%^kDs4kKtMoHP*6xnNLW}{
zL_|bXR8&k%Ok7-CLPA1PQc_AvN?KZ4Mn*<fR#r|<PF`MKK|w)LQBg@rNm*H0MMXtb
zRaH$*O<i4GLqkJTQ&USzOIur8M@L6jS65F@PhVf(z`(%J(9p=p$k^D}#KgqZ)YQz(
z%-r1E!otGR($dPx%G%o6#>U3h*4EC>&febM!NI}N(b37t$=TW2#l^+d)z!_-&E4JI
z!^6YV)6>h#%iG)A$H&Ll*VoU_&)?raARr(xFfb@6C^$GcBqSs>G&C$MEId3sA|fI(
zGBPSEDmpqkCMG5}Ha0FUE<Qd!At50#F)=AADLFYgB_$;_H8m|QEj>LwBO@a-GczkI
zD?2+oCnqO2H#aXYFF!xOprD|zu&}78sJOVeq@<*@w6v_Oth~IuqN1X*va+hGs=B(m
zrlzL0wzjUWuD-s$p`oF%v9YPCskynirKP2{wY9CSt-Zayqobp<v$LzKtGm0qr>Cd4
zx3{maufM;4!h{JECr+F+Y0~7$lc!9XGIi?IY15`npFVxYj2Sa$&YU%C*6i7{=ggTi
zckbMI^XAQ;KYzi31q&B0T(oG>;>C-XELpO2>C$D(mMvete8q|tD_5>uwQAMs)vMR6
zS+jQS+I8#JtzW->!-fqTH*VatY18J-o40J)vUTg$ZQHhO-@bjvjvYI9?%cI&*Y4fB
z_w3oTckkYP`}XbMzyH920|yTtJap*L;lqcI9656I=+R@xjvYUK{KSb9Cr_R{b?VgV
z)2GjzIdk^x*>mU4oj-s6!i5VLFJ8QK>C)xPm#<v8a`o!fYuBz_zkdD3jT<*_-n@0|
z*6rK3@7%d__wL<$_wL=lfB(UQ2M-@UeDvti<HwJmJbCi;>C<P=o;`p5{KbnGFJHcV
z_3G8@*RS8adGq$|+jsBYy?_7y!-o$aKYsl5>C@-WpTB(h^7ZT2Z{NOs|Ni~Qj~_pO
z{`~dp*YDrI|NQy$_wV0-|Ni~||Nqg3*jfe#2F?PH$YKTtzQZ8Qcszea3Il@zgQtsQ
zNX4ADbJ;6IT;<!%F9|cLw0QTcY;kd@3bkTd*d5QZWaSqnS1To@j!R3lRDyUzIXrkh
z9A=rgI&cVNdQJB5(BNEhzh-y!l7{WmZ{MD~`{wEQwQ}k2zNP&)o|B(fo?f12!NhR5
zU|Svo!?K124VelW2~r$fGuWD#mNkxYkwPOd@<M+$V**?Lv0H8zey#Rno?tHeZ^Og|
z>Q{Q%-%Po#sF5Iv6mBy_O!PeOo@yvd47hN$F7MpezLn9k7qs4RT5bO&xv2lc0Zj&h
z1iuR+)AzUL_-2>BW|nHTbo{?UD~&(q>RSE`k!LJ>1ys^D=DoVcZo*aEwCuGW*Ud@W
zp;D^a%w@~%qSkbWZMRzxctd!~o3+m)HWl~my2`lr(1Hbj665afYG~WIZb9MfO&@Om
zpU=OY=gqIwCaJ9q)`xaA&3iBPX-*S&+%FBw9eFQ~IqH8qzx>}%pWdj(wvAU6_x;#3
z-K^%S<z)ZzkP~O_eOj<T*>(AZ+pn&1o3I%-T{F8=yS_#(+u3dI!%mf_pFdR;sKg)c
zS&;f)Xmgl-YVM71Z8P@%Ub{<_Irm`Cg0p3unQiB<uHg+{)^+pKzE@#9TUd>o)~%QF
z_IUQ>*-hzX{vw<6*;hpyUJyIO;g$BHim!U_%e`;Dw>Mw<5pqAJ8Ej17f+x>r9d$3>
z&!71-y6DS)sq_^f4LqE`j9zxH7Fqknb<?h|OuYv;EV!A{vhQxi4c^k%>{5=*O?J6A
