diff --git a/TheilSen.m b/TheilSen.m
index ee1e3ac9b50a1b1a1b873ad88040063517191d80..13e5f8133f7fd0808941e06da7835f895e84af56 100644
--- a/TheilSen.m
+++ b/TheilSen.m
@@ -1,38 +1,40 @@
 function [m, b] = TheilSen(data)
-% Performs Theil-Sen robust linear regression on data
+% Performs Theil-Sen robust linear regression on data.
 %
-% [m b] = TheilSen(data)
+% [m, b] = TheilSen(data)
 %
 % data: A MxD matrix with M observations. The first D-1 columns are the
-%   explanatory variables and the Dth column is the response such that
-%   data = [x1, x2, ..., x(D-1), y];
+%       explanatory variables and the Dth column is the response such that
+%       data = [x1, x2, ..., x(D-1), y];
 %
 % m: Estimated slope of each explanatory variable with respect to the
-%   response varuable. Therefore, m will be a vector of D-1 slopes.
+%    response varuable. Therefore, m will be a vector of D-1 slopes.
 % b: Estimated offsets.
 %
 %
-% EXAMPLE:
+% EXAMPLE
 % -------
-% n=100;
-% outN=round(0.2*n);
-% noise = randn(n,2)*0.1; noise(randi(n*2,[outN 1]))=randn(outN,1)*5;
-% data = [linspace(0,10,n)' linspace(0,5,n)'] + noise;
-% Bhat = [ones(n,1) data(:,1)]\data(:,2);
+% n = 100;
+% outN = round(0.2 * n);
+% noise = randn(n, 2) * 0.1;
+% noise(randi(n * 2, [outN, 1])) = randn(outN, 1) * 5;
+% data = [linspace(0, 10, n)', linspace(0,5,n)'] + noise;
+% Bhat = [ones(n, 1), data(:, 1)] \ data(:, 2);
 % [m, b] = TheilSen(data);
-% plims = [min(data(:,1)) max(data(:,1))]';
-% figure
-% plot(data(:,1),data(:,2),'k.',...
-%     plims,plims*m+b,'-r',...
-%     plims,plims*Bhat(2)+Bhat(1),'-b','linewidth',2)
-% legend('Data','TheilSen','Least Squares','location','NW')
-% title(sprintf('Acual Slope = %2.3g, LS est = %2.3g, TS est = %2.3g',[0.5 Bhat(2) m]))
-% 
+% plims = [min(data(:, 1)), max(data(:, 1))]';
+% figure()
+% plot(data(:, 1), data(:, 2), 'k.', ...
+%     plims, plims * m + b, '-r',...
+%     plims, plims * Bhat(2) + Bhat(1), '-b', 'linewidth', 2)
+% legend('Data', 'Theil-Sen', 'Least Squares', 'location', 'NW')
+% title(sprintf('Acual Slope = %2.3g, LS est. = %2.3g, TS est. = %2.3g', ...
+%       [0.5 Bhat(2) m]))
+%
 %
 % Source:
 %   Gilbert, Richard O. (1987), "6.5 Sen's Nonparametric Estimator of
 %   Slope", Statistical Methods for Environmental Pollution Monitoring,
-%   John Wiley and Sons, pp. 217�219, ISBN 978-0-471-28878-7
+%   John Wiley and Sons, pp. 217-219, ISBN 978-0-471-28878-7
 %
 %
 %
@@ -41,42 +43,44 @@ function [m, b] = TheilSen(data)
 %	- updated help
 %   - speed increase for 2D case
 %
-%
 
 sz = size(data);
-if length(sz)~=2 || sz(1)<2
+if length(sz) ~= 2 || sz(1) < 2
     error('Expecting MxD data matrix with at least 2 observations.')
 end
 
-if sz(2)==2         % normal 2-D case
+if sz(2) == 2  % normal 2D case
     C = nan(sz(1));
-    for i=1:sz(1)
+
+    for i = 1:sz(1)
         % accumulate slopes
-        C(i,i:end) = (data(i,2)-data(i:end,2))./(data(i,1) - data(i:end,1));
+        C(i, i:end) = (data(i, 2) - data(i:end, 2)) ./ ...
+                      (data(i, 1) - data(i:end, 1));
     end
-    m = nanmedian(C(:));                        % calculate slope estimate
+
+    m = nanmedian(C(:));  % calculate slope estimate
     
-    if nargout==2
-        b = nanmedian(data(:,2)-m*data(:,1));   % calculate intercept if requested
+    if nargout == 2
+        % calculate intercept if requested
+        b = nanmedian(data(:, 2) - m * data(:, 1));
     end
     
-else                % other cases
-    C = nan(sz(1),sz(2)-1,sz(1));
-    for i=1:sz(1)
-        C(:,:,i) = bsxfun( @rdivide,data(i,end)-data(:,end),...
-            bsxfun(@minus,data(i,1:end-1),data(:,1:end-1)) );       % accumulate slopes    
+else
+    C = nan(sz(1), sz(2)-1, sz(1));
+
+    for i = 1:sz(1)
+        % accumulate slopes
+        C(:, :, i) = bsxfun( @rdivide, data(i, end) - data(:, end), ...
+            bsxfun(@minus, data(i, 1:end-1), data(:, 1:end-1)) );
     end
-    Cprm = reshape( permute(C,[1 3 2]), [],size(C,2),1 );           % stack layers of C to 2D
-    m = nanmedian(Cprm,1);                                          % calculate slope estimate
+
+    % stack layers of C to 2D
+    Cprm = reshape( permute(C, [1, 3, 2]), [], size(C, 2), 1 );
+    m = nanmedian(Cprm, 1);	 % calculate slope estimate
     
-    if nargout==2
+    if nargout == 2
         % calculate all intercepts if requested
-        b = nanmedian( bsxfun(@minus,data(:,end),bsxfun(@times,m,data(:,1:end-1))) );   
+        b = nanmedian( bsxfun(@minus, data(:, end), ...
+                       bsxfun(@times, m, data(:, 1:end-1))) );
     end
-    
 end
-
-
-
-
-
diff --git a/license.txt b/license.txt
index 62fe911adfcebafe36a5797aaf2f81004fe007df..bfb82553713528dd31951f19f541b780f2d6d848 100644
--- a/license.txt
+++ b/license.txt
@@ -5,11 +5,11 @@ Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions are
 met:
 
-    * Redistributions of source code must retain the above copyright
-      notice, this list of conditions and the following disclaimer.
-    * Redistributions in binary form must reproduce the above copyright
-      notice, this list of conditions and the following disclaimer in
-      the documentation and/or other materials provided with the distribution
+* Redistributions of source code must retain the above copyright
+  notice, this list of conditions and the following disclaimer.
+* Redistributions in binary form must reproduce the above copyright
+  notice, this list of conditions and the following disclaimer in
+  the documentation and/or other materials provided with the distribution
 
 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE