diff --git a/.gitignore b/.gitignore
new file mode 100644
index 0000000000000000000000000000000000000000..1f059ab3623443d7e176774589ad10ef92f3e330
--- /dev/null
+++ b/.gitignore
@@ -0,0 +1,3 @@
+**/__pycache__/
+/.ipynb_checkpoints/
+
diff --git a/Analyse.ipynb b/Analyse.ipynb
index 482444716cc73234bb3a665d4ffa9a6277515e2e..864f9cebe5b3f04846b98f9ad97aacc2df1793ec 100644
--- a/Analyse.ipynb
+++ b/Analyse.ipynb
@@ -10,7 +10,25 @@
     "%matplotlib nbagg\n",
     "import pandas as pd\n",
     "import matplotlib.pyplot as plt\n",
-    "import numpy as np"
+    "import numpy as np\n",
+    "from wcorr import WeightedCorr\n",
+    "laender_short={\"Schleswig-Holstein\":\"SH\",\n",
+    "\"Hamburg\":\"HH\",\n",
+    "\"Niedersachsen\":\"NI\",\n",
+    "\"Bremen\":\"HB\",\n",
+    "\"Nordrhein-Westfalen\":\"NRW\",\n",
+    "\"Hessen\":\"HE\",\n",
+    "\"Rheinland-Pfalz\":\"RP\",\n",
+    "\"Baden-Württemberg\":\"BW\",\n",
+    "\"Bayern\":\"BY\",\n",
+    "\"Saarland\":\"SAAR\",\n",
+    "\"Berlin\":\"BE\",\n",
+    "\"Brandenburg\":\"BB\",\n",
+    "\"Mecklenburg-Vorpommern\":\"MV\",\n",
+    "\"Sachsen\":\"SA\",\n",
+    "\"Sachsen-Anhalt\":\"S-AN\",\n",
+    "\"Thüringen\":\"TH\",\n",
+    "}"
    ]
   },
   {
@@ -88,71 +106,19 @@
        "      <td>NaN</td>\n",
        "      <td>NaN</td>\n",
        "    </tr>\n",
-       "    <tr>\n",
-       "      <th>1</th>\n",
-       "      <td>2021</td>\n",
-       "      <td>Hamburg</td>\n",
-       "      <td>451</td>\n",
-       "      <td>437</td>\n",
-       "      <td>462</td>\n",
-       "      <td>396</td>\n",
-       "      <td>416</td>\n",
-       "      <td>363</td>\n",
-       "      <td>405</td>\n",
-       "      <td>346</td>\n",
-       "      <td>...</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2</th>\n",
-       "      <td>2021</td>\n",
-       "      <td>Niedersachsen</td>\n",
-       "      <td>2164</td>\n",
-       "      <td>2092</td>\n",
-       "      <td>2166</td>\n",
-       "      <td>2164</td>\n",
-       "      <td>2179</td>\n",
-       "      <td>2133</td>\n",
-       "      <td>2061</td>\n",
-       "      <td>1945</td>\n",
-       "      <td>...</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "    </tr>\n",
        "  </tbody>\n",
        "</table>\n",
-       "<p>3 rows × 55 columns</p>\n",
+       "<p>1 rows × 55 columns</p>\n",
        "</div>"
       ],
       "text/plain": [
-       "   Jahr          Bundesland     1     2     3     4     5     6     7     8  \\\n",
-       "0  2021  Schleswig-Holstein   803   794   849   826   777   797   819   677   \n",
-       "1  2021             Hamburg   451   437   462   396   416   363   405   346   \n",
-       "2  2021       Niedersachsen  2164  2092  2166  2164  2179  2133  2061  1945   \n",
+       "   Jahr          Bundesland    1    2    3    4    5    6    7    8  ...  44  \\\n",
+       "0  2021  Schleswig-Holstein  803  794  849  826  777  797  819  677  ... NaN   \n",
        "\n",
-       "   ...  44  45  46  47  48  49  50  51  52   53  \n",
-       "0  ... NaN NaN NaN NaN NaN NaN NaN NaN NaN  NaN  \n",
-       "1  ... NaN NaN NaN NaN NaN NaN NaN NaN NaN  NaN  \n",
-       "2  ... NaN NaN NaN NaN NaN NaN NaN NaN NaN  NaN  \n",
+       "   45  46  47  48  49  50  51  52   53  \n",
+       "0 NaN NaN NaN NaN NaN NaN NaN NaN  NaN  \n",
        "\n",
-       "[3 rows x 55 columns]"
+       "[1 rows x 55 columns]"
       ]
      },
      "execution_count": 2,
@@ -164,7 +130,7 @@
     "#Datasource https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bevoelkerung/Sterbefaelle-Lebenserwartung/Tabellen/sonderauswertung-sterbefaelle.html?nn=209016\n",
     "# 22.11.2021\n",
     "df = pd.read_csv('sterbefaelle.csv')\n",
-    "df.head(3)\n",
+    "df.head(1)\n",
     "#df.columns\n",
     "#df = df.set_index('Bundesland')"
    ]
@@ -484,153 +450,9 @@
        "      <td>4205.75</td>\n",
        "      <td>4054.75</td>\n",
        "    </tr>\n",
-       "    <tr>\n",
-       "      <th>Rheinland-Pfalz</th>\n",
-       "      <td>977.00</td>\n",
-       "      <td>989.25</td>\n",
-       "      <td>969.25</td>\n",
-       "      <td>969.75</td>\n",
-       "      <td>1028.00</td>\n",
-       "      <td>1010.25</td>\n",
-       "      <td>1061.50</td>\n",
-       "      <td>1094.00</td>\n",
-       "      <td>1102.50</td>\n",
-       "      <td>1087.00</td>\n",
-       "      <td>...</td>\n",
-       "      <td>868.00</td>\n",
-       "      <td>843.00</td>\n",
-       "      <td>905.75</td>\n",
-       "      <td>898.50</td>\n",
-       "      <td>927.25</td>\n",
-       "      <td>903.00</td>\n",
-       "      <td>953.25</td>\n",
-       "      <td>920.50</td>\n",
-       "      <td>939.75</td>\n",
-       "      <td>944.25</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>Saarland</th>\n",
-       "      <td>268.25</td>\n",
-       "      <td>275.00</td>\n",
-       "      <td>269.25</td>\n",
-       "      <td>273.75</td>\n",
-       "      <td>283.25</td>\n",
-       "      <td>294.50</td>\n",
-       "      <td>283.25</td>\n",
-       "      <td>286.50</td>\n",
-       "      <td>315.75</td>\n",
-       "      <td>315.75</td>\n",
-       "      <td>...</td>\n",
-       "      <td>230.25</td>\n",
-       "      <td>246.75</td>\n",
-       "      <td>253.00</td>\n",
-       "      <td>259.25</td>\n",
-       "      <td>256.75</td>\n",
-       "      <td>253.00</td>\n",
-       "      <td>262.25</td>\n",
-       "      <td>253.75</td>\n",
-       "      <td>259.50</td>\n",
-       "      <td>262.50</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>Sachsen</th>\n",
-       "      <td>1133.75</td>\n",
-       "      <td>1146.25</td>\n",
-       "      <td>1128.50</td>\n",
-       "      <td>1175.75</td>\n",
-       "      <td>1174.00</td>\n",
-       "      <td>1215.50</td>\n",
-       "      <td>1234.75</td>\n",
-       "      <td>1254.00</td>\n",
-       "      <td>1286.25</td>\n",
-       "      <td>1273.50</td>\n",
-       "      <td>...</td>\n",
-       "      <td>996.75</td>\n",
-       "      <td>1004.75</td>\n",
-       "      <td>1021.50</td>\n",
-       "      <td>1039.75</td>\n",
-       "      <td>1027.75</td>\n",
-       "      <td>1058.25</td>\n",
-       "      <td>1073.00</td>\n",
-       "      <td>1096.75</td>\n",
-       "      <td>1123.75</td>\n",
-       "      <td>1125.50</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>Sachsen-Anhalt</th>\n",
-       "      <td>692.00</td>\n",
-       "      <td>677.75</td>\n",
-       "      <td>653.25</td>\n",
-       "      <td>664.25</td>\n",
-       "      <td>686.00</td>\n",
-       "      <td>690.50</td>\n",
-       "      <td>744.50</td>\n",
-       "      <td>731.25</td>\n",
-       "      <td>768.50</td>\n",
-       "      <td>776.00</td>\n",
-       "      <td>...</td>\n",
-       "      <td>586.75</td>\n",
-       "      <td>570.00</td>\n",
-       "      <td>603.50</td>\n",
-       "      <td>579.50</td>\n",
-       "      <td>617.25</td>\n",
-       "      <td>656.00</td>\n",
-       "      <td>627.50</td>\n",
-       "      <td>651.75</td>\n",
-       "      <td>671.25</td>\n",
-       "      <td>635.75</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>Schleswig-Holstein</th>\n",
-       "      <td>711.75</td>\n",
-       "      <td>690.00</td>\n",
-       "      <td>728.00</td>\n",
-       "      <td>737.00</td>\n",
-       "      <td>749.25</td>\n",
-       "      <td>770.25</td>\n",
-       "      <td>773.00</td>\n",
-       "      <td>792.25</td>\n",
-       "      <td>794.75</td>\n",
-       "      <td>787.75</td>\n",
-       "      <td>...</td>\n",
-       "      <td>632.00</td>\n",
-       "      <td>634.50</td>\n",
-       "      <td>660.75</td>\n",
-       "      <td>658.75</td>\n",
-       "      <td>660.50</td>\n",
-       "      <td>696.50</td>\n",
-       "      <td>695.00</td>\n",
-       "      <td>663.50</td>\n",
-       "      <td>715.25</td>\n",
-       "      <td>684.75</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>Thüringen</th>\n",
-       "      <td>609.25</td>\n",
-       "      <td>600.50</td>\n",
-       "      <td>603.75</td>\n",
-       "      <td>629.50</td>\n",
-       "      <td>667.25</td>\n",
-       "      <td>634.00</td>\n",
-       "      <td>640.00</td>\n",
-       "      <td>661.00</td>\n",
-       "      <td>686.00</td>\n",
-       "      <td>697.00</td>\n",
-       "      <td>...</td>\n",
-       "      <td>513.50</td>\n",
-       "      <td>538.50</td>\n",
-       "      <td>545.75</td>\n",
-       "      <td>558.50</td>\n",
-       "      <td>549.75</td>\n",
-       "      <td>583.75</td>\n",
-       "      <td>596.75</td>\n",
-       "      <td>576.25</td>\n",
-       "      <td>590.25</td>\n",
-       "      <td>555.50</td>\n",
-       "    </tr>\n",
        "  </tbody>\n",
        "</table>\n",
-       "<p>16 rows × 52 columns</p>\n",
+       "<p>10 rows × 52 columns</p>\n",
        "</div>"
       ],
       "text/plain": [
@@ -646,12 +468,6 @@
        "Mecklenburg-Vorpommern   452.00   455.50   439.50   450.00   449.50   429.75   \n",
        "Niedersachsen           1973.50  1966.50  1979.75  1996.25  2057.25  2024.00   \n",
        "Nordrhein-Westfalen     4191.50  4305.75  4238.75  4357.75  4489.75  4513.75   \n",
-       "Rheinland-Pfalz          977.00   989.25   969.25   969.75  1028.00  1010.25   \n",
-       "Saarland                 268.25   275.00   269.25   273.75   283.25   294.50   \n",
-       "Sachsen                 1133.75  1146.25  1128.50  1175.75  1174.00  1215.50   \n",
-       "Sachsen-Anhalt           692.00   677.75   653.25   664.25   686.00   690.50   \n",
-       "Schleswig-Holstein       711.75   690.00   728.00   737.00   749.25   770.25   \n",
-       "Thüringen                609.25   600.50   603.75   629.50   667.25   634.00   \n",
        "\n",
        "                              7        8        9       10  ...       43  \\\n",
        "Bundesland                                                  ...            \n",
@@ -665,12 +481,6 @@
        "Mecklenburg-Vorpommern   471.75   489.75   455.25   480.25  ...   387.00   \n",
        "Niedersachsen           2075.50  2111.25  2223.25  2165.50  ...  1725.75   \n",
        "Nordrhein-Westfalen     4549.00  4568.00  4780.25  4786.50  ...  3757.50   \n",
-       "Rheinland-Pfalz         1061.50  1094.00  1102.50  1087.00  ...   868.00   \n",
-       "Saarland                 283.25   286.50   315.75   315.75  ...   230.25   \n",
-       "Sachsen                 1234.75  1254.00  1286.25  1273.50  ...   996.75   \n",
-       "Sachsen-Anhalt           744.50   731.25   768.50   776.00  ...   586.75   \n",
-       "Schleswig-Holstein       773.00   792.25   794.75   787.75  ...   632.00   \n",
-       "Thüringen                640.00   661.00   686.00   697.00  ...   513.50   \n",
        "\n",
        "                             44       45       46       47       48       49  \\\n",
        "Bundesland                                                                     \n",
@@ -684,12 +494,6 @@
        "Mecklenburg-Vorpommern   385.50   395.50   400.75   404.75   405.75   410.25   \n",
        "Niedersachsen           1736.50  1774.50  1795.00  1799.00  1840.00  1884.25   \n",
        "Nordrhein-Westfalen     3764.50  3841.75  3892.25  3980.00  3967.75  4133.75   \n",
-       "Rheinland-Pfalz          843.00   905.75   898.50   927.25   903.00   953.25   \n",
-       "Saarland                 246.75   253.00   259.25   256.75   253.00   262.25   \n",
-       "Sachsen                 1004.75  1021.50  1039.75  1027.75  1058.25  1073.00   \n",
-       "Sachsen-Anhalt           570.00   603.50   579.50   617.25   656.00   627.50   \n",
-       "Schleswig-Holstein       634.50   660.75   658.75   660.50   696.50   695.00   \n",
-       "Thüringen                538.50   545.75   558.50   549.75   583.75   596.75   \n",
        "\n",
        "                             50       51       52  \n",
        "Bundesland                                         \n",
@@ -703,14 +507,8 @@
        "Mecklenburg-Vorpommern   441.50   434.25   410.50  \n",
        "Niedersachsen           1866.00  1910.00  1847.00  \n",
        "Nordrhein-Westfalen     4066.00  4205.75  4054.75  \n",
-       "Rheinland-Pfalz          920.50   939.75   944.25  \n",
-       "Saarland                 253.75   259.50   262.50  \n",
-       "Sachsen                 1096.75  1123.75  1125.50  \n",
-       "Sachsen-Anhalt           651.75   671.25   635.75  \n",
-       "Schleswig-Holstein       663.50   715.25   684.75  \n",
-       "Thüringen                576.25   590.25   555.50  \n",
-       "\n",
-       "[16 rows x 52 columns]"
+       "\n",
+       "[10 rows x 52 columns]"
       ]
      },
      "execution_count": 3,
@@ -723,7 +521,7 @@
     "sterb_norm = df[df.Jahr<2020].groupby(['Bundesland']).mean()\n",
     "#Jahr does not make sense after aggregation\n",
     "sterb_norm = sterb_norm.drop('Jahr', axis=1)\n",
-    "sterb_norm.head(20)\n"
+    "sterb_norm.head(10)\n"
    ]
   },
   {
@@ -731,6 +529,53 @@
    "execution_count": 4,
    "id": "ab1f10bc",
    "metadata": {},
+   "outputs": [],
+   "source": [
+    "sterb_21 = df[df.Jahr==2021].groupby(['Bundesland']).mean()\n",
+    "uebersterb = sterb_21 / sterb_norm\n",
+    "uebersterb = uebersterb.mean(axis=1)\n",
+    "uebersterb.name = \"Übersterblichkeit\"\n",
+    "# Next line plots:\n",
+    "# uebersterb.sort_values().plot(style='.')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "id": "9d77bb4a",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "#Datasource Rbert Koch Institut\n",
+    "# https://github.com/robert-koch-institut/COVID-19-Impfungen_in_Deutschland\n",
+    "df_impf = pd.read_csv('Impfquoten.csv')\n",
+    "df_impf = df_impf[df_impf.Bundesland!=\"Deutschland\"].drop('Datum', axis=1) # Drop column 'Datum', row \"Deutschland\"\n",
+    "df_impf = df_impf.set_index('Bundesland')\n",
+    "# next line plots\n",
+    "# df_impf.sort_values(by='Impfquote').plot(style='.')\n",
+    "\n",
+    "# Merge both dataset into a combined one\n",
+    "df_total = pd.merge(df_impf,uebersterb, left_index=True, right_index=True)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "id": "426b3884",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Unweighted correlation is\n",
+    "correlation = df_total.corr(method=\"pearson\")\n",
+    "# Weighted correlation is\n",
+    "#TODO: get population numbers WeightedCorr()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "id": "8e99105a",
+   "metadata": {},
    "outputs": [
     {
      "data": {
@@ -1693,7 +1538,7 @@
     {
      "data": {
       "text/html": [
-       "<img src=\"\" width=\"640\">"
+       "<img src=\"\" width=\"1000\">"
       ],
       "text/plain": [
        "<IPython.core.display.HTML object>"
@@ -1705,2069 +1550,39 @@
     {
      "data": {
       "text/plain": [
-       "<AxesSubplot:xlabel='Bundesland'>"
+       "Text(58, 1.01, 'Korrelation = -0.823')"
       ]
      },
-     "execution_count": 4,
+     "execution_count": 8,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
-    "sterb_21 = df[df.Jahr==2021].groupby(['Bundesland']).mean()\n",
-    "uebersterb = sterb_21 / sterb_norm\n",
-    "uebersterb = uebersterb.mean(axis=1)\n",
-    "uebersterb.name = \"Übersterblichkeit\"\n",
-    "uebersterb.sort_values().plot(style='.')\n",
+    "fig, ax = plt.subplots(figsize=(10,7))\n",
+    "plot1 = df_total.plot.scatter(x=\"Impfquote\",y=\"Übersterblichkeit\",title=\"Übersterblichkeit vs Impfquote\", grid=True,\n",
+    "              ax=ax, style='o', legend=False, s=150, fontsize=18,\n",
+    "              color=range(len(df_total)), colormap='Spectral')\n",
+    "#ax.legend(plot1,[\"1\",\"2\"],fancybox=True)\n",
+    "#df_total.head()\n",
     "\n",
-    "#uebersterb.mean(axis=1).plot.scatter(x=\"Bundesland\")\n",
-    "#df_totalPerWeek = df[df.Jahr<2020].groupby('Bundesland','Jahr').sum()\n",
-    "#df_totalPerWeek=df_totalPerWeek.drop('Jahr', axis=1)\n",
-    "#df_totalPerWeek.head()"
+    "for k, v in df_total.iterrows():\n",
+    "    ax.annotate(laender_short[k], v,\n",
+    "                xytext=(9,-3), textcoords='offset points',\n",
+    "                family='sans-serif', fontsize=11)\n",
+    "ax.set(title='Übersterblichkeit vs Impfquote',\n",
+    "       ylabel='Todesfälle KW1-43 (2021)\\nverglichen mit Durchschnitt 2016-2019',\n",
+    "       xlabel=\"Impfquote (2.-Impfungen, Stand 30.11.2021)\\nDaten von DESTATIS, sowie RKI (Lizenz CC-BY)\")\n",
+    "ax.text(58,1.01,\"Korrelation = %0.3f\"%correlation[\"Übersterblichkeit\"][\"Impfquote\"])"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 7,
-   "id": "c9612c26",
+   "execution_count": null,
+   "id": "277003c9",
    "metadata": {},
    "outputs": [],
-   "source": [
-    "#https://github.com/robert-koch-institut/COVID-19-Impfungen_in_Deutschland"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 5,
-   "id": "9d77bb4a",
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "application/javascript": [
-       "/* Put everything inside the global mpl namespace */\n",
-       "/* global mpl */\n",
-       "window.mpl = {};\n",
-       "\n",
-       "mpl.get_websocket_type = function () {\n",
-       "    if (typeof WebSocket !== 'undefined') {\n",
-       "        return WebSocket;\n",
-       "    } else if (typeof MozWebSocket !== 'undefined') {\n",
-       "        return MozWebSocket;\n",
-       "    } else {\n",
-       "        alert(\n",
-       "            'Your browser does not have WebSocket support. ' +\n",
-       "                'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
-       "                'Firefox 4 and 5 are also supported but you ' +\n",
-       "                'have to enable WebSockets in about:config.'\n",
-       "        );\n",
-       "    }\n",
-       "};\n",
-       "\n",
-       "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
-       "    this.id = figure_id;\n",
-       "\n",
-       "    this.ws = websocket;\n",
-       "\n",
-       "    this.supports_binary = this.ws.binaryType !== undefined;\n",
-       "\n",
-       "    if (!this.supports_binary) {\n",
-       "        var warnings = document.getElementById('mpl-warnings');\n",
-       "        if (warnings) {\n",
-       "            warnings.style.display = 'block';\n",
-       "            warnings.textContent =\n",
-       "                'This browser does not support binary websocket messages. ' +\n",
-       "                'Performance may be slow.';\n",
-       "        }\n",
-       "    }\n",
-       "\n",
-       "    this.imageObj = new Image();\n",
-       "\n",
-       "    this.context = undefined;\n",
-       "    this.message = undefined;\n",
-       "    this.canvas = undefined;\n",
-       "    this.rubberband_canvas = undefined;\n",
-       "    this.rubberband_context = undefined;\n",
-       "    this.format_dropdown = undefined;\n",
-       "\n",
-       "    this.image_mode = 'full';\n",
-       "\n",
-       "    this.root = document.createElement('div');\n",
-       "    this.root.setAttribute('style', 'display: inline-block');\n",
-       "    this._root_extra_style(this.root);\n",
-       "\n",
-       "    parent_element.appendChild(this.root);\n",
-       "\n",
-       "    this._init_header(this);\n",
-       "    this._init_canvas(this);\n",
-       "    this._init_toolbar(this);\n",
-       "\n",
-       "    var fig = this;\n",
-       "\n",
-       "    this.waiting = false;\n",
-       "\n",
-       "    this.ws.onopen = function () {\n",
-       "        fig.send_message('supports_binary', { value: fig.supports_binary });\n",
-       "        fig.send_message('send_image_mode', {});\n",
-       "        if (fig.ratio !== 1) {\n",
-       "            fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n",
-       "        }\n",
-       "        fig.send_message('refresh', {});\n",
-       "    };\n",
-       "\n",
-       "    this.imageObj.onload = function () {\n",
-       "        if (fig.image_mode === 'full') {\n",
-       "            // Full images could contain transparency (where diff images\n",
-       "            // almost always do), so we need to clear the canvas so that\n",
-       "            // there is no ghosting.\n",
-       "            fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
-       "        }\n",
-       "        fig.context.drawImage(fig.imageObj, 0, 0);\n",
-       "    };\n",
-       "\n",
-       "    this.imageObj.onunload = function () {\n",
-       "        fig.ws.close();\n",
-       "    };\n",
-       "\n",
-       "    this.ws.onmessage = this._make_on_message_function(this);\n",
-       "\n",
-       "    this.ondownload = ondownload;\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype._init_header = function () {\n",
-       "    var titlebar = document.createElement('div');\n",
-       "    titlebar.classList =\n",
-       "        'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
-       "    var titletext = document.createElement('div');\n",
-       "    titletext.classList = 'ui-dialog-title';\n",
-       "    titletext.setAttribute(\n",
-       "        'style',\n",
-       "        'width: 100%; text-align: center; padding: 3px;'\n",
-       "    );\n",
-       "    titlebar.appendChild(titletext);\n",
-       "    this.root.appendChild(titlebar);\n",
-       "    this.header = titletext;\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
-       "\n",
-       "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
-       "\n",
-       "mpl.figure.prototype._init_canvas = function () {\n",
-       "    var fig = this;\n",
-       "\n",
-       "    var canvas_div = (this.canvas_div = document.createElement('div'));\n",
-       "    canvas_div.setAttribute(\n",
-       "        'style',\n",
-       "        'border: 1px solid #ddd;' +\n",
-       "            'box-sizing: content-box;' +\n",
-       "            'clear: both;' +\n",
-       "            'min-height: 1px;' +\n",
-       "            'min-width: 1px;' +\n",
-       "            'outline: 0;' +\n",
-       "            'overflow: hidden;' +\n",
-       "            'position: relative;' +\n",
-       "            'resize: both;'\n",
-       "    );\n",
-       "\n",
-       "    function on_keyboard_event_closure(name) {\n",
-       "        return function (event) {\n",
-       "            return fig.key_event(event, name);\n",
-       "        };\n",
-       "    }\n",
-       "\n",
-       "    canvas_div.addEventListener(\n",
-       "        'keydown',\n",
-       "        on_keyboard_event_closure('key_press')\n",
-       "    );\n",
-       "    canvas_div.addEventListener(\n",
-       "        'keyup',\n",
-       "        on_keyboard_event_closure('key_release')\n",
-       "    );\n",
-       "\n",
-       "    this._canvas_extra_style(canvas_div);\n",
-       "    this.root.appendChild(canvas_div);\n",
-       "\n",
-       "    var canvas = (this.canvas = document.createElement('canvas'));\n",
-       "    canvas.classList.add('mpl-canvas');\n",
-       "    canvas.setAttribute('style', 'box-sizing: content-box;');\n",
-       "\n",
-       "    this.context = canvas.getContext('2d');\n",
-       "\n",
-       "    var backingStore =\n",
-       "        this.context.backingStorePixelRatio ||\n",
-       "        this.context.webkitBackingStorePixelRatio ||\n",
-       "        this.context.mozBackingStorePixelRatio ||\n",
-       "        this.context.msBackingStorePixelRatio ||\n",
-       "        this.context.oBackingStorePixelRatio ||\n",
-       "        this.context.backingStorePixelRatio ||\n",
-       "        1;\n",
-       "\n",
-       "    this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
-       "\n",
-       "    var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
-       "        'canvas'\n",
-       "    ));\n",
-       "    rubberband_canvas.setAttribute(\n",
-       "        'style',\n",
-       "        'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
-       "    );\n",
-       "\n",
-       "    // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
-       "    if (this.ResizeObserver === undefined) {\n",
-       "        if (window.ResizeObserver !== undefined) {\n",
-       "            this.ResizeObserver = window.ResizeObserver;\n",
-       "        } else {\n",
-       "            var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
-       "            this.ResizeObserver = obs.ResizeObserver;\n",
-       "        }\n",
-       "    }\n",
-       "\n",
-       "    this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
-       "        var nentries = entries.length;\n",
-       "        for (var i = 0; i < nentries; i++) {\n",
-       "            var entry = entries[i];\n",
-       "            var width, height;\n",
-       "            if (entry.contentBoxSize) {\n",
-       "                if (entry.contentBoxSize instanceof Array) {\n",
-       "                    // Chrome 84 implements new version of spec.\n",
-       "                    width = entry.contentBoxSize[0].inlineSize;\n",
-       "                    height = entry.contentBoxSize[0].blockSize;\n",
-       "                } else {\n",
-       "                    // Firefox implements old version of spec.\n",
-       "                    width = entry.contentBoxSize.inlineSize;\n",
-       "                    height = entry.contentBoxSize.blockSize;\n",
-       "                }\n",
-       "            } else {\n",
-       "                // Chrome <84 implements even older version of spec.\n",
-       "                width = entry.contentRect.width;\n",
-       "                height = entry.contentRect.height;\n",
-       "            }\n",
-       "\n",
-       "            // Keep the size of the canvas and rubber band canvas in sync with\n",
-       "            // the canvas container.\n",
-       "            if (entry.devicePixelContentBoxSize) {\n",
-       "                // Chrome 84 implements new version of spec.\n",
-       "                canvas.setAttribute(\n",
-       "                    'width',\n",
-       "                    entry.devicePixelContentBoxSize[0].inlineSize\n",
-       "                );\n",
-       "                canvas.setAttribute(\n",
-       "                    'height',\n",
-       "                    entry.devicePixelContentBoxSize[0].blockSize\n",
-       "                );\n",
-       "            } else {\n",
-       "                canvas.setAttribute('width', width * fig.ratio);\n",
-       "                canvas.setAttribute('height', height * fig.ratio);\n",
-       "            }\n",
-       "            canvas.setAttribute(\n",
-       "                'style',\n",
-       "                'width: ' + width + 'px; height: ' + height + 'px;'\n",
-       "            );\n",
-       "\n",
-       "            rubberband_canvas.setAttribute('width', width);\n",
-       "            rubberband_canvas.setAttribute('height', height);\n",
-       "\n",
-       "            // And update the size in Python. We ignore the initial 0/0 size\n",
-       "            // that occurs as the element is placed into the DOM, which should\n",
-       "            // otherwise not happen due to the minimum size styling.\n",
-       "            if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
-       "                fig.request_resize(width, height);\n",
-       "            }\n",
-       "        }\n",
-       "    });\n",
-       "    this.resizeObserverInstance.observe(canvas_div);\n",
-       "\n",
-       "    function on_mouse_event_closure(name) {\n",
-       "        return function (event) {\n",
-       "            return fig.mouse_event(event, name);\n",
-       "        };\n",
-       "    }\n",
-       "\n",
-       "    rubberband_canvas.addEventListener(\n",
-       "        'mousedown',\n",
-       "        on_mouse_event_closure('button_press')\n",
-       "    );\n",
-       "    rubberband_canvas.addEventListener(\n",
-       "        'mouseup',\n",
-       "        on_mouse_event_closure('button_release')\n",
-       "    );\n",
-       "    // Throttle sequential mouse events to 1 every 20ms.\n",
-       "    rubberband_canvas.addEventListener(\n",
-       "        'mousemove',\n",
-       "        on_mouse_event_closure('motion_notify')\n",
-       "    );\n",
-       "\n",
-       "    rubberband_canvas.addEventListener(\n",
-       "        'mouseenter',\n",
-       "        on_mouse_event_closure('figure_enter')\n",
-       "    );\n",
-       "    rubberband_canvas.addEventListener(\n",
-       "        'mouseleave',\n",
-       "        on_mouse_event_closure('figure_leave')\n",
-       "    );\n",
-       "\n",
-       "    canvas_div.addEventListener('wheel', function (event) {\n",
-       "        if (event.deltaY < 0) {\n",
-       "            event.step = 1;\n",
-       "        } else {\n",
-       "            event.step = -1;\n",
-       "        }\n",
-       "        on_mouse_event_closure('scroll')(event);\n",
-       "    });\n",
-       "\n",
-       "    canvas_div.appendChild(canvas);\n",
-       "    canvas_div.appendChild(rubberband_canvas);\n",
-       "\n",
-       "    this.rubberband_context = rubberband_canvas.getContext('2d');\n",
-       "    this.rubberband_context.strokeStyle = '#000000';\n",
-       "\n",
-       "    this._resize_canvas = function (width, height, forward) {\n",
-       "        if (forward) {\n",
-       "            canvas_div.style.width = width + 'px';\n",
-       "            canvas_div.style.height = height + 'px';\n",
-       "        }\n",
-       "    };\n",
-       "\n",
-       "    // Disable right mouse context menu.\n",
-       "    this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
-       "        event.preventDefault();\n",
-       "        return false;\n",
-       "    });\n",
-       "\n",
-       "    function set_focus() {\n",
-       "        canvas.focus();\n",
-       "        canvas_div.focus();\n",
-       "    }\n",
-       "\n",
-       "    window.setTimeout(set_focus, 100);\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype._init_toolbar = function () {\n",
-       "    var fig = this;\n",
-       "\n",
-       "    var toolbar = document.createElement('div');\n",
-       "    toolbar.classList = 'mpl-toolbar';\n",
-       "    this.root.appendChild(toolbar);\n",
-       "\n",
-       "    function on_click_closure(name) {\n",
-       "        return function (_event) {\n",
-       "            return fig.toolbar_button_onclick(name);\n",
-       "        };\n",
-       "    }\n",
-       "\n",
-       "    function on_mouseover_closure(tooltip) {\n",
-       "        return function (event) {\n",
-       "            if (!event.currentTarget.disabled) {\n",
-       "                return fig.toolbar_button_onmouseover(tooltip);\n",
-       "            }\n",
-       "        };\n",
-       "    }\n",
-       "\n",
-       "    fig.buttons = {};\n",
-       "    var buttonGroup = document.createElement('div');\n",
-       "    buttonGroup.classList = 'mpl-button-group';\n",
-       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
-       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
-       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
-       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
-       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
-       "\n",
-       "        if (!name) {\n",
-       "            /* Instead of a spacer, we start a new button group. */\n",
-       "            if (buttonGroup.hasChildNodes()) {\n",
-       "                toolbar.appendChild(buttonGroup);\n",
-       "            }\n",
-       "            buttonGroup = document.createElement('div');\n",
-       "            buttonGroup.classList = 'mpl-button-group';\n",
-       "            continue;\n",
-       "        }\n",
-       "\n",
-       "        var button = (fig.buttons[name] = document.createElement('button'));\n",
-       "        button.classList = 'mpl-widget';\n",
-       "        button.setAttribute('role', 'button');\n",
-       "        button.setAttribute('aria-disabled', 'false');\n",
-       "        button.addEventListener('click', on_click_closure(method_name));\n",
-       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
-       "\n",
-       "        var icon_img = document.createElement('img');\n",
-       "        icon_img.src = '_images/' + image + '.png';\n",
-       "        icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
-       "        icon_img.alt = tooltip;\n",
-       "        button.appendChild(icon_img);\n",
-       "\n",
-       "        buttonGroup.appendChild(button);\n",
-       "    }\n",
-       "\n",
-       "    if (buttonGroup.hasChildNodes()) {\n",
-       "        toolbar.appendChild(buttonGroup);\n",
-       "    }\n",
-       "\n",
-       "    var fmt_picker = document.createElement('select');\n",
-       "    fmt_picker.classList = 'mpl-widget';\n",
-       "    toolbar.appendChild(fmt_picker);\n",
-       "    this.format_dropdown = fmt_picker;\n",
-       "\n",
-       "    for (var ind in mpl.extensions) {\n",
-       "        var fmt = mpl.extensions[ind];\n",
-       "        var option = document.createElement('option');\n",
-       "        option.selected = fmt === mpl.default_extension;\n",
-       "        option.innerHTML = fmt;\n",
-       "        fmt_picker.appendChild(option);\n",
-       "    }\n",
-       "\n",
-       "    var status_bar = document.createElement('span');\n",
-       "    status_bar.classList = 'mpl-message';\n",
-       "    toolbar.appendChild(status_bar);\n",
-       "    this.message = status_bar;\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
-       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
-       "    // which will in turn request a refresh of the image.\n",
-       "    this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.send_message = function (type, properties) {\n",
-       "    properties['type'] = type;\n",
-       "    properties['figure_id'] = this.id;\n",
-       "    this.ws.send(JSON.stringify(properties));\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.send_draw_message = function () {\n",
-       "    if (!this.waiting) {\n",
-       "        this.waiting = true;\n",
-       "        this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
-       "    }\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
-       "    var format_dropdown = fig.format_dropdown;\n",
-       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
-       "    fig.ondownload(fig, format);\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
-       "    var size = msg['size'];\n",
-       "    if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
-       "        fig._resize_canvas(size[0], size[1], msg['forward']);\n",
-       "        fig.send_message('refresh', {});\n",
-       "    }\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
-       "    var x0 = msg['x0'] / fig.ratio;\n",
-       "    var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
-       "    var x1 = msg['x1'] / fig.ratio;\n",
-       "    var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
-       "    x0 = Math.floor(x0) + 0.5;\n",
-       "    y0 = Math.floor(y0) + 0.5;\n",
-       "    x1 = Math.floor(x1) + 0.5;\n",
-       "    y1 = Math.floor(y1) + 0.5;\n",
-       "    var min_x = Math.min(x0, x1);\n",
-       "    var min_y = Math.min(y0, y1);\n",
-       "    var width = Math.abs(x1 - x0);\n",
-       "    var height = Math.abs(y1 - y0);\n",
-       "\n",
-       "    fig.rubberband_context.clearRect(\n",
-       "        0,\n",
-       "        0,\n",
-       "        fig.canvas.width / fig.ratio,\n",
-       "        fig.canvas.height / fig.ratio\n",
-       "    );\n",
-       "\n",
-       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
-       "    // Updates the figure title.\n",
-       "    fig.header.textContent = msg['label'];\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
-       "    var cursor = msg['cursor'];\n",
-       "    switch (cursor) {\n",
-       "        case 0:\n",
-       "            cursor = 'pointer';\n",
-       "            break;\n",
-       "        case 1:\n",
-       "            cursor = 'default';\n",
-       "            break;\n",
-       "        case 2:\n",
-       "            cursor = 'crosshair';\n",
-       "            break;\n",
-       "        case 3:\n",
-       "            cursor = 'move';\n",
-       "            break;\n",
-       "    }\n",
-       "    fig.rubberband_canvas.style.cursor = cursor;\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.handle_message = function (fig, msg) {\n",
-       "    fig.message.textContent = msg['message'];\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
-       "    // Request the server to send over a new figure.\n",
-       "    fig.send_draw_message();\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
-       "    fig.image_mode = msg['mode'];\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
-       "    for (var key in msg) {\n",
-       "        if (!(key in fig.buttons)) {\n",
-       "            continue;\n",
-       "        }\n",
-       "        fig.buttons[key].disabled = !msg[key];\n",
-       "        fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
-       "    }\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
-       "    if (msg['mode'] === 'PAN') {\n",
-       "        fig.buttons['Pan'].classList.add('active');\n",
-       "        fig.buttons['Zoom'].classList.remove('active');\n",
-       "    } else if (msg['mode'] === 'ZOOM') {\n",
-       "        fig.buttons['Pan'].classList.remove('active');\n",
-       "        fig.buttons['Zoom'].classList.add('active');\n",
-       "    } else {\n",
-       "        fig.buttons['Pan'].classList.remove('active');\n",
-       "        fig.buttons['Zoom'].classList.remove('active');\n",
-       "    }\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.updated_canvas_event = function () {\n",
-       "    // Called whenever the canvas gets updated.\n",
-       "    this.send_message('ack', {});\n",
-       "};\n",
-       "\n",
-       "// A function to construct a web socket function for onmessage handling.\n",
-       "// Called in the figure constructor.\n",
-       "mpl.figure.prototype._make_on_message_function = function (fig) {\n",
-       "    return function socket_on_message(evt) {\n",
-       "        if (evt.data instanceof Blob) {\n",
-       "            /* FIXME: We get \"Resource interpreted as Image but\n",
-       "             * transferred with MIME type text/plain:\" errors on\n",
-       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
-       "             * to be part of the websocket stream */\n",
-       "            evt.data.type = 'image/png';\n",
-       "\n",
-       "            /* Free the memory for the previous frames */\n",
-       "            if (fig.imageObj.src) {\n",
-       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
-       "                    fig.imageObj.src\n",
-       "                );\n",
-       "            }\n",
-       "\n",
-       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
-       "                evt.data\n",
-       "            );\n",
-       "            fig.updated_canvas_event();\n",
-       "            fig.waiting = false;\n",
-       "            return;\n",
-       "        } else if (\n",
-       "            typeof evt.data === 'string' &&\n",
-       "            evt.data.slice(0, 21) === 'data:image/png;base64'\n",
-       "        ) {\n",
-       "            fig.imageObj.src = evt.data;\n",
-       "            fig.updated_canvas_event();\n",
-       "            fig.waiting = false;\n",
-       "            return;\n",
-       "        }\n",
-       "\n",
-       "        var msg = JSON.parse(evt.data);\n",
-       "        var msg_type = msg['type'];\n",
-       "\n",
-       "        // Call the  \"handle_{type}\" callback, which takes\n",
-       "        // the figure and JSON message as its only arguments.\n",
-       "        try {\n",
-       "            var callback = fig['handle_' + msg_type];\n",
-       "        } catch (e) {\n",
-       "            console.log(\n",
-       "                \"No handler for the '\" + msg_type + \"' message type: \",\n",
-       "                msg\n",
-       "            );\n",
-       "            return;\n",
-       "        }\n",
-       "\n",
-       "        if (callback) {\n",
-       "            try {\n",
-       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
-       "                callback(fig, msg);\n",
-       "            } catch (e) {\n",
-       "                console.log(\n",
-       "                    \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
-       "                    e,\n",
-       "                    e.stack,\n",
-       "                    msg\n",
-       "                );\n",
-       "            }\n",
-       "        }\n",
-       "    };\n",
-       "};\n",
-       "\n",
-       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
-       "mpl.findpos = function (e) {\n",
-       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
-       "    var targ;\n",
-       "    if (!e) {\n",
-       "        e = window.event;\n",
-       "    }\n",
-       "    if (e.target) {\n",
-       "        targ = e.target;\n",
-       "    } else if (e.srcElement) {\n",
-       "        targ = e.srcElement;\n",
-       "    }\n",
-       "    if (targ.nodeType === 3) {\n",
-       "        // defeat Safari bug\n",
-       "        targ = targ.parentNode;\n",
-       "    }\n",
-       "\n",
-       "    // pageX,Y are the mouse positions relative to the document\n",
-       "    var boundingRect = targ.getBoundingClientRect();\n",
-       "    var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
-       "    var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
-       "\n",
-       "    return { x: x, y: y };\n",
-       "};\n",
-       "\n",
-       "/*\n",
-       " * return a copy of an object with only non-object keys\n",
-       " * we need this to avoid circular references\n",
-       " * http://stackoverflow.com/a/24161582/3208463\n",
-       " */\n",
-       "function simpleKeys(original) {\n",
-       "    return Object.keys(original).reduce(function (obj, key) {\n",
-       "        if (typeof original[key] !== 'object') {\n",
-       "            obj[key] = original[key];\n",
-       "        }\n",
-       "        return obj;\n",
-       "    }, {});\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype.mouse_event = function (event, name) {\n",
-       "    var canvas_pos = mpl.findpos(event);\n",
-       "\n",
-       "    if (name === 'button_press') {\n",
-       "        this.canvas.focus();\n",
-       "        this.canvas_div.focus();\n",
-       "    }\n",
-       "\n",
-       "    var x = canvas_pos.x * this.ratio;\n",
-       "    var y = canvas_pos.y * this.ratio;\n",
-       "\n",
-       "    this.send_message(name, {\n",
-       "        x: x,\n",
-       "        y: y,\n",
-       "        button: event.button,\n",
-       "        step: event.step,\n",
-       "        guiEvent: simpleKeys(event),\n",
-       "    });\n",
-       "\n",
-       "    /* This prevents the web browser from automatically changing to\n",
-       "     * the text insertion cursor when the button is pressed.  We want\n",
-       "     * to control all of the cursor setting manually through the\n",
-       "     * 'cursor' event from matplotlib */\n",
-       "    event.preventDefault();\n",
-       "    return false;\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
-       "    // Handle any extra behaviour associated with a key event\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.key_event = function (event, name) {\n",
-       "    // Prevent repeat events\n",
-       "    if (name === 'key_press') {\n",
-       "        if (event.which === this._key) {\n",
-       "            return;\n",
-       "        } else {\n",
-       "            this._key = event.which;\n",
-       "        }\n",
-       "    }\n",
-       "    if (name === 'key_release') {\n",
-       "        this._key = null;\n",
-       "    }\n",
-       "\n",
-       "    var value = '';\n",
-       "    if (event.ctrlKey && event.which !== 17) {\n",
-       "        value += 'ctrl+';\n",
-       "    }\n",
-       "    if (event.altKey && event.which !== 18) {\n",
-       "        value += 'alt+';\n",
-       "    }\n",
-       "    if (event.shiftKey && event.which !== 16) {\n",
-       "        value += 'shift+';\n",
-       "    }\n",
-       "\n",
-       "    value += 'k';\n",
-       "    value += event.which.toString();\n",
-       "\n",
-       "    this._key_event_extra(event, name);\n",
-       "\n",
-       "    this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
-       "    return false;\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
-       "    if (name === 'download') {\n",
-       "        this.handle_save(this, null);\n",
-       "    } else {\n",
-       "        this.send_message('toolbar_button', { name: name });\n",
-       "    }\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
-       "    this.message.textContent = tooltip;\n",
-       "};\n",
-       "\n",
-       "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
-       "// prettier-ignore\n",
-       "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
-       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
-       "\n",
-       "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
-       "\n",
-       "mpl.default_extension = \"png\";/* global mpl */\n",
-       "\n",
-       "var comm_websocket_adapter = function (comm) {\n",
-       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
-       "    // object with the appropriate methods. Currently this is a non binary\n",
-       "    // socket, so there is still some room for performance tuning.\n",
-       "    var ws = {};\n",
-       "\n",
-       "    ws.close = function () {\n",
-       "        comm.close();\n",
-       "    };\n",
-       "    ws.send = function (m) {\n",
-       "        //console.log('sending', m);\n",
-       "        comm.send(m);\n",
-       "    };\n",
-       "    // Register the callback with on_msg.\n",
-       "    comm.on_msg(function (msg) {\n",
-       "        //console.log('receiving', msg['content']['data'], msg);\n",
-       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
-       "        ws.onmessage(msg['content']['data']);\n",
-       "    });\n",
-       "    return ws;\n",
-       "};\n",
-       "\n",
-       "mpl.mpl_figure_comm = function (comm, msg) {\n",
-       "    // This is the function which gets called when the mpl process\n",
-       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
-       "\n",
-       "    var id = msg.content.data.id;\n",
-       "    // Get hold of the div created by the display call when the Comm\n",
-       "    // socket was opened in Python.\n",
-       "    var element = document.getElementById(id);\n",
-       "    var ws_proxy = comm_websocket_adapter(comm);\n",
-       "\n",
-       "    function ondownload(figure, _format) {\n",
-       "        window.open(figure.canvas.toDataURL());\n",
-       "    }\n",
-       "\n",
-       "    var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
-       "\n",
-       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
-       "    // web socket which is closed, not our websocket->open comm proxy.\n",
-       "    ws_proxy.onopen();\n",
-       "\n",
-       "    fig.parent_element = element;\n",
-       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
-       "    if (!fig.cell_info) {\n",
-       "        console.error('Failed to find cell for figure', id, fig);\n",
-       "        return;\n",
-       "    }\n",
-       "    fig.cell_info[0].output_area.element.on(\n",
-       "        'cleared',\n",
-       "        { fig: fig },\n",
-       "        fig._remove_fig_handler\n",
-       "    );\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.handle_close = function (fig, msg) {\n",
-       "    var width = fig.canvas.width / fig.ratio;\n",
-       "    fig.cell_info[0].output_area.element.off(\n",
-       "        'cleared',\n",
-       "        fig._remove_fig_handler\n",
-       "    );\n",
-       "    fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
-       "\n",
-       "    // Update the output cell to use the data from the current canvas.\n",
-       "    fig.push_to_output();\n",
-       "    var dataURL = fig.canvas.toDataURL();\n",
-       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
-       "    // the notebook keyboard shortcuts fail.\n",
-       "    IPython.keyboard_manager.enable();\n",
-       "    fig.parent_element.innerHTML =\n",
-       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
-       "    fig.close_ws(fig, msg);\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.close_ws = function (fig, msg) {\n",
-       "    fig.send_message('closing', msg);\n",
-       "    // fig.ws.close()\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
-       "    // Turn the data on the canvas into data in the output cell.\n",
-       "    var width = this.canvas.width / this.ratio;\n",
-       "    var dataURL = this.canvas.toDataURL();\n",
-       "    this.cell_info[1]['text/html'] =\n",
-       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.updated_canvas_event = function () {\n",
-       "    // Tell IPython that the notebook contents must change.\n",
-       "    IPython.notebook.set_dirty(true);\n",
-       "    this.send_message('ack', {});\n",
-       "    var fig = this;\n",
-       "    // Wait a second, then push the new image to the DOM so\n",
-       "    // that it is saved nicely (might be nice to debounce this).\n",
-       "    setTimeout(function () {\n",
-       "        fig.push_to_output();\n",
-       "    }, 1000);\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype._init_toolbar = function () {\n",
-       "    var fig = this;\n",
-       "\n",
-       "    var toolbar = document.createElement('div');\n",
-       "    toolbar.classList = 'btn-toolbar';\n",
-       "    this.root.appendChild(toolbar);\n",
-       "\n",
-       "    function on_click_closure(name) {\n",
-       "        return function (_event) {\n",
-       "            return fig.toolbar_button_onclick(name);\n",
-       "        };\n",
-       "    }\n",
-       "\n",
-       "    function on_mouseover_closure(tooltip) {\n",
-       "        return function (event) {\n",
-       "            if (!event.currentTarget.disabled) {\n",
-       "                return fig.toolbar_button_onmouseover(tooltip);\n",
-       "            }\n",
-       "        };\n",
-       "    }\n",
-       "\n",
-       "    fig.buttons = {};\n",
-       "    var buttonGroup = document.createElement('div');\n",
-       "    buttonGroup.classList = 'btn-group';\n",
-       "    var button;\n",
-       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
-       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
-       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
-       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
-       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
-       "\n",
-       "        if (!name) {\n",
-       "            /* Instead of a spacer, we start a new button group. */\n",
-       "            if (buttonGroup.hasChildNodes()) {\n",
-       "                toolbar.appendChild(buttonGroup);\n",
-       "            }\n",
-       "            buttonGroup = document.createElement('div');\n",
-       "            buttonGroup.classList = 'btn-group';\n",
-       "            continue;\n",
-       "        }\n",
-       "\n",
-       "        button = fig.buttons[name] = document.createElement('button');\n",
-       "        button.classList = 'btn btn-default';\n",
-       "        button.href = '#';\n",
-       "        button.title = name;\n",
-       "        button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
-       "        button.addEventListener('click', on_click_closure(method_name));\n",
-       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
-       "        buttonGroup.appendChild(button);\n",
-       "    }\n",
-       "\n",
-       "    if (buttonGroup.hasChildNodes()) {\n",
-       "        toolbar.appendChild(buttonGroup);\n",
-       "    }\n",
-       "\n",