z(q2D&xl8ty8AAp$FNf9M*%Rh{@(J9|>L8rqaN(Exku?VeOQRV~8rfKQcd4Yw7WAC&
z&v3Zlm)&A=_j}haU4~f>%uQ~4t0qpk^6((k5U)eFQ7u3A39rv%ZZNyhwBX6df4&ln
zr}$rNS)lNr$&vB0L%;zO0TF}VWh}Kei@mpBFe#O0y5Z*C<o28A#-@d}TiIW2V=>?j
zb(D`gIpx<0AxG&oLYD-abuu_FXiZ^>z5KwYGxvPqIsNnJC$zFQ-76L@-Tzjv+J8ap
z3yxhAvPHb3D)sLgZ%f$mQAmuV>Y_n$MwH^sYNoeN?g9ThTaFYR`dlcSC83|#xWM1b
zMr_mN#!cT@ZngF;Sh`)Hs8RSCOJ|8$+@VRu7x=5yg+DEL==8Ii>8z9cg>$*Vp1U?1
zG~PW@b<8_LDI@56xc!S~c7gi!{tF^sa8yNxr+z!Azb8y?PJ~BN#O_qtuNSq=?`=u3
zUl6Ggdo*71%_+{1e~yb7-l;HdUT}?nR@vht?;c-DZdKGU;I5MWy0UQDGVitp2Xr(z
ztFkBUXFe{fY47;TT%?I<^8)1;lJ55pa$j%JmlAtWbgqJvgX>IF-vZy}`TlzI@9kas
zQAj{!2CJ;2w@b=itEf{j`K|3KduOdma<@IvenHUWkYdHrkEadQ5APP~II;I{#9AG$
zGZTgRpG0fK9(|vs_U*E@Nq<dZ@u`<OG9S6Q&NN2ZXE>FFT&a9{QmmkZJ<YNDgnQQ!
zBX^KZxsJO%-z@jJU>#p)@U&?XgM;=3F_Sg(Kfdi^xw}GoXHnO4aV{l>wF{O8&W-%@
zxNM^T<5T|@MP)N=&Ir7)!7j<{xpL_&rU<w0CcoJ_X|tU|vbYl@bh&o@iZz^V=H_uZ
zG?Onu)T${@esc3iAukr+0{a8Y4dtGnoO^GbYdrUH1y$>|z6F7$I~P5jpS-7K(dr-0
zb#v`rujN+%USrqqZ6B9CsVShLP(${SvDDtoT@9P+E-d*P9RAPy#PLVxKQ~|c{z;49
zgnMoAh5Qv<zvlcpeq_yIGtneQvxTZJ-g;b~zgj8d?&PFvmEBw$8D?jE)Uunsa6aeD
z$wu2lI#_SGTyFaJ_G7Np&RaDrxE3-j&WH*Sx_s=Sv$=Te!m^%itg0%a;UB*BUSnk~
z<6~j<VMa>qcR93nKH$AzQl|7`qMP5jT$N{<%u&beSnj?O{`lr3*Z0R+$5?z4<eS(!
z`b~3l7Nz+dU@2345qtPiv8HQ*Qdaqm)&<-59@W`f(AMS1D14)J!OXZv`;)?BMU$D#
zHgG$hT-CMzLtWMTU}Loerr!cnTtW(T10Of6Qe+gq(Yc`Ih<%u)LITrnL6h0PcLZ%x
zf8%o@Jvio+#n(OFs%9HlKe6V{Z(UTS$$9JL+}kRJUJQKS%bIH(?~A`!Q=K|vQPoS1
zsy&M=>{g!7kviC@yWxw#{41;aK*GBY7$`q}R-VDazU{!H;tS4qYJYCEwH5d}C+Ysl
z`_}nll5Pt5f8=`~91x4pdGRVq%txzyQ>qy2vs3r2^ZnSDa7AusZL#T$s-EU1dSKTH
z@shPCLe4MidbPA<;+MGB8A8@dFEnpHxw^>x=(O!CLzvcd)Hrr`SzOz{W<{J=)3Vyw
zZ7XhHV1KgYx}}rRva1Il`$io<_sg+zQtOiQNs3p)k1C&uI{uGEwDRx<CXe}7L$Vpa
zY~0-UOXt=<jkJTeS6*X!ksL4k^=8X9k#{HDr&qdc6?2gP{c6Q|wY{;;U+wE(?rY3a
zJ-`*QeX$+;En)K)<|VmiZ%%Q~o;T-bd*0jzrfY9koIm)=xZ6f1U{RYp^Ow8Xyw<N*
zOn14T^gwtKf4Tehy~j3e?yK_bW9_W{_V}3aqz}n297`T#vs%ApKkNEvW&C80NUMOF
z&C7WsUtcUtcpGJSZIztHVIjx)bGj_P1tjjhCKO`7+vl#;F4vS${g1gW%Y*Mt|51~f
zFst+xJJ&@075|LW`yR`vYep+xj%qrWS1@_PYSU@=E*#~~x7L5R-QmtX0p}@O8*3c*
z7fF;qe7Mweea+GpaoU`-RtoQ)b?(Px|5a~#Z0~L@D=I$x;K@PnH9__PT{Vu{y`q~r
z8@pa@owQ(MTjcDHV4<7Wj_f`5C0!+D?v90@)mC5OpQ03fp@jYL-?y=PV0Hd;jyj$=
z>ALxPP*l8s#j>AHGg%<20`}f#FqFUI7`XSE6?^W6IFG|o>G>DFuiI1dJVmz7!L;d*
z^PhQ1|GR&vDlK`j?ecQ}<xw%~x3bu-on7|sjJlk7aqcbS1%H3+UlVK{&{N~MGv-fj
z;oh*<?0an&MD->LoxXVY@Y%{|6ZKzgjfvRjrN+FvCg<b#4?4e_*G4n?B>yj;wB$y_
zKMO^5?KK-qts6X3xL!@;cKv!Q?n2k2J>T}T-Pk32K*flamzOs-;7;|EJ^orh-x)>P
zJZ`h7=v6r`_5aSZCN(khCwd>Z<+2;}{&D`ZKuxn|*2T01orhk|7kk{*E4)h~+<T7H
zjhGARM~}!|@=5nGIcD;S^=qHN=G-_nuJd{pR!JcT`8f_ZP1^Nn$F5k@+`D`ULfkB-
zHn|&5oOgNHCHyl*cl+E_$NnAq-Tn~|>n>b-%b+$<KjZ%->z^gzp26)E%kMhfx@<o)
z(edQZZ+d!f4cJ-=pK#B*F{OCzqf@5-Mu9ud9e4V*K2PIx6O(R&r~Qlb#_s1VlQw-&
z%KKsWFDR?L@!n%ajR2;leZO9+?#Qm$cDcKGfdl6!*0(teyx&VMdzZ32PTXp-$FIhK
z$Mc;762v~S%0@0pxcluZcjb1y=qKvI)=Q4fta>8U#I$*W{)?7bhqUy+zgl~_KF)K~
zm$jb%_+-MD{ArOEVpY&E;Qrb4%kKROex;9mokFeWEq?LE?NF<^xPf7M@iA`)u-RXY
zb?P@9YL0n2&qE|n>d%=EN_(rlAFIv~`m+6f{UKg|w~6{MT&92RR4H8i`o-+GD*3|G
zI!;uTZkh5?h==o6`Q!!n@+%)63^1FhpK;8+b!SpcV`JvRy7VPn*X1UC&C0TUta?Mx
zWbv;zK2GN<|7N{zV@Qs;#Q*F3w|u1^-Sb^uu9Q}iX$qIwFH>x^$GfrP&h7JUDS;od
zy`#LF54Sx&u!ukR4qt*ux7Dls*b}S2tV??|L$&?cMExAU8&g~_E;W+!oGQv@+`ljL
zaT&wn2!$7M{C&#0Vow9@6s@#g?fG)}z#ExI+ojZQ_rJ&hsW>5C;(L%W+v3wo=NXZ^
zmwMO)AL?7cnc8A_@}+P1tzC)-BtEg$=89Av*e@A<bj{se8|(G!_Wl<CeJFeX+{D*q
z49O?NuNVf2m|Qx!=I)_ilK0O|Sn%Z4hwW8vPhxp)F#T-0_Qyx0<ksu1SE-%>2Mj*3
z#)fA6Dtz~^>(FPBtK5!_kr4%=`&XD8FLYJQNM?#&P^j~g-Ph{t;q!%DuUi)!(0NgE
zB_CYHf~xeneZN-hin;jdykQ&@sL639aQ;P&e(Uz14gr6su6VsIuld`;tAYQ0_lcYA
zT3GLWU+j9$U7oehs~7((TXM4hZTtn6_fxAT?ObrjINIFh@q)$kgt&ioL>@1=ZRY$L
z#AD`pyf(debD{MXKC4%nhFQ~Q_|8dtT$UkQawRw^KQ!@Km&^Y<%AW7uSmtH9X(zB$
