From 73d3c5486425da036267d977cafaebc41a08bf8c Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Sebastian=20Sp=C3=A4th?= <sebastian.spaeth@uni-hamburg.de> Date: Thu, 2 Dec 2021 09:05:26 +0100 Subject: [PATCH] Add weighted Correlation algorithm Fix some ambiguous Bundesland abbreviation and add an algo for calculating weighted correlations. --- .gitignore | 3 + Analyse.ipynb | 2379 ++-------------------------------------- Uebersterblichkeit.png | Bin 57750 -> 58972 bytes wcorr/__init__.py | 1 + wcorr/wcorr.py | 69 ++ 5 files changed, 170 insertions(+), 2282 deletions(-) create mode 100644 .gitignore create mode 100644 wcorr/__init__.py create mode 100644 wcorr/wcorr.py diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..1f059ab --- /dev/null +++ b/.gitignore @@ -0,0 +1,3 @@ +**/__pycache__/ +/.ipynb_checkpoints/ + diff --git a/Analyse.ipynb b/Analyse.ipynb index 4824447..864f9ce 100644 --- a/Analyse.ipynb +++ b/Analyse.ipynb @@ -10,7 +10,25 @@ "%matplotlib nbagg\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", - "import numpy as np" + "import numpy as np\n", + "from wcorr import WeightedCorr\n", + "laender_short={\"Schleswig-Holstein\":\"SH\",\n", + "\"Hamburg\":\"HH\",\n", + "\"Niedersachsen\":\"NI\",\n", + "\"Bremen\":\"HB\",\n", + "\"Nordrhein-Westfalen\":\"NRW\",\n", + "\"Hessen\":\"HE\",\n", + "\"Rheinland-Pfalz\":\"RP\",\n", + "\"Baden-Württemberg\":\"BW\",\n", + "\"Bayern\":\"BY\",\n", + "\"Saarland\":\"SAAR\",\n", + "\"Berlin\":\"BE\",\n", + "\"Brandenburg\":\"BB\",\n", + "\"Mecklenburg-Vorpommern\":\"MV\",\n", + "\"Sachsen\":\"SA\",\n", + "\"Sachsen-Anhalt\":\"S-AN\",\n", + "\"Thüringen\":\"TH\",\n", + "}" ] }, { @@ -88,71 +106,19 @@ " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", - " <tr>\n", - " <th>1</th>\n", - " <td>2021</td>\n", - " <td>Hamburg</td>\n", - " <td>451</td>\n", - " <td>437</td>\n", - " <td>462</td>\n", - " <td>396</td>\n", - " <td>416</td>\n", - " <td>363</td>\n", - " <td>405</td>\n", - " <td>346</td>\n", - " <td>...</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " </tr>\n", - " <tr>\n", - " <th>2</th>\n", - " <td>2021</td>\n", - " <td>Niedersachsen</td>\n", - " <td>2164</td>\n", - " <td>2092</td>\n", - " <td>2166</td>\n", - " <td>2164</td>\n", - " <td>2179</td>\n", - " <td>2133</td>\n", - " <td>2061</td>\n", - " <td>1945</td>\n", - " <td>...</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " </tr>\n", " </tbody>\n", "</table>\n", - "<p>3 rows × 55 columns</p>\n", + "<p>1 rows × 55 columns</p>\n", "</div>" ], "text/plain": [ - " Jahr Bundesland 1 2 3 4 5 6 7 8 \\\n", - "0 2021 Schleswig-Holstein 803 794 849 826 777 797 819 677 \n", - "1 2021 Hamburg 451 437 462 396 416 363 405 346 \n", - "2 2021 Niedersachsen 2164 2092 2166 2164 2179 2133 2061 1945 \n", + " Jahr Bundesland 1 2 3 4 5 6 7 8 ... 44 \\\n", + "0 2021 Schleswig-Holstein 803 794 849 826 777 797 819 677 ... NaN \n", "\n", - " ... 