-       "    // Add the status bar.\n",
-       "    var status_bar = document.createElement('span');\n",
-       "    status_bar.classList = 'mpl-message pull-right';\n",
-       "    toolbar.appendChild(status_bar);\n",
-       "    this.message = status_bar;\n",
-       "\n",
-       "    // Add the close button to the window.\n",
-       "    var buttongrp = document.createElement('div');\n",
-       "    buttongrp.classList = 'btn-group inline pull-right';\n",
-       "    button = document.createElement('button');\n",
-       "    button.classList = 'btn btn-mini btn-primary';\n",
-       "    button.href = '#';\n",
-       "    button.title = 'Stop Interaction';\n",
-       "    button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
-       "    button.addEventListener('click', function (_evt) {\n",
-       "        fig.handle_close(fig, {});\n",
-       "    });\n",
-       "    button.addEventListener(\n",
-       "        'mouseover',\n",
-       "        on_mouseover_closure('Stop Interaction')\n",
-       "    );\n",
-       "    buttongrp.appendChild(button);\n",
-       "    var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
-       "    titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype._remove_fig_handler = function (event) {\n",
-       "    var fig = event.data.fig;\n",
-       "    if (event.target !== this) {\n",
-       "        // Ignore bubbled events from children.\n",
-       "        return;\n",
-       "    }\n",
-       "    fig.close_ws(fig, {});\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype._root_extra_style = function (el) {\n",
-       "    el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype._canvas_extra_style = function (el) {\n",
-       "    // this is important to make the div 'focusable\n",
-       "    el.setAttribute('tabindex', 0);\n",
-       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
-       "    // off when our div gets focus\n",
-       "\n",
-       "    // location in version 3\n",
-       "    if (IPython.notebook.keyboard_manager) {\n",
-       "        IPython.notebook.keyboard_manager.register_events(el);\n",
-       "    } else {\n",
-       "        // location in version 2\n",
-       "        IPython.keyboard_manager.register_events(el);\n",
-       "    }\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
-       "    var manager = IPython.notebook.keyboard_manager;\n",
-       "    if (!manager) {\n",
-       "        manager = IPython.keyboard_manager;\n",
-       "    }\n",
-       "\n",
-       "    // Check for shift+enter\n",
-       "    if (event.shiftKey && event.which === 13) {\n",
-       "        this.canvas_div.blur();\n",
-       "        // select the cell after this one\n",
-       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
-       "        IPython.notebook.select(index + 1);\n",
-       "    }\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
-       "    fig.ondownload(fig, null);\n",
-       "};\n",
-       "\n",
-       "mpl.find_output_cell = function (html_output) {\n",
-       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
-       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
-       "    // IPython event is triggered only after the cells have been serialised, which for\n",
-       "    // our purposes (turning an active figure into a static one), is too late.\n",
-       "    var cells = IPython.notebook.get_cells();\n",
-       "    var ncells = cells.length;\n",
-       "    for (var i = 0; i < ncells; i++) {\n",
-       "        var cell = cells[i];\n",
-       "        if (cell.cell_type === 'code') {\n",
-       "            for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
-       "                var data = cell.output_area.outputs[j];\n",
-       "                if (data.data) {\n",
-       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
-       "                    data = data.data;\n",
-       "                }\n",
-       "                if (data['text/html'] === html_output) {\n",
-       "                    return [cell, data, j];\n",
-       "                }\n",
-       "            }\n",
-       "        }\n",
-       "    }\n",
-       "};\n",
-       "\n",
-       "// Register the function which deals with the matplotlib target/channel.\n",
-       "// The kernel may be null if the page has been refreshed.\n",
-       "if (IPython.notebook.kernel !== null) {\n",
-       "    IPython.notebook.kernel.comm_manager.register_target(\n",
-       "        'matplotlib',\n",
-       "        mpl.mpl_figure_comm\n",
-       "    );\n",
-       "}\n"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Javascript object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "<img src=\"\" width=\"640\">"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "df_impf = pd.read_csv('Impfquoten.csv')\n",
-    "df_impf = df_impf[df_impf.Bundesland!=\"Deutschland\"].drop('Datum', axis=1) # Drop column 'Datum', row \"Deutschland\"\n",
-    "df_impf = df_impf.set_index('Bundesland')\n",
-    "#df_impf.columns\n",
-    "df_impf.sort_values(by='Impfquote').plot(style='.')\n",
-    "#Merge both dataset into a combined one\n",
-    "df_total = pd.merge(df_impf,uebersterb, left_index=True, right_index=True)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 8,
-   "id": "8e99105a",
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "application/javascript": [
-       "/* Put everything inside the global mpl namespace */\n",
-       "/* global mpl */\n",
-       "window.mpl = {};\n",
-       "\n",
-       "mpl.get_websocket_type = function () {\n",
-       "    if (typeof WebSocket !== 'undefined') {\n",
-       "        return WebSocket;\n",
-       "    } else if (typeof MozWebSocket !== 'undefined') {\n",
-       "        return MozWebSocket;\n",
-       "    } else {\n",
-       "        alert(\n",
-       "            'Your browser does not have WebSocket support. ' +\n",
-       "                'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
-       "                'Firefox 4 and 5 are also supported but you ' +\n",
-       "                'have to enable WebSockets in about:config.'\n",
-       "        );\n",
-       "    }\n",
-       "};\n",
-       "\n",
-       "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
-       "    this.id = figure_id;\n",
-       "\n",
-       "    this.ws = websocket;\n",
-       "\n",
-       "    this.supports_binary = this.ws.binaryType !== undefined;\n",
-       "\n",
-       "    if (!this.supports_binary) {\n",
-       "        var warnings = document.getElementById('mpl-warnings');\n",
-       "        if (warnings) {\n",
-       "            warnings.style.display = 'block';\n",
-       "            warnings.textContent =\n",
-       "                'This browser does not support binary websocket messages. ' +\n",
-       "                'Performance may be slow.';\n",
-       "        }\n",
-       "    }\n",
-       "\n",
-       "    this.imageObj = new Image();\n",
-       "\n",
-       "    this.context = undefined;\n",
-       "    this.message = undefined;\n",
-       "    this.canvas = undefined;\n",
-       "    this.rubberband_canvas = undefined;\n",
-       "    this.rubberband_context = undefined;\n",
-       "    this.format_dropdown = undefined;\n",
-       "\n",
-       "    this.image_mode = 'full';\n",
-       "\n",
-       "    this.root = document.createElement('div');\n",
-       "    this.root.setAttribute('style', 'display: inline-block');\n",
-       "    this._root_extra_style(this.root);\n",
-       "\n",
-       "    parent_element.appendChild(this.root);\n",
-       "\n",
-       "    this._init_header(this);\n",
-       "    this._init_canvas(this);\n",
-       "    this._init_toolbar(this);\n",
-       "\n",
-       "    var fig = this;\n",
-       "\n",
-       "    this.waiting = false;\n",
-       "\n",
-       "    this.ws.onopen = function () {\n",
-       "        fig.send_message('supports_binary', { value: fig.supports_binary });\n",
-       "        fig.send_message('send_image_mode', {});\n",
-       "        if (fig.ratio !== 1) {\n",
-       "            fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n",
-       "        }\n",
-       "        fig.send_message('refresh', {});\n",
-       "    };\n",
-       "\n",
-       "    this.imageObj.onload = function () {\n",
-       "        if (fig.image_mode === 'full') {\n",
-       "            // Full images could contain transparency (where diff images\n",
-       "            // almost always do), so we need to clear the canvas so that\n",
-       "            // there is no ghosting.\n",
-       "            fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
-       "        }\n",
-       "        fig.context.drawImage(fig.imageObj, 0, 0);\n",
-       "    };\n",
-       "\n",
-       "    this.imageObj.onunload = function () {\n",
-       "        fig.ws.close();\n",
-       "    };\n",
-       "\n",
-       "    this.ws.onmessage = this._make_on_message_function(this);\n",
-       "\n",
-       "    this.ondownload = ondownload;\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype._init_header = function () {\n",
-       "    var titlebar = document.createElement('div');\n",
-       "    titlebar.classList =\n",
-       "        'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
-       "    var titletext = document.createElement('div');\n",
-       "    titletext.classList = 'ui-dialog-title';\n",
-       "    titletext.setAttribute(\n",
-       "        'style',\n",
-       "        'width: 100%; text-align: center; padding: 3px;'\n",
-       "    );\n",
-       "    titlebar.appendChild(titletext);\n",
-       "    this.root.appendChild(titlebar);\n",
-       "    this.header = titletext;\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
-       "\n",
-       "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
-       "\n",
-       "mpl.figure.prototype._init_canvas = function () {\n",
-       "    var fig = this;\n",
-       "\n",
-       "    var canvas_div = (this.canvas_div = document.createElement('div'));\n",
-       "    canvas_div.setAttribute(\n",
-       "        'style',\n",
-       "        'border: 1px solid #ddd;' +\n",
-       "            'box-sizing: content-box;' +\n",
-       "            'clear: both;' +\n",
-       "            'min-height: 1px;' +\n",
-       "            'min-width: 1px;' +\n",
-       "            'outline: 0;' +\n",
-       "            'overflow: hidden;' +\n",
-       "            'position: relative;' +\n",
-       "            'resize: both;'\n",
-       "    );\n",
-       "\n",
-       "    function on_keyboard_event_closure(name) {\n",
-       "        return function (event) {\n",
-       "            return fig.key_event(event, name);\n",
-       "        };\n",
-       "    }\n",
-       "\n",
-       "    canvas_div.addEventListener(\n",
-       "        'keydown',\n",
-       "        on_keyboard_event_closure('key_press')\n",
-       "    );\n",
-       "    canvas_div.addEventListener(\n",
-       "        'keyup',\n",
-       "        on_keyboard_event_closure('key_release')\n",
-       "    );\n",
-       "\n",
-       "    this._canvas_extra_style(canvas_div);\n",
-       "    this.root.appendChild(canvas_div);\n",
-       "\n",
-       "    var canvas = (this.canvas = document.createElement('canvas'));\n",
-       "    canvas.classList.add('mpl-canvas');\n",
-       "    canvas.setAttribute('style', 'box-sizing: content-box;');\n",
-       "\n",
-       "    this.context = canvas.getContext('2d');\n",
-       "\n",
-       "    var backingStore =\n",
-       "        this.context.backingStorePixelRatio ||\n",
-       "        this.context.webkitBackingStorePixelRatio ||\n",
-       "        this.context.mozBackingStorePixelRatio ||\n",
-       "        this.context.msBackingStorePixelRatio ||\n",
-       "        this.context.oBackingStorePixelRatio ||\n",
-       "        this.context.backingStorePixelRatio ||\n",
-       "        1;\n",
-       "\n",
-       "    this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
-       "\n",
-       "    var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
-       "        'canvas'\n",
-       "    ));\n",
-       "    rubberband_canvas.setAttribute(\n",
-       "        'style',\n",
-       "        'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
-       "    );\n",
-       "\n",
-       "    // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
-       "    if (this.ResizeObserver === undefined) {\n",
-       "        if (window.ResizeObserver !== undefined) {\n",
-       "            this.ResizeObserver = window.ResizeObserver;\n",
-       "        } else {\n",
-       "            var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
-       "            this.ResizeObserver = obs.ResizeObserver;\n",
-       "        }\n",
-       "    }\n",
-       "\n",
-       "    this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
-       "        var nentries = entries.length;\n",
-       "        for (var i = 0; i < nentries; i++) {\n",
-       "            var entry = entries[i];\n",