z$NO9>`?6y9<4e=7w?ECPuyVM*tWo{hk?HMw_0_Vizeq>1Z@oP&+xh&w&X$-D=NDHq
z@9CJUuXbACd(2U}<!AG6?ozyU=$!cE)Q-cwN8j{q@4day@J)?jWZRFut7gm%|JFYD
z{f6&HQ*J8Wb&r{m`69#V65l$z8ELP-Wq_@A`nPjs-I=?)BA4^;`5wh&DR^Up|6#A=
zSJxku+xYuvif&?b!}9spvnIRd^=IEso;y=k@_Kl^_P>g_x8bXgo=I0Z7aP%<)ZTt+
z-IG6#c5yz}I8K_k9y}h+T&MUXN3?V2LRY2I`ETMryR8;6PI{$Y`9<<m)NA&e(qgp=
zY4Um@SFZeV`WNf-ZU3DYFP?<g#0XXXZTO&f%Q$#bO4ss&hHK>p=}jvyRDEnoshMM3
zc(R~*W_P>iTgIY^_2QHN@)z0_U-pRkUY6O)n^tvyqE6L{#u>61DQ-7zwYQpF)vZ4J
z>%3a$%_o{-+fD2pvkh<VNeH-*+1zTf_|nEhZOYqk@1Nva|3)Y6;?%Po(YFc;@+Z^=
ze%Za=AT@N){rA(%OyV8W4R7vA47lL;=+WGi8;_P{x7xfieYxm4^AY)*rgP77M8DiK
z<7e#Idqzv&JX(=|>Jj@DofkT4v(0(9ZlzA1!5i^ub>7GQAGK}22^Q^&zAE;)Rqpgz
zMc%5pXF|7qO!=4fYSn)`<3oP06l313Up+7T^2dL=><gx!w1Jvo^*>gz_La16(!Gm2
zw>|DZaJuHuIrq|4zkTlSz1H@4Vcq89Q}?n%U;gde_5KX!>?>c+zBj9Tko)dCPh88n
zq)nBF7cB5!&9i4>-K*X?_2EvLg(sp<yji=o)mrF#$ximnd2w4GGa7RLZTolknN)n9
zQr4db20T$loO6$+d~S1eJh}Mdda+f1V*Q?9I%k&jE%@`kwwDWj>j!S%w`Ia9<LNCw
z+*eCqJ-1-<jGTKLG+vy}d7+lJ{~D*^oVk8~F3s8dD7{2>$JI4IHs9tlw+j25zTE#=
z$?N@bH<`D6<Fb0S)KXl*FKhRMzy3VR_oM!09P>MF)0V@t_U^Sg)jp=Y;$Bbn{y+Tu
zu<gB+>9GO<<qJ_hX8KzcG%`(l>>X{M6n@jc>;GrvlS5t0)_BKXTYS35UFC2+|9`d3
zhjWBoH&@iDFSvRB>h+H^_dP!{r{BnFw~4Id!$#4!j`@a>$tm}C{F71F<&e66cyH*}
zhP`{1h`wqG$tt<(a<L`qVD@&N4_5!PO+UU3?0mW~Zo$9vPP1MXUkI;}jy3!}c?nzY
zHkmoAZYLL>e#`FFebTEyL!mo7?d09-YIp8cyVVpJe?79SSna%^y_D9H>@0UFy*2CD
zX9(JCY23i@c)G8jRE}SP;*;as9M@iddGgBl7T)7~K3>pRdNk#;n{a!D<d2TnfU5rH
z^<8@zZmUkysAc@C@xEWpd`+$Pwk<zm-cF24$=Iqpz3kd+zbxr<e%Xu7=U+<NRGFOL
zWMwD1`Bl1f{W<BX^`F!>f9r}fsTGgkb6MkG)*HvY8-f`Rl?G*P-7C7TL!LdE1#IE5
zdn{|KoIECb+3vZ$<CeQ^>8G|m$F_4yT{>PnsczOoqs(_Fwn?|xob~<@>38z}>&F)&
zea!Mrv{w8(-rru6|K`kx+rJ9;c-K~cbmh~JD)!F1^Z5R{eU2x7%zQLE_3t;9BOmrJ
zk>9GG;%@4`eET`A+-+?OK?x-z_=5V`SM`5$KV-Z8x$Ix|{?_)Kj;GIUm>#w@cGQYZ