44 45 46 47 48 49 50 51 52 53 \n", - "0 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN \n", - "1 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN \n", - "2 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN \n", + " 45 46 47 48 49 50 51 52 53 \n", + "0 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n", "\n", - "[3 rows x 55 columns]" + "[1 rows x 55 columns]" ] }, "execution_count": 2, @@ -164,7 +130,7 @@ "#Datasource https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bevoelkerung/Sterbefaelle-Lebenserwartung/Tabellen/sonderauswertung-sterbefaelle.html?nn=209016\n", "# 22.11.2021\n", "df = pd.read_csv('sterbefaelle.csv')\n", - "df.head(3)\n", + "df.head(1)\n", "#df.columns\n", "#df = df.set_index('Bundesland')" ] @@ -484,153 +450,9 @@ " <td>4205.75</td>\n", " <td>4054.75</td>\n", " </tr>\n", - " <tr>\n", - " <th>Rheinland-Pfalz</th>\n", - " <td>977.00</td>\n", - " <td>989.25</td>\n", - " <td>969.25</td>\n", - " <td>969.75</td>\n", - " <td>1028.00</td>\n", - " <td>1010.25</td>\n", - " <td>1061.50</td>\n", - " <td>1094.00</td>\n", - " <td>1102.50</td>\n", - " <td>1087.00</td>\n", - " <td>...</td>\n", - " <td>868.00</td>\n", - " <td>843.00</td>\n", - " <td>905.75</td>\n", - " <td>898.50</td>\n", - " <td>927.25</td>\n", - " <td>903.00</td>\n", - " <td>953.25</td>\n", - " <td>920.50</td>\n", - " <td>939.75</td>\n", - " <td>944.25</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Saarland</th>\n", - " <td>268.25</td>\n", - " <td>275.00</td>\n", - " <td>269.25</td>\n", - " <td>273.75</td>\n", - " <td>283.25</td>\n", - " <td>294.50</td>\n", - " <td>283.25</td>\n", - " <td>286.50</td>\n", - " <td>315.75</td>\n", - " <td>315.75</td>\n", - " <td>...</td>\n", - " <td>230.25</td>\n", - " <td>246.75</td>\n", - " <td>253.00</td>\n", - " <td>259.25</td>\n", - " <td>256.75</td>\n", - " <td>253.00</td>\n", - " <td>262.25</td>\n", - " <td>253.75</td>\n", - " <td>259.50</td>\n", - " <td>262.50</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Sachsen</th>\n", - " <td>1133.75</td>\n", - " <td>1146.25</td>\n", - " <td>1128.50</td>\n", - " <td>1175.75</td>\n", - " <td>1174.00</td>\n", - " <td>1215.50</td>\n", - " <td>1234.75</td>\n", - " <td>1254.00</td>\n", - " <td>1286.25</td>\n", - " <td>1273.50</td>\n", - " <td>...</td>\n", - " <td>996.75</td>\n", - " <td>1004.75</td>\n", - " <td>1021.50</td>\n", - " <td>1039.75</td>\n", - " <td>1027.75</td>\n", - " <td>1058.25</td>\n", - " <td>1073.00</td>\n", - " <td>1096.75</td>\n", - " <td>1123.75</td>\n", - " <td>1125.50</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Sachsen-Anhalt</th>\n", - " <td>692.00</td>\n", - " <td>677.75</td>\n", - " <td>653.25</td>\n", - " <td>664.25</td>\n", - " <td>686.00</td>\n", - " <td>690.50</td>\n", - " <td>744.50</td>\n", - " <td>731.25</td>\n", - " <td>768.50</td>\n", - " <td>776.00</td>\n", - " <td>...</td>\n", - " <td>586.75</td>\n", - " <td>570.00</td>\n", - " <td>603.50</td>\n", - " <td>579.50</td>\n", - " <td>617.25</td>\n", - " <td>656.00</td>\n", - " <td>627.50</td>\n", - " <td>651.75</td>\n", - " <td>671.25</td>\n", - " <td>635.75</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Schleswig-Holstein</th>\n", - " <td>711.75</td>\n", - " <td>690.00</td>\n", - " <td>728.00</td>\n", - " <td>737.00</td>\n", - " <td>749.25</td>\n", - " <td>770.25</td>\n", - " <td>773.00</td>\n", - " <td>792.25</td>\n", - " <td>794.75</td>\n", - " <td>787.75</td>\n", - " <td>...