import csv import random import string import time import uuid from collections import defaultdict import pandas as pd import networkx as nx from django.http import HttpResponse from django.db.models import Q from django.db import IntegrityError from rest_framework.decorators import api_view from rest_framework.response import Response from rest_framework.views import APIView from drugstone.util.query_db import query_proteins_by_identifier from drugstone.models import * from drugstone.serializers import * from drugstone.backend_tasks import start_task, refresh_from_redis, task_stats, task_result, task_parameters from drugstone.settings import DEFAULTS def get_ppi_ds(source, licenced): try: ds = models.PPIDataset.objects.filter(name__iexact=source, licenced=licenced).last() return ds except: if licenced: return get_ppi_ds(source, False) return None def get_pdi_ds(source, licenced): try: ds = models.PDIDataset.objects.filter(name__iexact=source, licenced=licenced).last() return ds except: if licenced: return get_pdi_ds(source, False) return None def get_pdis_ds(source, licenced): try: ds = models.PDisDataset.objects.filter(name__iexact=source, licenced=licenced).last() return ds except: if licenced: return get_pdis_ds(source, False) return None def get_drdis_ds(source, licenced): try: ds = models.DrDiDataset.objects.filter(name__iexact=source, licenced=licenced).last() return ds except: if licenced: return get_drdis_ds(source, False) return None class TaskView(APIView): def post(self, request) -> Response: chars = string.ascii_lowercase + string.ascii_uppercase + string.digits token_str = ''.join(random.choice(chars) for _ in range(32)) parameters = request.data['parameters'] licenced = parameters.get('licenced', False) print(models.PDIDataset.objects.all()) print(get_ppi_ds(parameters.get('ppi_dataset', DEFAULTS['ppi']), licenced)) print(get_pdi_ds(parameters.get('pdi_dataset', DEFAULTS['pdi']), licenced)) # find databases based on parameter strings parameters['ppi_dataset'] = PPIDatasetSerializer().to_representation( get_ppi_ds(parameters.get('ppi_dataset', DEFAULTS['ppi']), licenced)) parameters['pdi_dataset'] = PDIDatasetSerializer().to_representation( get_pdi_ds(parameters.get('pdi_dataset', DEFAULTS['pdi']), licenced)) task = Task.objects.create(token=token_str, target=request.data['target'], algorithm=request.data['algorithm'], parameters=json.dumps(parameters)) start_task(task) task.save() return Response({ 'token': token_str, }) def get(self, request) -> Response: token_str = request.query_params['token'] task = Task.objects.get(token=token_str) if not task.done and not task.failed: refresh_from_redis(task) task.save() return Response({ 'token': task.token, 'info': TaskSerializer().to_representation(task), 'stats': task_stats(task), }) @api_view(['GET']) def get_license(request) -> Response: from drugstone.management.includes.DatasetLoader import import_license return Response({'license': import_license()}) @api_view(['POST']) def fetch_edges(request) -> Response: """Retrieves interactions between nodes given as a list of drugstone IDs. Args: request (HttpRequest): With keys 'nodes' representing nodes and 'dataset' representing the protein-protein interaction dataset. Returns: Response: List of edges which are objects with 'from' and to ' attribtues' """ dataset = request.data.get('dataset', DEFAULTS['ppi']) drugstone_ids = set() for node in request.data.get('nodes', '[]'): if 'drugstone_id' in node: if isinstance(node['drugstone_id'], list): for id in node['drugstone_id']: drugstone_ids.add(id[1:]) else: drugstone_ids.add(node['drugstone_id']) licenced = request.data.get('licenced', False) dataset_object = get_ppi_ds(dataset, licenced) interaction_objects = models.ProteinProteinInteraction.objects.filter( Q(ppi_dataset=dataset_object) & Q(from_protein__in=drugstone_ids) & Q(to_protein__in=drugstone_ids)) return Response(ProteinProteinInteractionSerializer(many=True).to_representation(interaction_objects)) @api_view(['POST']) def map_nodes(request) -> Response: """Maps user given input nodes to Proteins in the django database. Further updates the node list given by the user by extending the matching proteins with information from the database, leaves unmatched nodes