z5Pg?l`n6hpp3eFL1>4H0zw^5eWl3?Ti9P(^eZTU>%1u>UHD7e_x7PoiesHH*?wg3e
z^}k!i&CPY}*Bkt~T=dzvvu>w9lOlipt%{iwO75yA{(kjf&$lh{Pq=<%&pp>Nr&KfG
z#8YwCuUWwX{Do5zqE@!7;r;clbo(6M^%kB>e_W6HwJ&sA;<>Xwz1#Zsw5x`8t#?e}
z`gLLN<-~to3l1*6a#B@P_MD04ihT_aJtuh?Mn;!i5vb}A+VeSP{+*b0?|097edgt)
z#A)sB=dxO_%Neout~ga+D{k>{hT5IPjWWJmUVmJS=Rf<C%V)^bAZ^+1SDTqv&vkRw
zwUR^GjFnCA^rBXTtPJXl;k46z5pimcx{}I;Web9>RD>s4?y3IP7S|@Z&wjaSU2^6F
z!P;L|--D+d%4XQPe}P?Q%a$CiJzwswUlNzgHS3o4gU6g#qf+KKO_F>h>nF5lVpy-B
z<2gUyPaj?PyeYnLNnUR5nYF4asYNUQl=GeXeEWL5?1``6=2f%&pS){BjnQ5yVcq%h
zC*&qni`E}#*R~1tFB8*9yyv_#C?oX3^q*U!p7JsJ`r1Bc5mDSP|7G0=@mk}chi9C=
zDQTRv*!_6Y+S>`|BMQ`CUOSZX>G}0bm-A+{-sRwWp%j1N#iQ2w6E-jP{+qR`WFDl6
zl>2p=!4>75&cUu<oxp9T(n$R@`>6pT`Yfzzit!h^+Acm^D8zkmHYbGd@15(XKGQnp
zxYjE1rc-KRRr`Xhk2SGR`@Jvd!eRsQMQi>`G@Vi|jNvR_&c9T>WlMAlSCw|}pShK)
zf4ZM~JwMd6VABQj_oCi%{k&)Dg)L8tTzM(+FzM<F@upLcmd|?RT=8CKYpL^^J|D;1
zKes%Q+G;Z4yWPxiRrWIHfJh&68=<|QYNfXy{&hm+%lg9R9rv1fW@znwUH>+G;)Y8x
z7xh)x^c({s&&*IrJ8ie2(0Wb(pYA1QoXff-ZydRr8J*$r@nyA|cvRvZ7M7_;7oK|5
zW&c)XpRaY>xi@8|Y{HwS2(z{OuK~-tAMZ1K;<ta+&-WLttv27be5a<;C){@RZJ|*d
zQ`0Hsr`r3K<QB`{+$DLf{oI=}(KNxLNy1{nF&Z0p=(9}iZDKT&0vQ@FD*JP1x$OE{
z{%zC$9f1s#oO@IDa`N6&JYKJl7sgn3a>{|4va2@Vj^&#!)5qc17<pm#UA>pnR^BWG
zNqB9(J@<WRll?wx^BAqtyPP2TnRnk!30_@!n5%!@_j$#somba^R9eY?JzM?B^T+C$
zD%;%hAFG1Jnx@@3tKPrUyCvrXw56q-p_=How);-0)3gdHeMXRZf+bli<&*rca$i#K
zE0UR7{d?-iNRc=Vb-5GUF9@2f6|d)w|EANaXZNTzvisecGmB1`7d>jM;a<DdN`GyC
z)v4|-_Gyhq8Tx9ol{PwQv2303L;K~nye83wx*6u3e-&1=&RO?9XyKD9e?G@(<T@Vy
zC3&CEQTOqt-)y!!Z~Hxp-s-#|ZqK$K0Wr_5SNiOWTs3>%f|Z5K*z_F(POr$T__y$}
zne_I<Sph;{uBp_s_h|>!9pdd|61ZaYsw=x`(zV^WclcI2x?eEv+t)0<jx*jw=fKlB
zAB6<27#-^oxn#XAjc4sv{udm#On&^7(S3PW^;vntf@y{O-^`HioY;71X2z+Vr++Tk
z-`Tf7RcTY4tZwQa7M86Ob}amN^!^Rcj=H>;SyOAS-P~n)WubD$TgAxr%dQ#6F*RwW
z9FzX@^6&enKjWKTB<B9|>RW%+ri7)pfFrK(Ptlo^AM{w2dZsrlIOS0+YCY@Qbp>ym