</td>\n", - " <td>632.00</td>\n", - " <td>634.50</td>\n", - " <td>660.75</td>\n", - " <td>658.75</td>\n", - " <td>660.50</td>\n", - " <td>696.50</td>\n", - " <td>695.00</td>\n", - " <td>663.50</td>\n", - " <td>715.25</td>\n", - " <td>684.75</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Thüringen</th>\n", - " <td>609.25</td>\n", - " <td>600.50</td>\n", - " <td>603.75</td>\n", - " <td>629.50</td>\n", - " <td>667.25</td>\n", - " <td>634.00</td>\n", - " <td>640.00</td>\n", - " <td>661.00</td>\n", - " <td>686.00</td>\n", - " <td>697.00</td>\n", - " <td>...</td>\n", - " <td>513.50</td>\n", - " <td>538.50</td>\n", - " <td>545.75</td>\n", - " <td>558.50</td>\n", - " <td>549.75</td>\n", - " <td>583.75</td>\n", - " <td>596.75</td>\n", - " <td>576.25</td>\n", - " <td>590.25</td>\n", - " <td>555.50</td>\n", - " </tr>\n", " </tbody>\n", "</table>\n", - "<p>16 rows × 52 columns</p>\n", + "<p>10 rows × 52 columns</p>\n", "</div>" ], "text/plain": [ @@ -646,12 +468,6 @@ "Mecklenburg-Vorpommern 452.00 455.50 439.50 450.00 449.50 429.75 \n", "Niedersachsen 1973.50 1966.50 1979.75 1996.25 2057.25 2024.00 \n", "Nordrhein-Westfalen 4191.50 4305.75 4238.75 4357.75 4489.75 4513.75 \n", - "Rheinland-Pfalz 977.00 989.25 969.25 969.75 1028.00 1010.25 \n", - "Saarland 268.25 275.00 269.25 273.75 283.25 294.50 \n", - "Sachsen 1133.75 1146.25 1128.50 1175.75 1174.00 1215.50 \n", - "Sachsen-Anhalt 692.00 677.75 653.25 664.25 686.00 690.50 \n", - "Schleswig-Holstein 711.75 690.00 728.00 737.00 749.25 770.25 \n", - "Thüringen 609.25 600.50 603.75 629.50 667.25 634.00 \n", "\n", " 7 8 9 10 ... 43 \\\n", "Bundesland ... \n", @@ -665,12 +481,6 @@ "Mecklenburg-Vorpommern 471.75 489.75 455.25 480.25 ... 387.00 \n", "Niedersachsen 2075.50 2111.25 2223.25 2165.50 ... 1725.75 \n", "Nordrhein-Westfalen 4549.00 4568.00 4780.25 4786.50 ... 3757.50 \n", - "Rheinland-Pfalz 1061.50 1094.00 1102.50 1087.00 ... 868.00 \n", - "Saarland 283.25 286.50 315.75 315.75 ... 230.25 \n", - "Sachsen 1234.75 1254.00 1286.25 1273.50 ... 996.75 \n", - "Sachsen-Anhalt 744.50 731.25 768.50 776.00 ... 586.75 \n", - "Schleswig-Holstein 773.00 792.25 794.75 787.75 ... 632.00 \n", - "Thüringen 640.00 661.00 686.00 697.00 ... 513.50 \n", "\n", " 44 45 46 47 48 49 \\\n", "Bundesland \n", @@ -684,12 +494,6 @@ "Mecklenburg-Vorpommern 385.50 395.50 400.75 404.75 405.75 410.25 \n", "Niedersachsen 1736.50 1774.50 1795.00 1799.00 1840.00 1884.25 \n", "Nordrhein-Westfalen 3764.50 3841.75 3892.25 3980.00 3967.75 4133.75 \n", - "Rheinland-Pfalz 843.00 905.75 898.50 927.25 903.00 953.25 \n", - "Saarland 246.75 253.00 259.25 256.75 253.00 262.25 \n", - "Sachsen 1004.75 1021.50 1039.75 1027.75 1058.25 1073.00 \n", - "Sachsen-Anhalt 570.00 603.50 579.50 617.25 656.00 627.50 \n", - "Schleswig-Holstein 634.50 660.75 658.75 660.50 696.50 695.00 \n", - "Thüringen 538.50 545.75 558.50 549.75 583.75 596.75 \n", "\n", " 50 51 52 \n", "Bundesland \n", @@ -703,14 +507,8 @@ "Mecklenburg-Vorpommern 441.50 434.25 410.50 \n", "Niedersachsen 1866.00 1910.00 1847.00 \n", "Nordrhein-Westfalen 4066.00 4205.75 4054.75 \n", - "Rheinland-Pfalz 920.50 939.75 944.25 \n", - "Saarland 253.75 259.50 262.50 \n", - "Sachsen 1096.75 1123.75 1125.50 \n", - "Sachsen-Anhalt 651.75 671.25 635.75 \n", - "Schleswig-Holstein 663.50 715.25 684.75 \n", - "Thüringen 576.25 590.25 555.50 \n", - "\n", - "[16 rows x 52 columns]" + "\n", + "[10 rows x 52 columns]" ] }, "execution_count": 3, @@ -723,7 +521,7 @@ "sterb_norm = df[df.Jahr<2020].groupby(['Bundesland']).mean()\n", "#Jahr does not make sense after aggregation\n", "sterb_norm = sterb_norm.drop('Jahr', axis=1)\n", - "sterb_norm.head(20)\n" + "sterb_norm.head(10)\n" ] }, { @@ -731,6 +529,53 @@ "execution_count": 4, "id": "ab1f10bc", "metadata": {}, + "outputs": [], + "source": [ + "sterb_21 = df[df.Jahr==2021].groupby(['Bundesland']).mean()\n", + "uebersterb = sterb_21 / sterb_norm\n", + "uebersterb = uebersterb.mean(axis=1)\n", + "uebersterb.name = \"Übersterblichkeit\"\n", + "# Next line plots:\n", + "# uebersterb.sort_values().plot(style='.')" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "9d77bb4a", + "metadata": {}, + "outputs": [], + "source": [ + "#Datasource Rbert Koch Institut\n", + "# https://github.com/robert-koch-institut/COVID-19-Impfungen_in_Deutschland\n", + "df_impf = pd.read_csv('Impfquoten.csv')\n", + "df_impf = df_impf[df_impf.Bundesland!=\"Deutschland\"].drop('Datum', axis=1) # Drop column 'Datum', row \"Deutschland\"\n", + "df_impf = df_impf.set_index('Bundesland')\n", + "# next line plots\n", + "# df_impf.sort_values(by='Impfquote').plot(style='.')\n", + "\n", + "# Merge both dataset into a combined one\n", + "df_total = pd.merge(df_impf,uebersterb, left_index=True, right_index=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "426b3884", + "metadata": {}, + "outputs": [], + "source": [ + "# Unweighted correlation is\n", + "correlation = df_total.corr(method=\"pearson\")\n", + "# Weighted correlation is\n", + "#TODO: get population numbers WeightedCorr()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "8e99105a", + "metadata": {}, "outputs": [ { "data": { @@ -1693,7 +1538,7 @@ { "data": { "text/html": [ - "<img src=\"\" width=\"640\">" + "<img src=\"\" width=\"1000\">" ], "text/plain": [ "<IPython.core.display.HTML object>" @@ -1705,2069 +1550,39 @@ { "data": { "text/plain": [ - "<AxesSubplot:xlabel='Bundesland'>" + "Text(58, 1.01, 'Korrelation = -0.823')" ] }, - "execution_count": 4, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "sterb_21 = df[df.Jahr==2021].groupby(['Bundesland']).mean()\n", - "uebersterb = sterb_21 / sterb_norm\n", - "uebersterb = uebersterb.mean(axis=1)\n", - "uebersterb.name = \"Übersterblichkeit\"\n", - "uebersterb.sort_values().plot(style='.')\n", + "fig, ax = plt.subplots(figsize=(10,7))\n", + "plot1 = df_total.plot.scatter(x=\"Impfquote\",y=\"Übersterblichkeit\",title=\"Übersterblichkeit vs Impfquote\", grid=True,\n", + " ax=ax, style='o', legend=False, s=150, fontsize=18,\n", + " color=range(len(df_total)), colormap='Spectral')\n", + "#ax.legend(plot1,[\"1\",\"2\"],fancybox=True)\n", + "#df_total.head()\n", "\n", - "#uebersterb.mean(axis=1).plot.scatter(x=\"Bundesland\")\n", - "#df_totalPerWeek = df[df.Jahr<2020].groupby('Bundesland','Jahr').sum()\n", - "#df_totalPerWeek=df_totalPerWeek.drop('Jahr', axis=1)\n", - "#df_totalPerWeek.head()" + "for k, v in df_total.iterrows():\n", + " ax.annotate(laender_short[k], v,\n", + " xytext=(9,-3), textcoords='offset points',\n", + " family='sans-serif', fontsize=11)\n", + "ax.set(title='Übersterblichkeit vs Impfquote',\n", + " ylabel='Todesfälle KW1-43 (2021)\\nverglichen mit Durchschnitt 2016-2019',\n", + " xlabel=\"Impfquote (2.