-       "            var width, height;\n",
-       "            if (entry.contentBoxSize) {\n",
-       "                if (entry.contentBoxSize instanceof Array) {\n",
-       "                    // Chrome 84 implements new version of spec.\n",
-       "                    width = entry.contentBoxSize[0].inlineSize;\n",
-       "                    height = entry.contentBoxSize[0].blockSize;\n",
-       "                } else {\n",
-       "                    // Firefox implements old version of spec.\n",
-       "                    width = entry.contentBoxSize.inlineSize;\n",
-       "                    height = entry.contentBoxSize.blockSize;\n",
-       "                }\n",
-       "            } else {\n",
-       "                // Chrome <84 implements even older version of spec.\n",
-       "                width = entry.contentRect.width;\n",
-       "                height = entry.contentRect.height;\n",
-       "            }\n",
-       "\n",
-       "            // Keep the size of the canvas and rubber band canvas in sync with\n",
-       "            // the canvas container.\n",
-       "            if (entry.devicePixelContentBoxSize) {\n",
-       "                // Chrome 84 implements new version of spec.\n",
-       "                canvas.setAttribute(\n",
-       "                    'width',\n",
-       "                    entry.devicePixelContentBoxSize[0].inlineSize\n",
-       "                );\n",
-       "                canvas.setAttribute(\n",
-       "                    'height',\n",
-       "                    entry.devicePixelContentBoxSize[0].blockSize\n",
-       "                );\n",
-       "            } else {\n",
-       "                canvas.setAttribute('width', width * fig.ratio);\n",
-       "                canvas.setAttribute('height', height * fig.ratio);\n",
-       "            }\n",
-       "            canvas.setAttribute(\n",
-       "                'style',\n",
-       "                'width: ' + width + 'px; height: ' + height + 'px;'\n",
-       "            );\n",
-       "\n",
-       "            rubberband_canvas.setAttribute('width', width);\n",
-       "            rubberband_canvas.setAttribute('height', height);\n",
-       "\n",
-       "            // And update the size in Python. We ignore the initial 0/0 size\n",
-       "            // that occurs as the element is placed into the DOM, which should\n",
-       "            // otherwise not happen due to the minimum size styling.\n",
-       "            if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
-       "                fig.request_resize(width, height);\n",
-       "            }\n",
-       "        }\n",
-       "    });\n",
-       "    this.resizeObserverInstance.observe(canvas_div);\n",
-       "\n",
-       "    function on_mouse_event_closure(name) {\n",
-       "        return function (event) {\n",
-       "            return fig.mouse_event(event, name);\n",
-       "        };\n",
-       "    }\n",
-       "\n",
-       "    rubberband_canvas.addEventListener(\n",
-       "        'mousedown',\n",
-       "        on_mouse_event_closure('button_press')\n",
-       "    );\n",
-       "    rubberband_canvas.addEventListener(\n",
-       "        'mouseup',\n",
-       "        on_mouse_event_closure('button_release')\n",
-       "    );\n",
-       "    // Throttle sequential mouse events to 1 every 20ms.\n",
-       "    rubberband_canvas.addEventListener(\n",
-       "        'mousemove',\n",
-       "        on_mouse_event_closure('motion_notify')\n",
-       "    );\n",
-       "\n",
-       "    rubberband_canvas.addEventListener(\n",
-       "        'mouseenter',\n",
-       "        on_mouse_event_closure('figure_enter')\n",
-       "    );\n",
-       "    rubberband_canvas.addEventListener(\n",
-       "        'mouseleave',\n",
-       "        on_mouse_event_closure('figure_leave')\n",
-       "    );\n",
-       "\n",
-       "    canvas_div.addEventListener('wheel', function (event) {\n",
-       "        if (event.deltaY < 0) {\n",
-       "            event.step = 1;\n",
-       "        } else {\n",
-       "            event.step = -1;\n",
-       "        }\n",
-       "        on_mouse_event_closure('scroll')(event);\n",
-       "    });\n",
-       "\n",
-       "    canvas_div.appendChild(canvas);\n",
-       "    canvas_div.appendChild(rubberband_canvas);\n",
-       "\n",
-       "    this.rubberband_context = rubberband_canvas.getContext('2d');\n",
-       "    this.rubberband_context.strokeStyle = '#000000';\n",
-       "\n",
-       "    this._resize_canvas = function (width, height, forward) {\n",
-       "        if (forward) {\n",
-       "            canvas_div.style.width = width + 'px';\n",
-       "            canvas_div.style.height = height + 'px';\n",
-       "        }\n",
-       "    };\n",
-       "\n",
-       "    // Disable right mouse context menu.\n",
-       "    this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
-       "        event.preventDefault();\n",
-       "        return false;\n",
-       "    });\n",
-       "\n",
-       "    function set_focus() {\n",
-       "        canvas.focus();\n",
-       "        canvas_div.focus();\n",
-       "    }\n",
-       "\n",
-       "    window.setTimeout(set_focus, 100);\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype._init_toolbar = function () {\n",
-       "    var fig = this;\n",
-       "\n",
-       "    var toolbar = document.createElement('div');\n",
-       "    toolbar.classList = 'mpl-toolbar';\n",
-       "    this.root.appendChild(toolbar);\n",
-       "\n",
-       "    function on_click_closure(name) {\n",
-       "        return function (_event) {\n",
-       "            return fig.toolbar_button_onclick(name);\n",
-       "        };\n",
-       "    }\n",
-       "\n",
-       "    function on_mouseover_closure(tooltip) {\n",
-       "        return function (event) {\n",
-       "            if (!event.currentTarget.disabled) {\n",
-       "                return fig.toolbar_button_onmouseover(tooltip);\n",
-       "            }\n",
-       "        };\n",
-       "    }\n",
-       "\n",
-       "    fig.buttons = {};\n",
-       "    var buttonGroup = document.createElement('div');\n",
-       "    buttonGroup.classList = 'mpl-button-group';\n",
-       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
-       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
-       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
-       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
-       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
-       "\n",
-       "        if (!name) {\n",
-       "            /* Instead of a spacer, we start a new button group. */\n",
-       "            if (buttonGroup.hasChildNodes()) {\n",
-       "                toolbar.appendChild(buttonGroup);\n",
-       "            }\n",
-       "            buttonGroup = document.createElement('div');\n",
-       "            buttonGroup.classList = 'mpl-button-group';\n",
-       "            continue;\n",
-       "        }\n",
-       "\n",
-       "        var button = (fig.buttons[name] = document.createElement('button'));\n",
-       "        button.classList = 'mpl-widget';\n",
-       "        button.setAttribute('role', 'button');\n",
-       "        button.setAttribute('aria-disabled', 'false');\n",
-       "        button.addEventListener('click', on_click_closure(method_name));\n",
-       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
-       "\n",
-       "        var icon_img = document.createElement('img');\n",
-       "        icon_img.src = '_images/' + image + '.png';\n",
-       "        icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
-       "        icon_img.alt = tooltip;\n",
-       "        button.appendChild(icon_img);\n",
-       "\n",
-       "        buttonGroup.appendChild(button);\n",
-       "    }\n",
-       "\n",
-       "    if (buttonGroup.hasChildNodes()) {\n",
-       "        toolbar.appendChild(buttonGroup);\n",
-       "    }\n",
-       "\n",
-       "    var fmt_picker = document.createElement('select');\n",
-       "    fmt_picker.classList = 'mpl-widget';\n",
-       "    toolbar.appendChild(fmt_picker);\n",
-       "    this.format_dropdown = fmt_picker;\n",
-       "\n",
-       "    for (var ind in mpl.extensions) {\n",
-       "        var fmt = mpl.extensions[ind];\n",
-       "        var option = document.createElement('option');\n",
-       "        option.selected = fmt === mpl.default_extension;\n",
-       "        option.innerHTML = fmt;\n",
-       "        fmt_picker.appendChild(option);\n",
-       "    }\n",
-       "\n",
-       "    var status_bar = document.createElement('span');\n",
-       "    status_bar.classList = 'mpl-message';\n",
-       "    toolbar.appendChild(status_bar);\n",
-       "    this.message = status_bar;\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
-       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
-       "    // which will in turn request a refresh of the image.\n",
-       "    this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.send_message = function (type, properties) {\n",
-       "    properties['type'] = type;\n",
-       "    properties['figure_id'] = this.id;\n",
-       "    this.ws.send(JSON.stringify(properties));\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.send_draw_message = function () {\n",
-       "    if (!this.waiting) {\n",
-       "        this.waiting = true;\n",
-       "        this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
-       "    }\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
-       "    var format_dropdown = fig.format_dropdown;\n",
-       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
-       "    fig.ondownload(fig, format);\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
-       "    var size = msg['size'];\n",
-       "    if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
-       "        fig._resize_canvas(size[0], size[1], msg['forward']);\n",
-       "        fig.send_message('refresh', {});\n",
-       "    }\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
-       "    var x0 = msg['x0'] / fig.ratio;\n",
-       "    var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
-       "    var x1 = msg['x1'] / fig.ratio;\n",
-       "    var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
-       "    x0 = Math.floor(x0) + 0.5;\n",
-       "    y0 = Math.floor(y0) + 0.5;\n",
-       "    x1 = Math.floor(x1) + 0.5;\n",
-       "    y1 = Math.floor(y1) + 0.5;\n",
-       "    var min_x = Math.min(x0, x1);\n",
-       "    var min_y = Math.min(y0, y1);\n",
-       "    var width = Math.abs(x1 - x0);\n",
-       "    var height = Math.abs(y1 - y0);\n",
-       "\n",
-       "    fig.rubberband_context.clearRect(\n",
-       "        0,\n",
-       "        0,\n",
-       "        fig.canvas.width / fig.ratio,\n",
-       "        fig.canvas.height / fig.ratio\n",
-       "    );\n",
-       "\n",
-       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
-       "    // Updates the figure title.\n",
-       "    fig.header.textContent = msg['label'];\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
-       "    var cursor = msg['cursor'];\n",
-       "    switch (cursor) {\n",
-       "        case 0:\n",
-       "            cursor = 'pointer';\n",
-       "            break;\n",
-       "        case 1:\n",
-       "            cursor = 'default';\n",
-       "            break;\n",
-       "        case 2:\n",
-       "            cursor = 'crosshair';\n",
-       "            break;\n",
-       "        case 3:\n",
-       "            cursor = 'move';\n",
-       "            break;\n",
-       "    }\n",
-       "    fig.rubberband_canvas.style.cursor = cursor;\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.handle_message = function (fig, msg) {\n",
-       "    fig.message.textContent = msg['message'];\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
-       "    // Request the server to send over a new figure.\n",
-       "    fig.send_draw_message();\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
-       "    fig.image_mode = msg['mode'];\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
-       "    for (var key in msg) {\n",
-       "        if (!(key in fig.buttons)) {\n",
-       "            continue;\n",
-       "        }\n",
-       "        fig.buttons[key].disabled = !msg[key];\n",
-       "        fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
-       "    }\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
-       "    if (msg['mode'] === 'PAN') {\n",
-       "        fig.buttons['Pan'].classList.add('active');\n",
-       "        fig.buttons['Zoom'].classList.remove('active');\n",
-       "    } else if (msg['mode'] === 'ZOOM') {\n",
-       "        fig.buttons['Pan'].classList.remove('active');\n",
-       "        fig.buttons['Zoom'].classList.add('active');\n",
-       "    } else {\n",
-       "        fig.buttons['Pan'].classList.remove('active');\n",