z^!J?HG6}EQBzOFe-g8P&6Ep~RjMKuTe~Jc!<J7{nb7m|R{}=s6sP@}0z1!Q|pG0YI
zzqQoq-72Zc@PRRVb&gd%)^bVTPH3JnczAbGT}urA+<l>+Udm{HIFX;o=J|8Ws#V_;
z3)MXrv%C|&baZZ7pZNW}mrnbN<PCPZUU01njk{Cgkfp>jvDNnInxkr_+N}$uQupV5
z?46-0XDHaVbeDSneL)Q$fqhyN!meN5FMF!Z<a12^BA58X|1aySs7>C;!?7w<uk`DB
zlMi~8&-PEMFZL;4dOE7Gc<tgTud<CA?Q1RG7rX2_a)C9;EOFPYt4;xHi#Mj7<&XN|
zI?1YS>Hn%VOM}nu{Pajk`SdO?@tZ;R&HnSJ+AmDoD-iNIMJ{rue&>X5(MQVj-z^V5
zy-dK+I^1_xhuw~=`rp4@uTK<vF~j$_9H`K_#hv|%Yy0%?KZ9m1{kS|WN$lzomziIV
zmfGC=VRyYoj(_*BwmnbfmMw|n$kKno&RVnckF&q<^Nuc$OPu|GUs%`bE_wFtSh>`p
z|2tze_d7f86}VDoVYcvnP3rOB;GDAmpFCVXFVlQd7oQ$}{p7N=w$qQ6`MnXkd&$dj
ztH70iJ1#AbS-Nj~2!C~{$6`Hgqm!2pZ0tYrw!Hc5jpTZ6!`(kuHAN||xLX)v{yyqV
z$=%AShf>$c-}%2g#=L!>;QDDst7XnqU%$^29<tmwCgLe4%U0{G9Pvv}z4}(~thlk@
z<fQjjp{FF7uV!zZ(fj|@lf3WwAFg}7+}GZ6z1A)?z@BBR`6KU6*=Z+Tji(&#ylqf!
z{r|9K#)=PVY3Bs@e%CUTw!VC1-*4^dAN4m!_<wu3Oy<wVT-nLy9-kSSZb_H#J>nA|
z5?Oya>U+8S_B9`*HFfpOrbHQ4t36sex7FmY>BGLM_kPq~b-rgWC={G;rMTVA?Cl<x
zi)X_*vhq`2{1e%f?AWzv&euI>mPgmhiJFvTPuo51t7p;F#Enm~+~Y2DA3WFh^_%3)
zok!gi_Xd0QZk?&P;;!NPbD>WEI6}%!7w>o|viYu>eBgI=)uLTfh1zynRh{=xTz+@D
z>auq_*-PZYo$WKfZtj|uz|eF{p8M{q&~Gtob==esANXCkdD)id_3W2_@85A|Q$}|7
z#;)RdhcxpqajWmKI&6Hp@#3jl3QUe~CtNAM_^2}e(=+`rkM-f1lj`nw-K<`H$*!XG
z#fk&p+{9#x%;rp+wtG?hv-eM~d^|tL-{~3m%Siv$>6uCbSL!T7*S%G*Etz(g^S<<#
z8UFgyeop`2`zP&QVY2HS9`Wa*NorTEohOM`J~?wy@Uh+JcZ=m~%${l0B-VWAoUW6}
z!Ll`aQcX+s1M?ccs4d@Tgs109tiPSH$mOzp%NPH<w&I1V(_j8Aw)?faJ^ZBDPI;fX
zk4<a;hVXl*U2R)Xc6ypwl3D(Q)ZOzX?&fx#)I8N!k#|-_JuZ6JcioR~<wKWt&->b^
zddNbHyUtm0#a*NNmKkp|omV%-zp~mr?Y_f2?y7Sw3+79?HTKL@+%LqDwSCQdrL@HN
z&jbA!J)P=<=6KKfP<6}UWl{6=j+;$_pH??4DD$qFdH?5^zz1=+M19wNmaeqA|5*Q}
z(B`(z$a-!+C&d+iH^rLgd@Y&J`Kiq7zG?bZ*~;B7!l#w%-21tzQ)v4sj=v1;r5isn
zaYuw-n7=b8ZKWXp43)C9`JVev-+mf&^;q(+7b*WQ*`77|`%`Xy-{RZ9ql{v>_AgKn