untouched. No informations from the input node list gets removed. Custom node attributes remain untouched. Returns updated node list. Args: request (HttpRequest): With keys "nodes" for the node list containing input node objects from the frontend, with "id" key, and key "identifier" representing the Protein backend attribute the node id are representing. Identifier must be of type "Identifier" as defined in the frontend. Returns: Response: Updates node list. """ # load data from request nodes = request.data.get('nodes', '[]') id_map = {} for node in nodes: upper = node['id'].upper() id_map[upper] = node['id'] node['id'] = upper identifier = request.data.get('identifier', '') # extract ids for filtering node_ids = set([node['id'] for node in nodes]) # query protein table nodes_mapped, id_key = query_proteins_by_identifier(node_ids, identifier) # change data structure to dict in order to be quicker when merging nodes_mapped_dict = {node[id_key][0]: node for node in nodes_mapped} # merge fetched data with given data to avoid data loss for node in nodes: node['drugstoneType'] = 'other' if node['id'] in nodes_mapped_dict: node.update(nodes_mapped_dict[node['id']]) node['drugstoneType'] = 'protein' node['id'] = id_map[node['id']] # set label to node identifier if label is unset, otherwise # return list of nodes updated nodes return Response(nodes) @api_view(['POST']) def tasks_view(request) -> Response: tokens = json.loads(request.data.get('tokens', '[]')) tasks = Task.objects.filter(token__in=tokens).order_by('-created_at').all() tasks_info = [] for task in tasks: if not task.done and not task.failed: refresh_from_redis(task) task.save() tasks_info.append({ 'token': task.token, 'info': TaskStatusSerializer().to_representation(task), 'stats': task_stats(task), }) return Response(tasks_info) @api_view(['POST']) def create_network(request) -> Response: if 'network' not in request.data: return Response(None) else: if 'nodes' not in request.data['network']: request.data['network']['nodes'] = [] if 'edges' not in request.data['network']: request.data['network']['edges'] = [] if 'config' not in request.data: request.data['config'] = {} if 'groups' not in request.data: request.data['groups'] = {} id = uuid.uuid4().hex while True: try: Network.objects.create(id=id, nodes=request.data['network']['nodes'], edges=request.data['network']['edges'], config=request.data['config'], groups=request.data['groups']) break except IntegrityError: id = uuid.uuid4().hex return Response(id) @api_view(['GET']) def get_datasets(request) -> Response: datasets = {} datasets['protein-protein'] = PPIDatasetSerializer(many=True).to_representation(PPIDataset.objects.all()) datasets['protein-drug'] = PDIDatasetSerializer(many=True).to_representation(PDIDataset.objects.all()) datasets['protein-disorder'] = PDisDatasetSerializer(many=True).to_representation(PDisDataset.objects.all()) datasets['drug-disorder'] = DrDisDatasetSerializer(many=True).to_representation(DrDiDataset.objects.all()) return Response(datasets) @api_view(['GET']) def load_network(request) -> Response: network = NetworkSerializer().to_representation(Network.objects.get(id=request.query_params.get('id'))) result = {'network': {'nodes': json.loads(network['nodes'].replace("'", '"')), 'edges': json.loads(network['edges'].replace("'", '"'))}, 'config': json.loads( network['config'].replace("'", '"').replace('True', 'true').replace('False', 'false')), 'groups': json.loads( network['groups'].replace("'", '"').replace('True', 'true').replace('False', 'false'))} return Response(result) @api_view() def result_view(request) -> Response: node_name_attribute = 'drugstone_id' view = request.query_params.get('view') fmt = request.query_params.get('fmt') token_str = request.query_params['token'] task = Task.objects.get(token=token_str) result = task_result(task) node_attributes = result.get('node_attributes') if not node_attributes: node_attributes = {} result['node_attributes'] = node_attributes proteins = [] drugs = [] network = result['network'] node_types = node_attributes.get('node_types') if not node_types: node_types = {} node_attributes['node_types'] = node_types is_seed = node_attributes.get('is_seed') if not is_seed: is_seed = {} node_attributes['is_seed'] = is_seed