-       "        fig.buttons['Zoom'].classList.remove('active');\n",
-       "    }\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.updated_canvas_event = function () {\n",
-       "    // Called whenever the canvas gets updated.\n",
-       "    this.send_message('ack', {});\n",
-       "};\n",
-       "\n",
-       "// A function to construct a web socket function for onmessage handling.\n",
-       "// Called in the figure constructor.\n",
-       "mpl.figure.prototype._make_on_message_function = function (fig) {\n",
-       "    return function socket_on_message(evt) {\n",
-       "        if (evt.data instanceof Blob) {\n",
-       "            /* FIXME: We get \"Resource interpreted as Image but\n",
-       "             * transferred with MIME type text/plain:\" errors on\n",
-       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
-       "             * to be part of the websocket stream */\n",
-       "            evt.data.type = 'image/png';\n",
-       "\n",
-       "            /* Free the memory for the previous frames */\n",
-       "            if (fig.imageObj.src) {\n",
-       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
-       "                    fig.imageObj.src\n",
-       "                );\n",
-       "            }\n",
-       "\n",
-       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
-       "                evt.data\n",
-       "            );\n",
-       "            fig.updated_canvas_event();\n",
-       "            fig.waiting = false;\n",
-       "            return;\n",
-       "        } else if (\n",
-       "            typeof evt.data === 'string' &&\n",
-       "            evt.data.slice(0, 21) === 'data:image/png;base64'\n",
-       "        ) {\n",
-       "            fig.imageObj.src = evt.data;\n",
-       "            fig.updated_canvas_event();\n",
-       "            fig.waiting = false;\n",
-       "            return;\n",
-       "        }\n",
-       "\n",
-       "        var msg = JSON.parse(evt.data);\n",
-       "        var msg_type = msg['type'];\n",
-       "\n",
-       "        // Call the  \"handle_{type}\" callback, which takes\n",
-       "        // the figure and JSON message as its only arguments.\n",
-       "        try {\n",
-       "            var callback = fig['handle_' + msg_type];\n",
-       "        } catch (e) {\n",
-       "            console.log(\n",
-       "                \"No handler for the '\" + msg_type + \"' message type: \",\n",
-       "                msg\n",
-       "            );\n",
-       "            return;\n",
-       "        }\n",
-       "\n",
-       "        if (callback) {\n",
-       "            try {\n",
-       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
-       "                callback(fig, msg);\n",
-       "            } catch (e) {\n",
-       "                console.log(\n",
-       "                    \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
-       "                    e,\n",
-       "                    e.stack,\n",
-       "                    msg\n",
-       "                );\n",
-       "            }\n",
-       "        }\n",
-       "    };\n",
-       "};\n",
-       "\n",
-       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
-       "mpl.findpos = function (e) {\n",
-       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
-       "    var targ;\n",
-       "    if (!e) {\n",
-       "        e = window.event;\n",
-       "    }\n",
-       "    if (e.target) {\n",
-       "        targ = e.target;\n",
-       "    } else if (e.srcElement) {\n",
-       "        targ = e.srcElement;\n",
-       "    }\n",
-       "    if (targ.nodeType === 3) {\n",
-       "        // defeat Safari bug\n",
-       "        targ = targ.parentNode;\n",
-       "    }\n",
-       "\n",
-       "    // pageX,Y are the mouse positions relative to the document\n",
-       "    var boundingRect = targ.getBoundingClientRect();\n",
-       "    var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
-       "    var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
-       "\n",
-       "    return { x: x, y: y };\n",
-       "};\n",
-       "\n",
-       "/*\n",
-       " * return a copy of an object with only non-object keys\n",
-       " * we need this to avoid circular references\n",
-       " * http://stackoverflow.com/a/24161582/3208463\n",
-       " */\n",
-       "function simpleKeys(original) {\n",
-       "    return Object.keys(original).reduce(function (obj, key) {\n",
-       "        if (typeof original[key] !== 'object') {\n",
-       "            obj[key] = original[key];\n",
-       "        }\n",
-       "        return obj;\n",
-       "    }, {});\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype.mouse_event = function (event, name) {\n",
-       "    var canvas_pos = mpl.findpos(event);\n",
-       "\n",
-       "    if (name === 'button_press') {\n",
-       "        this.canvas.focus();\n",
-       "        this.canvas_div.focus();\n",
-       "    }\n",
-       "\n",
-       "    var x = canvas_pos.x * this.ratio;\n",
-       "    var y = canvas_pos.y * this.ratio;\n",
-       "\n",
-       "    this.send_message(name, {\n",
-       "        x: x,\n",
-       "        y: y,\n",
-       "        button: event.button,\n",
-       "        step: event.step,\n",
-       "        guiEvent: simpleKeys(event),\n",
-       "    });\n",
-       "\n",
-       "    /* This prevents the web browser from automatically changing to\n",
-       "     * the text insertion cursor when the button is pressed.  We want\n",
-       "     * to control all of the cursor setting manually through the\n",
-       "     * 'cursor' event from matplotlib */\n",
-       "    event.preventDefault();\n",
-       "    return false;\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
-       "    // Handle any extra behaviour associated with a key event\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.key_event = function (event, name) {\n",
-       "    // Prevent repeat events\n",
-       "    if (name === 'key_press') {\n",
-       "        if (event.which === this._key) {\n",
-       "            return;\n",
-       "        } else {\n",
-       "            this._key = event.which;\n",
-       "        }\n",
-       "    }\n",
-       "    if (name === 'key_release') {\n",
-       "        this._key = null;\n",
-       "    }\n",
-       "\n",
-       "    var value = '';\n",
-       "    if (event.ctrlKey && event.which !== 17) {\n",
-       "        value += 'ctrl+';\n",
-       "    }\n",
-       "    if (event.altKey && event.which !== 18) {\n",
-       "        value += 'alt+';\n",
-       "    }\n",
-       "    if (event.shiftKey && event.which !== 16) {\n",
-       "        value += 'shift+';\n",
-       "    }\n",
-       "\n",
-       "    value += 'k';\n",
-       "    value += event.which.toString();\n",
-       "\n",
-       "    this._key_event_extra(event, name);\n",
-       "\n",
-       "    this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
-       "    return false;\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
-       "    if (name === 'download') {\n",
-       "        this.handle_save(this, null);\n",
-       "    } else {\n",
-       "        this.send_message('toolbar_button', { name: name });\n",
-       "    }\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
-       "    this.message.textContent = tooltip;\n",
-       "};\n",
-       "\n",
-       "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
-       "// prettier-ignore\n",
-       "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
-       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
-       "\n",
-       "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
-       "\n",
-       "mpl.default_extension = \"png\";/* global mpl */\n",
-       "\n",
-       "var comm_websocket_adapter = function (comm) {\n",
-       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
-       "    // object with the appropriate methods. Currently this is a non binary\n",
-       "    // socket, so there is still some room for performance tuning.\n",
-       "    var ws = {};\n",
-       "\n",
-       "    ws.close = function () {\n",
-       "        comm.close();\n",
-       "    };\n",
-       "    ws.send = function (m) {\n",
-       "        //console.log('sending', m);\n",
-       "        comm.send(m);\n",
-       "    };\n",
-       "    // Register the callback with on_msg.\n",
-       "    comm.on_msg(function (msg) {\n",
-       "        //console.log('receiving', msg['content']['data'], msg);\n",
-       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
-       "        ws.onmessage(msg['content']['data']);\n",
-       "    });\n",
-       "    return ws;\n",
-       "};\n",
-       "\n",
-       "mpl.mpl_figure_comm = function (comm, msg) {\n",
-       "    // This is the function which gets called when the mpl process\n",
-       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
-       "\n",
-       "    var id = msg.content.data.id;\n",
-       "    // Get hold of the div created by the display call when the Comm\n",
-       "    // socket was opened in Python.\n",
-       "    var element = document.getElementById(id);\n",
-       "    var ws_proxy = comm_websocket_adapter(comm);\n",
-       "\n",
-       "    function ondownload(figure, _format) {\n",
-       "        window.open(figure.canvas.toDataURL());\n",
-       "    }\n",
-       "\n",
-       "    var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
-       "\n",
-       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
-       "    // web socket which is closed, not our websocket->open comm proxy.\n",
-       "    ws_proxy.onopen();\n",
-       "\n",
-       "    fig.parent_element = element;\n",
-       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
-       "    if (!fig.cell_info) {\n",
-       "        console.error('Failed to find cell for figure', id, fig);\n",
-       "        return;\n",
-       "    }\n",
-       "    fig.cell_info[0].output_area.element.on(\n",
-       "        'cleared',\n",
-       "        { fig: fig },\n",
-       "        fig._remove_fig_handler\n",
-       "    );\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.handle_close = function (fig, msg) {\n",
-       "    var width = fig.canvas.width / fig.ratio;\n",
-       "    fig.cell_info[0].output_area.element.off(\n",
-       "        'cleared',\n",
-       "        fig._remove_fig_handler\n",
-       "    );\n",
-       "    fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
-       "\n",
-       "    // Update the output cell to use the data from the current canvas.\n",
-       "    fig.push_to_output();\n",
-       "    var dataURL = fig.canvas.toDataURL();\n",
-       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
-       "    // the notebook keyboard shortcuts fail.\n",
-       "    IPython.keyboard_manager.enable();\n",
-       "    fig.parent_element.innerHTML =\n",
-       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
-       "    fig.close_ws(fig, msg);\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.close_ws = function (fig, msg) {\n",
-       "    fig.send_message('closing', msg);\n",
-       "    // fig.ws.close()\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
-       "    // Turn the data on the canvas into data in the output cell.\n",
-       "    var width = this.canvas.width / this.ratio;\n",
-       "    var dataURL = this.canvas.toDataURL();\n",
-       "    this.cell_info[1]['text/html'] =\n",
-       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.updated_canvas_event = function () {\n",
-       "    // Tell IPython that the notebook contents must change.\n",
-       "    IPython.notebook.set_dirty(true);\n",
-       "    this.send_message('ack', {});\n",
-       "    var fig = this;\n",
-       "    // Wait a second, then push the new image to the DOM so\n",
-       "    // that it is saved nicely (might be nice to debounce this).\n",
-       "    setTimeout(function () {\n",
-       "        fig.push_to_output();\n",
-       "    }, 1000);\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype._init_toolbar = function () {\n",
-       "    var fig = this;\n",
-       "\n",
-       "    var toolbar = document.createElement('div');\n",
-       "    toolbar.classList = 'btn-toolbar';\n",
-       "    this.root.appendChild(toolbar);\n",
-       "\n",
-       "    function on_click_closure(name) {\n",
-       "        return function (_event) {\n",
-       "            return fig.toolbar_button_onclick(name);\n",
-       "        };\n",
-       "    }\n",
-       "\n",
-       "    function on_mouseover_closure(tooltip) {\n",
-       "        return function (event) {\n",
-       "            if (!event.currentTarget.disabled) {\n",
-       "                return fig.toolbar_button_onmouseover(tooltip);\n",
-       "            }\n",
-       "        };\n",
-       "    }\n",
-       "\n",
-       "    fig.buttons = {};\n",
-       "    var buttonGroup = document.createElement('div');\n",
-       "    buttonGroup.classList = 'btn-group';\n",