zf7z)0<4ak?M(a0S6`LyaT8=d7FKb-zvvYH9Y|L#>A5ER26@4?-zDb+=Z3ZLDS@%D0
zHX13`?fjkiQt1A7q0N)OuD!BoPve509kU*ZRNQWfKlx>K+wRxt%Xwx<PY+J=FE+e=
z=i;l}$xKbp<b~!Q@t(<Ze7XN|QT_LSuBAGu{i+c&yHM+2HgWm9L%gS+R83i?zL9}r
zR((apr3u#d@9yaKrRaRzBQ2?7GqL25?eD@$p{I5wZ|{8i`{kJO3eRU>ckJPIyzs~I
z(ZA9|zr3CvdG6L1ZX>K<*K3|u^Zxyje(St*no{3G`!BY?*sf6=_mW}z^|LEDnw~Ll
zt1z!#pY%C8CAL+#MMisj;m`I*&ua6xn%znLl`-+_t)hZU9ib~*e6mV<C(NB!dES`K
z@$LM}^Y(wXk2KCon{f8uJUPbb6W?u*ytQurEqNwq>)j|{&(~5W$&Smp>h1I@<12RW
zik(;O5b%5XeH+8odNKe16!-hDllHT!K4<kx-N#|m-RpBIb3zi+q7(Z*EiLtz5Uc-r
z-1xk$!iv9_ZxpP$US9ca+QqGWw!5t~G$!g?`}%v&-v64bO_$D!n0hZiy7c2)UVEo^
zx-vTt964Lhk@df%=fqsj7uT<9i5a;4klZV2m72Wi>#Rq46){ULGMXob82?;le)EA{
z!M}vLUj*zqvi|F2>-EI#j%jQBYRfA;CB5qJ)>Ut&9WP&2eecKWo)1(0ihj3W`mJHX
zH~*^kU($SMi{g`CmwnL5QnE4plp5?*mlt(t`T1O<;~$p1xRDuD?Qo%{q3-Z*-?kXD
zNR`UE6V{tw#%rhYeUtthxp<akv2)+As54Hg^2gg3G(7h^x^A}FcfD%m_mjLVt<zs^
zi{bA-C;D7XIaxKFt#Lua^Vp99*6Y_^)&95p469x5#n_2j433QTPfA6WWh!VMU3*P&
z)>-~{f1mMQ@tiO39N^$FX|m$?pz@6&Y+D%^I3hr60Td%Pcl=Gek|g~3vqQjv$BKNF
zyPrE{%etNh8UHz~pTqNw$+c^5f9MN{d`Ri}@aEd#?1oj`nX8#uSe33{Uq5xvq;0AK
zA_ly%j@$1}|HT3t4%609x17$x!kXsjeqpUGZ-H*rHxtM}nevM~_jO^la(XNF9T8yw
z4W%u0uJKvB>yU7r#S!M#3s&sD((yH#EUaA%%O{qcF#jRP!pgO<LiGQJ)zTo=t+QJa
zmplm&=HQA``g|)>*|_79u*u75E8DphH7X|V6+LxT%k-hWw@I+jmzwoLGRG~=V}5xo
zVqjs_FF5mBLGgdtoByB6teWN(WtrwjJiPe%Uh%p=2S5$mxCNKJ6n#r-E9bIWHJORO
zlW*NW%QGqai&-2~Q<FG{fsV)hM^8^@S;1PQe@Z9ygC-L9IHWdre66d@w3c<$=6pRP
z=E*wYO;1{1E_~OP8u&!o@?*nY<C>lcZm;9!wYT>z2=@LfP`xT{f?eU1$1CpKPG;k+
z@H@$|vet3mllcFM&-2!O`*;3>pH<VcuaDM0JUvhK;!$^xGd`jA?^k*|?tAob#`V8e
z|H|jtM*Uqd{hGV&Q&-=~zhpomZu>;pHL21NG}F0l!CjSa%?l3bWN=GeJO87MgX_$p
zu*Fv3iPNTK$7asDC=Sx0@&Yy<&9YKb{k8vzcboaM?@ngB8y&=Xd#UWy4F}%`aNd4o
zD-~F6vRH8I^WC<G{&ky+IwB2Ji+3KKKb`l)K}CZOrhl%PF1()#77A@!B0hCP>*<Rf
zQ5zY0S2*s=WBzyg!*LUqT<G}q={?@!%ZyYnyo@qgG%3F=i1YU3b3C7(uD{eF_1sNa