scores = node_attributes.get('scores', {}) node_details = {} protein_id_map = defaultdict(set) node_attributes['details'] = node_details parameters = json.loads(task.parameters) seeds = parameters['seeds'] nodes = network['nodes'] parameters = task_parameters(task) # attach input parameters to output result['parameters'] = parameters identifier_nodes = set() identifier = parameters['config']['identifier'] # merge input network with result network for node in parameters['input_network']['nodes']: # if node was already mapped, add user defined values to result of analysis if identifier in node: node_name = node[identifier][0] if node_name in node_details: # update the node to not lose user input attributes node_details[node_name].update(node) # skip adding node if node already exists in analysis output to avoid duplicates else: # node does not exist in analysis output yet, was added by user but not used as seed node_details[node_name] = node # append mapped input node to analysis result nodes.append(node_name) # manually add node to node types result['node_attributes']['node_types'][node_name] = 'protein' else: # node is custom node from user, not mapped to drugstone but will be displayed with all custom attributes node_id = node['id'] identifier_nodes.add(node_id) node_details[node_id] = node is_seed[node_id] = False # append custom node to analysis result later on # manually add node to node types result['node_attributes']['node_types'][node_id] = 'custom' # extend the analysis network by the input netword nodes # map edge endpoints to database proteins if possible and add edges to analysis network protein_nodes = set() # mapping all new protein and drug nodes by drugstoneIDs + adding scores for node_id in nodes: if node_id[:2] == 'dr': node_data = DrugSerializer().to_representation(Drug.objects.get(id=int(node_id[2:]))) node_data['drugstoneType'] = 'drug' drugs.append(node_data) if node_id in scores: node_data['score'] = scores.get(node_id, None) node_types[node_id] = 'drug' node_details[node_id] = node_data elif node_id[:2] != 'di': protein_nodes.add(node_id) else: continue nodes_mapped, _ = query_proteins_by_identifier(protein_nodes, identifier) nodes_mapped_dict = {node[identifier][0]: node for node in nodes_mapped} # merge fetched data with given data to avoid data loss for node_id in nodes: if node_id in nodes_mapped_dict: # node.update(nodes_mapped_dict[node['id']]) node_data = nodes_mapped_dict[node_id] node_data['drugstoneType'] = 'protein' # proteins.append(node_data) node_ident = node_data[identifier][0] # node_data[identifier] = [node_ident] protein_id_map[node_ident].add(node_id) identifier_nodes.add(node_ident) is_seed[node_ident] = node_id in seeds or (is_seed[node_ident] if node_ident in is_seed else False) node_types[node_ident] = 'protein' score = scores.get(node_id, None) if node_ident in node_details: data = node_details[node_ident] data['score'] = [score] if score else None else: node_data['score'] = score if score else None node_data['drugstoneType'] = 'protein' node_data['id'] = node_ident node_data['label'] = node_ident node_details[node_ident] = node_data for node_id, detail in node_details.items(): if 'drugstoneType' in detail and detail['drugstoneType'] == 'protein': detail['symbol'] = list(set(detail['symbol'])) detail['entrez'] = list(set(detail['entrez'])) detail['uniprot_ac'] = list(set(detail['uniprot_ac'])) if 'ensg' in detail: detail['ensg'] = list(set(detail['ensg'])) edges = parameters['input_network']['edges'] edge_endpoint_ids = set() # TODO check for custom edges when working again with ensemble gene ids for edge in edges: edge_endpoint_ids.add(edge['from']) edge_endpoint_ids.add(edge['to']) nodes_mapped, id_key = query_proteins_by_identifier(edge_endpoint_ids, identifier) if 'autofill_edges' in parameters['config'] and parameters['config']['autofill_edges']: prots = list(filter(lambda n: n['drugstone_type'] == 'protein', filter(lambda n: 'drugstone_type' in n and node_name_attribute in n, parameters['input_network']['nodes']))) proteins = {node_name[1:] for node in prots for node_name in node[node_name_attribute]} dataset = DEFAULTS['ppi'] if 'interaction_protein_protein' not in parameters['config'] else \ parameters['config'][ 