diff --git a/main_03a_func_approx_high.py b/main_03a_func_approx_high.py
index 916974c0e440dd90e8148c3fc16796eab0d7ca9f..0d2bf5a2a646a63780ba4138015044f202e8869f 100644
--- a/main_03a_func_approx_high.py
+++ b/main_03a_func_approx_high.py
@@ -20,7 +20,7 @@ np.random.seed(1)
# Settings
N_flexibility = 0
-list_idx_dataset = [0, 1, 2, 3, 4, 5, 7, 8, 9]
+list_idx_dataset = [4, 5]
list_kernels = [kernels.Matern(k=k_mat, flag_normalize_x=True) for k_mat in range(5)]
list_tkernels = [tkernels.Matern(k=k_mat, flag_normalize_x=True) for k_mat in range(5)]
@@ -57,8 +57,6 @@ for idx_dataset in list_idx_dataset:
X_train, X_test = np.random.rand(10000, dim), np.random.rand(10000, dim)
y_train, y_test = f_func(X_train), f_func(X_test)
-
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=2)
else:
continue
diff --git a/utilities/kea6.py b/utilities/kea6.py
index 69a3e00cae6787db3875da9cc0bb2df6e40c5a1e..5c46879fe33ec31750a47a76510bff079a33e993 100644
--- a/utilities/kea6.py
+++ b/utilities/kea6.py
@@ -152,7 +152,7 @@ class KEA(BaseEstimator):
indI = list(indices_inverse[:X_ctrs.shape[0]-N_flexibility]) # remove N_flexibility additional centers
# Introduce a suitable ordering into indI to save computational time later on
- model_greedy = VKOGA_2L(kernel=self.kernel, beta=self.beta, verbose=False,
+ model_greedy = VKOGA_2L(kernel=self.kernel, greedy_type='f_greedy', verbose=False,
tol_p=1e-12, tol_f=1e-12)
_ = model_greedy.fit(X[indI, :], y[indI, :], maxIter=len(indI))
@@ -236,7 +236,7 @@ class KEA(BaseEstimator):
# Add the N_flexibility many centers again
- model_final_add = VKOGA_2L(kernel=self.kernel, beta=self.beta, verbose=False, tol_f=1e-14, tol_p=1e-14)
+ model_final_add = VKOGA_2L(kernel=self.kernel, greedy_type='f_greedy', verbose=False, tol_f=1e-14, tol_p=1e-14)
model_final_add.fit(X[indI, :], y[indI, :], maxIter=len(indI)) # use the existing centers
indI = [indI[idx] for idx in model_final_add.indI_]
notIndI = [idx for idx in range(X.shape[0]) if idx not in indI] # required because vkoga removes previously chosen points