-       "    var button;\n",
-       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
-       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
-       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
-       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
-       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
-       "\n",
-       "        if (!name) {\n",
-       "            /* Instead of a spacer, we start a new button group. */\n",
-       "            if (buttonGroup.hasChildNodes()) {\n",
-       "                toolbar.appendChild(buttonGroup);\n",
-       "            }\n",
-       "            buttonGroup = document.createElement('div');\n",
-       "            buttonGroup.classList = 'btn-group';\n",
-       "            continue;\n",
-       "        }\n",
-       "\n",
-       "        button = fig.buttons[name] = document.createElement('button');\n",
-       "        button.classList = 'btn btn-default';\n",
-       "        button.href = '#';\n",
-       "        button.title = name;\n",
-       "        button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
-       "        button.addEventListener('click', on_click_closure(method_name));\n",
-       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
-       "        buttonGroup.appendChild(button);\n",
-       "    }\n",
-       "\n",
-       "    if (buttonGroup.hasChildNodes()) {\n",
-       "        toolbar.appendChild(buttonGroup);\n",
-       "    }\n",
-       "\n",
-       "    // Add the status bar.\n",
-       "    var status_bar = document.createElement('span');\n",
-       "    status_bar.classList = 'mpl-message pull-right';\n",
-       "    toolbar.appendChild(status_bar);\n",
-       "    this.message = status_bar;\n",
-       "\n",
-       "    // Add the close button to the window.\n",
-       "    var buttongrp = document.createElement('div');\n",
-       "    buttongrp.classList = 'btn-group inline pull-right';\n",
-       "    button = document.createElement('button');\n",
-       "    button.classList = 'btn btn-mini btn-primary';\n",
-       "    button.href = '#';\n",
-       "    button.title = 'Stop Interaction';\n",
-       "    button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
-       "    button.addEventListener('click', function (_evt) {\n",
-       "        fig.handle_close(fig, {});\n",
-       "    });\n",
-       "    button.addEventListener(\n",
-       "        'mouseover',\n",
-       "        on_mouseover_closure('Stop Interaction')\n",
-       "    );\n",
-       "    buttongrp.appendChild(button);\n",
-       "    var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
-       "    titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype._remove_fig_handler = function (event) {\n",
-       "    var fig = event.data.fig;\n",
-       "    if (event.target !== this) {\n",
-       "        // Ignore bubbled events from children.\n",
-       "        return;\n",
-       "    }\n",
-       "    fig.close_ws(fig, {});\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype._root_extra_style = function (el) {\n",
-       "    el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype._canvas_extra_style = function (el) {\n",
-       "    // this is important to make the div 'focusable\n",
-       "    el.setAttribute('tabindex', 0);\n",
-       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
-       "    // off when our div gets focus\n",
-       "\n",
-       "    // location in version 3\n",
-       "    if (IPython.notebook.keyboard_manager) {\n",
-       "        IPython.notebook.keyboard_manager.register_events(el);\n",
-       "    } else {\n",
-       "        // location in version 2\n",
-       "        IPython.keyboard_manager.register_events(el);\n",
-       "    }\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
-       "    var manager = IPython.notebook.keyboard_manager;\n",
-       "    if (!manager) {\n",
-       "        manager = IPython.keyboard_manager;\n",
-       "    }\n",
-       "\n",
-       "    // Check for shift+enter\n",
-       "    if (event.shiftKey && event.which === 13) {\n",
-       "        this.canvas_div.blur();\n",
-       "        // select the cell after this one\n",
-       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
-       "        IPython.notebook.select(index + 1);\n",
-       "    }\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
-       "    fig.ondownload(fig, null);\n",
-       "};\n",
-       "\n",
-       "mpl.find_output_cell = function (html_output) {\n",
-       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
-       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
-       "    // IPython event is triggered only after the cells have been serialised, which for\n",
-       "    // our purposes (turning an active figure into a static one), is too late.\n",
-       "    var cells = IPython.notebook.get_cells();\n",
-       "    var ncells = cells.length;\n",
-       "    for (var i = 0; i < ncells; i++) {\n",
-       "        var cell = cells[i];\n",
-       "        if (cell.cell_type === 'code') {\n",
-       "            for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
-       "                var data = cell.output_area.outputs[j];\n",
-       "                if (data.data) {\n",
-       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
-       "                    data = data.data;\n",
-       "                }\n",
-       "                if (data['text/html'] === html_output) {\n",
-       "                    return [cell, data, j];\n",
-       "                }\n",
-       "            }\n",
-       "        }\n",
-       "    }\n",
-       "};\n",
-       "\n",
-       "// Register the function which deals with the matplotlib target/channel.\n",
-       "// The kernel may be null if the page has been refreshed.\n",
-       "if (IPython.notebook.kernel !== null) {\n",
-       "    IPython.notebook.kernel.comm_manager.register_target(\n",
-       "        'matplotlib',\n",
-       "        mpl.mpl_figure_comm\n",
-       "    );\n",
-       "}\n"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Javascript object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "<img src=\"\" width=\"1000\">"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/plain": [
-       "Text(58, 1.01, 'Korrelation = -0.809')"
-      ]
-     },
-     "execution_count": 8,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "fig, ax = plt.subplots(figsize=(10,7))\n",
-    "plot1 = df_total.plot.scatter(x=\"Impfquote\",y=\"Übersterblichkeit\",title=\"Übersterblichkeit vs Impfquote\", grid=True,\n",
-    "              ax=ax, style='o', legend=False, s=150, fontsize=18,\n",
-    "              color=range(len(df_total)), colormap='Spectral')\n",
-    "#ax.legend(plot1,[\"1\",\"2\"],fancybox=True)\n",
-    "#df_total.head()\n",
-    "laender_short={\"Schleswig-Holstein\":\"SH\",\n",
-    "\"Hamburg\":\"HH\",\n",
-    "\"Niedersachsen\":\"NI\",\n",
-    "\"Bremen\":\"HB\",\n",
-    "\"Nordrhein-Westfalen\":\"NRW\",\n",
-    "\"Hessen\":\"HE\",\n",
-    "\"Rheinland-Pfalz\":\"RP\",\n",
-    "\"Baden-Württemberg\":\"BW\",\n",
-    "\"Bayern\":\"BY\",\n",
-    "\"Saarland\":\"SA\",\n",
-    "\"Berlin\":\"BE\",\n",
-    "\"Brandenburg\":\"BB\",\n",
-    "\"Mecklenburg-Vorpommern\":\"MV\",\n",
-    "\"Sachsen\":\"SA\",\n",
-    "\"Sachsen-Anhalt\":\"S-AN\",\n",
-    "\"Thüringen\":\"TH\",\n",
-    "}\n",
-    "c=0\n",
-    "correlation = df_total.corr(method=\"pearson\")\n",
-    "\n",
-    "for k, v in df_total.iterrows():\n",
-    "    c += 1\n",
-    "    ax.annotate(laender_short[k], v,\n",
-    "                xytext=(9,-3), textcoords='offset points',\n",
-    "                family='sans-serif', fontsize=11)\n",
-    "ax.set(title='Übersterblichkeit vs Impfquote',\n",
-    "       ylabel='Todesfälle KW1-42 (2021)\\nverglichen mit Durchschnitt 2016-2019',\n",
-    "       xlabel=\"Impfquote (2 Impfungen, Stand 30.11.2021)\\nDaten von DESTATIS, sowie RKI\\n(c)CC-BY\")\n",
-    "ax.text(58,1.01,\"Korrelation = %0.3f\"%correlation[\"Übersterblichkeit\"][\"Impfquote\"])"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 171,
-   "id": "426b3884",
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "-0.808719600395588"
-      ]
-     },
-     "execution_count": 171,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "\n"
-   ]
+   "source": []
   }
  ],
  "metadata": {
diff --git a/Uebersterblichkeit.png b/Uebersterblichkeit.png
index 61b72d1f671768aa20532370bfdbeba9cb8f9aba..099a70af5c5801e5f03a389510ccada9d4b96452 100644
Binary files a/Uebersterblichkeit.png and b/Uebersterblichkeit.png differ
diff --git a/wcorr/__init__.py b/wcorr/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..f1ff7331f36f7a62a48e87a52bece0d5ca20b75e
--- /dev/null
+++ b/wcorr/__init__.py
@@ -0,0 +1 @@
+from .wcorr import WeightedCorr
\ No newline at end of file
diff --git a/wcorr/wcorr.py b/wcorr/wcorr.py
new file mode 100644
index 0000000000000000000000000000000000000000..3e6cb6f735b8f0e36828258b41852b7bb1bb248e
--- /dev/null
+++ b/wcorr/wcorr.py
@@ -0,0 +1,69 @@
+import numpy as np
+import pandas as pd
+from scipy.stats import rankdata
+
+class WeightedCorr:
+    def __init__(self, xyw=None, x=None, y=None, w=None, df=None, wcol=None):
+        ''' Weighted Correlation class. Either supply xyw, (x, y, w), or (df, wcol). Call the class to get the result, i.e.:
+        WeightedCorr(xyw=mydata[[x, y, w]])(method='pearson')
+        :param xyw: pd.DataFrame with shape(n, 3) containing x, y, and w columns (column names irrelevant)
+        :param x: pd.Series (n, ) containing values for x
+        :param y: pd.Series (n, ) containing values for y
+        :param w: pd.Series (n, ) containing weights
+        :param df: pd.Dataframe (n, m+1) containing m phenotypes and a weight column
+        :param wcol: str column of the weight column in the dataframe passed to the df argument.
+        '''
+        if (df is None) and (wcol is None):
+            if np.all([i is None for i in [xyw, x, y, w]]):
+                raise ValueError('No data supplied')
+            if not ((isinstance(xyw, pd.DataFrame)) != (np.all([isinstance(i, pd.Series) for i in [x, y, w]]))):
+                raise TypeError('xyw should be a pd.DataFrame, or x, y, w should be pd.Series')
+            xyw = pd.concat([x, y, w], axis=1).dropna() if xyw is None else xyw.dropna()
+            self.x, self.y, self.w = (pd.to_numeric(xyw[i], errors='coerce').values for i in xyw.columns)
+            self.df = None
+        elif (wcol is not None) and (df is not None):
+            if (not isinstance(df, pd.DataFrame)) or (not isinstance(wcol, str)):
+                raise ValueError('df should be a pd.DataFrame and wcol should be a string')
+            if wcol not in df.columns:
+                raise KeyError('wcol not found in column names of df')
+            self.df = df.loc[:, [x for x in df.columns if x != wcol]]
+            self.w = pd.to_numeric(df.loc[:, wcol], errors='coerce')
+        else:
+            raise ValueError('Incorrect arguments specified, please specify xyw, or (x, y, w) or (df, wcol)')
+
+    def _wcov(self, x, y, ms):
+        return np.sum(self.w * (x - ms[0]) * (y - ms[1]))
+
+    def _pearson(self, x=None, y=None):
+        x, y = (self.x, self.y) if ((x is None) and (y is None)) else (x, y)
+        mx, my = (np.sum(i * self.w) / np.sum(self.w) for i in [x, y])
+        return self._wcov(x, y, [mx, my]) / np.sqrt(self._wcov(x, x, [mx, mx]) * self._wcov(y, y, [my, my]))
+
+    def _wrank(self, x):
+        (unique, arr_inv, counts) = np.unique(rankdata(x), return_counts=True, return_inverse=True)
+        a = np.bincount(arr_inv, self.w)
+        return (np.cumsum(a) - a)[arr_inv]+((counts + 1)/2 * (a/counts))[arr_inv]
+
+    def _spearman(self, x=None, y=None):
+        x, y = (self.x, self.y) if ((x is None) and (y is None)) else (x, y)
+        return self._pearson(self._wrank(x), self._wrank(y))
+
+    def __call__(self, method='pearson'):
+        '''
+        :param method: Correlation method to be used: 'pearson' for pearson r, 'spearman' for spearman rank-order correlation.
+        :return: if xyw, or (x, y, w) were passed to __init__ returns the correlation value (float).
+                 if (df, wcol) were passed to __init__ returns a pd.DataFrame (m, m), the correlation matrix.
+        '''
+        if method not in ['pearson', 'spearman']:
+            raise ValueError('method should be one of [\'pearson\', \'spearman\']')
+        cor = {'pearson': self._pearson, 'spearman': self._spearman}[method]
+        if self.df is None:
+            return cor()
+        else:
+            out = pd.DataFrame(np.nan, index=self.df.columns, columns=self.df.columns)
+            for i, x in enumerate(self.df.columns):
+                for j, y in enumerate(self.df.columns):
+                    if i >= j:
+                        out.loc[x, y] = cor(x=pd.to_numeric(self.df[x], errors='coerce'), y=pd.to_numeric(self.df[y], errors='coerce'))
+                        out.loc[y, x] = out.loc[x, y]
+            return out