'interaction_protein_protein'] dataset_object = models.PPIDataset.objects.filter(name__iexact=dataset).last() interaction_objects = models.ProteinProteinInteraction.objects.filter( Q(ppi_dataset=dataset_object) & Q(from_protein__in=proteins) & Q(to_protein__in=proteins)) auto_edges = list(map(lambda n: {"from": f'p{n.from_protein_id}', "to": f'p{n.to_protein_id}'}, interaction_objects)) edges.extend(auto_edges) result['network']['edges'].extend(edges) uniq_edges = dict() for edge in result['network']['edges']: hash = edge['from'] + edge['to'] uniq_edges[hash] = edge result['network']['edges'] = list(uniq_edges.values()) if 'scores' in result['node_attributes']: del result['node_attributes']['scores'] if not view: return Response(result) else: if view == 'proteins': if fmt == 'csv': items = [] for i in proteins: new_i = { 'uniprot_ac': i['uniprot_ac'], 'gene': i['symbol'], 'name': i['protein_name'], 'ensg': i['ensg'], 'entrez': i['entrez'], 'seed': is_seed[i[node_name_attribute]], } if i.get('score'): new_i['score'] = i['score'] items.append(new_i) else: items = proteins elif view == 'drugs': if fmt == 'csv': items = [i for i in drugs] else: items = drugs else: return Response({}) if not fmt or fmt == 'json': return Response(items) elif fmt == 'csv': if len(items) != 0: keys = items[0].keys() else: keys = [] response = HttpResponse(content_type='text/csv') response['Content-Disposition'] = f'attachment; filename="{task.id}_{view}.csv"' dict_writer = csv.DictWriter(response, keys) dict_writer.writeheader() dict_writer.writerows(items) return response else: return Response({}) @api_view(['POST']) def graph_export(request) -> Response: """ Recieve whole graph data and write it to graphml file. Return the file ready to download. """ nodes = request.data.get('nodes', []) edges = request.data.get('edges', []) fmt = request.data.get('fmt', 'graphml') G = nx.Graph() node_map = dict() for node in nodes: # drugstone_id is not interesting outside of drugstone # try: # del node['drugstone_id'] # except KeyError: # pass # networkx does not support datatypes such as lists or dicts for key in list(node.keys()): if isinstance(node[key], list) or isinstance(node[key], dict): node[key] = json.dumps(node[key]) elif node[key] is None: # networkx has difficulties with None when writing graphml node[key] = '' try: node_name = node['label'] if 'drugstone_id' in node: node_map[node['drugstone_id']] = node['label'] elif 'id' in node: node_map[node['id']] = node['label'] except KeyError: node_name = node['drugstone_id'] G.add_node(node_name, **node) for e in edges: # networkx does not support datatypes such as lists or dicts for key in e: if isinstance(e[key], list) or isinstance(e[key], dict): e[key] = json.dumps(e[key]) elif e[key] is None: e[key] = '' u_of_edge = e.pop('from') u_of_edge = u_of_edge if u_of_edge not in node_map else node_map[u_of_edge] v_of_edge = e.pop('to') v_of_edge = node_map[v_of_edge] if v_of_edge in node_map else v_of_edge G.add_edge(u_of_edge, v_of_edge, **e) if fmt == 'graphml': data = nx.generate_graphml(G) response = HttpResponse(data, content_type='application/xml') elif fmt == 'json': data = json.dumps(nx.readwrite.json_graph.node_link_data(G)) response = HttpResponse(data, content_type='application/json') elif fmt == 'csv': data = pd.DataFrame(nx.to_numpy_array(G), columns=G.nodes(), index=G.nodes()) response = HttpResponse(data.to_csv(), content_type='text/csv') response['content-disposition'] = f'attachment; filename="{int(time.time())}_network.{fmt}"' return response @api_view(['POST']) def adjacent_disorders(request) -> Response: """Find all adjacent disorders to a list of proteins. Args: request (django.request): Request object with keys "proteins" and "pdi_dataset" Returns: Response: With lists "pdis" (protein-drug-intersions) and "disorders" """ data = request.data if 'proteins' in data: drugstone_ids = data.get('proteins', []) pdis_dataset = get_pdis_ds(data.get('dataset', DEFAULTS['pdis']), data.get('licenced', False)) # find adjacent drugs by looking at drug-protein edges pdis_objects = ProteinDisorderAssociation.objects.filter(protein__id__in=drugstone_ids, pdis_dataset_id=pdis_dataset.id) disorders = {e.disorder for e in pdis_objects} # serialize edges = ProteinDisorderAssociationSerializer(many=True).to_representation(pdis_objects) disorders = DisorderSerializer(many=True).to_representation(disorders) elif 'drugs' in data: drugstone_ids = data.get('drugs', []) drdi_dataset = get_drdis_ds(data.get('dataset', DEFAULTS['drdi']), data.get('licenced', False)) # find adjacent drugs by looking at drug-protein edges drdi_objects = DrugDisorderIndication.objects.filter(drug__id__in=drugstone_ids, drdi_dataset_id=drdi_dataset.id) disorders = {e.disorder for e in drdi_objects} # serialize edges = DrugDisorderIndicationSerializer(many=True).to_representation(drdi_objects) disorders = DisorderSerializer(many=True).to_representation(disorders) for d in disorders: d['drugstone_type'] = 'disorder' return Response({ 'edges': edges, 'disorders': disorders, }) @api_view(['POST']) def adjacent_drugs(request) -> Response: """Find all adjacent drugs to a list of proteins. Args: request (django.request): Request object with keys "proteins" and "pdi_dataset" Returns: Response: With lists "pdis" (protein-drug-intersions) and "drugs" """ data = request.data drugstone_ids = data.get('proteins', []) pdi_dataset = get_pdi_ds(data.get('pdi_dataset', DEFAULTS['pdi']), data.get('licenced', False)) # find adjacent drugs by looking at drug-protein edges pdi_objects = ProteinDrugInteraction.objects.filter(protein__id__in=drugstone_ids, pdi_dataset_id=pdi_dataset.id) drugs = {e.drug for e in pdi_objects} # serialize pdis = ProteinDrugInteractionSerializer(many=True).to_representation(pdi_objects) drugs = DrugSerializer(many=True).to_representation(drugs) for drug in drugs: drug['drugstone_type'] = 'drug' return Response({ 'pdis': pdis, 'drugs': drugs, }) @api_view(['POST']) def query_proteins(request) -> Response: proteins = request.data details = [] not_found = [] for p in proteins: try: protein = Protein.objects.get(uniprot_code=p) details.append(ProteinSerializer().to_representation(protein)) continue except Protein.DoesNotExist: pass drug_interactions = ProteinDrugInteraction.objects.filter(drug__drug_id=p) if len(drug_interactions) > 0: for di in drug_interactions: details.append(ProteinSerializer().to_representation(di.protein)) continue not_found.append(p) return Response({ 'details': details, 'notFound': not_found, }) @api_view(['POST']) def query_tissue_proteins(request) -> Response: threshold = request.data['threshold'] tissue_id = request.data['tissue_id'] tissue = Tissue.objects.get(id=tissue_id) proteins = [] for el in tissue.expressionlevel_set.filter(expression_level__gte=threshold): proteins.append(ProteinSerializer().to_representation(el.protein)) return Response(proteins) class TissueView(APIView): def get(self, request) -> Response: tissues = Tissue.objects.all() return Response(TissueSerializer(many=True).to_representation(tissues)) class TissueExpressionView(APIView): """ Expression of host proteins in tissues. """ def post(self, request) -> Response: tissue = Tissue.objects.get(id=request.data.get('tissue')) if request.data.get('proteins'): ids = json.loads(request.data.get('proteins')) proteins = list(Protein.objects.filter(id__in=ids).all()) elif request.data.get('token'): proteins = [] task = Task.objects.get(token=request.data['token']) result = task_result(task) network = result['network'] node_attributes = result.get('node_attributes') if not node_attributes: node_attributes = {} node_types = node_attributes.get('node_types') if not node_types: node_types = {} parameters = json.loads(task.parameters) seeds = parameters['seeds'] nodes = network['nodes'] for node in nodes + seeds: node_type = node_types.get(node) details = None if node_type == 'protein': if details: proteins.append(details) else: try: prot = Protein.objects.get(uniprot_code=node) if prot not in proteins: proteins.append(Protein.objects.get(uniprot_code=node)) except Protein.DoesNotExist: pass pt_expressions = {} for protein in proteins: try: expression_level = ExpressionLevel.objects.get(protein=protein, tissue=tissue) pt_expressions[ ProteinSerializer().to_representation(protein)['drugstone_id']] = expression_level.expression_level except ExpressionLevel.DoesNotExist: pt_expressions[ProteinSerializer().to_representation(protein)['drugstone_id']] = None return Response(pt_expressions)