z>*htrllL~U=uWIv{+zLLkGFFGhgO2CV>bWED$}iT_m(PZu!wG0v_O#Wpmtw;pQYrz
zr45q&tqu@XC)cITX>k7RVax^A=IhAm+0oZ!C7&M_$id~vx<-2ikAen^Xv2am2FK6y
z7n}>ZHq9d4?SCU{OYZ`qZ-0A34zc}nRet5nFBN!l-u9_)d;<eIC!Wk{^YvUJ^ljsl
z#do_dTnV53G2rAq5mr_QOHisuownq~&J7SYS>$&zEj_ePa_d~D7e~K#h0mJ2uI$E<
ziU0hznh9?`%=PBps<InvA6azPX}POD`E+|JvzTCNVkYOV(}^FRnfYxG>75x_-t%kW
z@?!b-vjRQ@Z$132WS;y_Mse4N-5rG@VO#;GZ(?FK&MR(}u67ldF>H)pt)rvsID4z&
zlbP>TM3wLT+h%C)_VvO_)wa(sUnEJsYO8%B;McM5((hOGf|*+_90NiR^JRYg)4Hoy
zHb!;o1UKHPtxHuhn6@|hv;SNzVf5*&d3Rr+?U&L#`T1@I=2v*Dm#*Bf%k^>j)&EMz
zuCKis{8oSASqA5Ic~?xX->i|Uj*E=&YH}++{<CCZ^RC5qr}_hJOHP?43T_EJI_YZu
zM!QWnq^|Doa6bBf&3%y8q}Q|jt{%G5SJiAiL+-DBpv1IE3x4lBU9+pLJJ@uUhDPg!
zZ0^2L`!|Oc-SM~@{rf_`rXWkGX-?Y1OWfPPK7O|9&JE!^Jn4Peva5A;R2>)Zkg(%@
z?&Et^Lq0Izs`LH#NB7QOS9e3&zE9UA{OyL==1z?js}h6F<DOr>r)qRH_f6ip;`m32
z@4uar^7g#&`HrVuY>3O<6^j;RwclI&`M#Utngc6}wA$|m{F>(&z_s@7sn}riSA~8N
zY=xTN0|FzwnvQXYZ+x=2=#`r&YpCUycTCPlR7<b$?%ug}p8xb>|Es*#lZ-d`UfuA2
zo|x3`=I+q#8~<2p%zyWAod%cp>e(wR#horOA6qRQA`)`<!ppe5^Y#as=BRwvp8xG@
zpyiwSzbl)f-t1qWbweXhc0S*i;NSmmWefjInNz%M(S|K7y*eL$>c8LV;d>-Uk<Brb
zx3)ogdz3=t-3^(%%wg|kKYMBP>N{B+SuJI@cwXMGcMsR+gzera&Fy>3c;$nd)Wnr{
zU)_n>p2EE~zf_7P)U@Qq=jOCEr*!Kstq=Nm>k$9sU-2!Vu$te?Q<AsC{q2fBn#Fe?
zT@Baf>27yrfUQiyk?I{F>sH8@4as$C%`Az#^C)d{+YNSskX(fos~iHhR_bL`t<x2_
zQlzlr7Dv;sn%k4KC58MwE;-20KgiAE7=FEI&7MgvmNF_Ti!R7-%Ue>`upmpB>(!;l
z7v3~Eb7qDm-Fv2Xw9-*rbe53ir9{q`vNL`isou2q_6kLX6}LK?!mbNnddU09czg2%
zk$m$>AyroY1M6iwi)Wh|863TqdqqGXB-h2U_2l~FSJaJTTXdE0p3r>vqnVxmTETXY
ziiuA9Z|rED#niN_SL20@5|`Dct_`X4q<=pA>2mJ5XVgoDy}i*ZG{F{~Q(d&6IHpy1
z{*I5wfBimhKks2&#nQJ@%WV}_+<GGR#bA5)gdPX;qWv8kVxBJ7_3)XfJK1aX?tk-Y
znH{gHZC|h?^5oIm&9y&Q|M=LtzeDErhJgDkbSt0TKMr+coPbGT!}{k9v3nN$+8HVn
z&#mg+byp!}`i?`Q2HZ&N%8(YMHBx7J-n0K+xvQR6K5+?UU|?YIboFyt=akR{0J(={
AUjP6A

literal 0
HcmV?d00001

-- 
GitLab