-Impfungen, Stand 30.11.2021)\\nDaten von DESTATIS, sowie RKI (Lizenz CC-BY)\")\n", + "ax.text(58,1.01,\"Korrelation = %0.3f\"%correlation[\"Übersterblichkeit\"][\"Impfquote\"])" ] }, { "cell_type": "code", - "execution_count": 7, - "id": "c9612c26", + "execution_count": null, + "id": "277003c9", "metadata": {}, "outputs": [], - "source": [ - "#https://github.com/robert-koch-institut/COVID-19-Impfungen_in_Deutschland" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "9d77bb4a", - "metadata": {}, - "outputs": [ - { - "data": { - "application/javascript": [ - "/* Put everything inside the global mpl namespace */\n", - "/* global mpl */\n", - "window.mpl = {};\n", - "\n", - "mpl.get_websocket_type = function () {\n", - " if (typeof WebSocket !== 'undefined') {\n", - " return WebSocket;\n", - " } else if (typeof MozWebSocket !== 'undefined') {\n", - " return MozWebSocket;\n", - " } else {\n", - " alert(\n", - " 'Your browser does not have WebSocket support. ' +\n", - " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", - " 'Firefox 4 and 5 are also supported but you ' +\n", - " 'have to enable WebSockets in about:config.'\n", - " );\n", - " }\n", - "};\n", - "\n", - "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", - " this.id = figure_id;\n", - "\n", - " this.ws = websocket;\n", - "\n", - " this.supports_binary = this.ws.binaryType !== undefined;\n", - "\n", - " if (!this.supports_binary) {\n", - " var warnings = document.getElementById('mpl-warnings');\n", - " if (warnings) {\n", - " warnings.style.display = 'block';\n", - " warnings.textContent =\n", - " 'This browser does not support binary websocket messages. ' +\n", - " 'Performance may be slow.';\n", - " }\n", - " }\n", - "\n", - " this.imageObj = new Image();\n", - "\n", - " this.context = undefined;\n", - " this.message = undefined;\n", - " this.canvas = undefined;\n", - " this.rubberband_canvas = undefined;\n", - " this.rubberband_context = undefined;\n", - " this.format_dropdown = undefined;\n", - "\n", - " this.image_mode = 'full';\n", - "\n", - " this.root = document.createElement('div');\n", - " this.root.setAttribute('style', 'display: inline-block');\n", - " this._root_extra_style(this.root);\n", - "\n", - " parent_element.appendChild(this.root);\n", - "\n", - " this._init_header(this);\n", - " this._init_canvas(this);\n", - " this._init_toolbar(this);\n", - "\n", - " var fig = this;\n", - "\n", - " this.waiting = false;\n", - "\n", - " this.ws.onopen = function () {\n", - " fig.send_message('supports_binary', { value: fig.supports_binary });\n", - " fig.send_message('send_image_mode', {});\n", - " if (fig.ratio !== 1) {\n", - " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", - " }\n", - " fig.send_message('refresh', {});\n", - " };\n", - "\n", - " this.imageObj.onload = function () {\n", - " if (fig.image_mode === 'full') {\n", - " // Full images could contain transparency (where diff images\n", - " // almost always do), so we need to clear the canvas so that\n", - " // there is no ghosting.\n", - " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", - " }\n", - " fig.context.drawImage(fig.imageObj, 0, 0);\n", - " };\n", - "\n", - " this.imageObj.onunload = function () {\n", - " fig.ws.close();\n", - " };\n", - "\n", - " this.ws.onmessage = this._make_on_message_function(this);\n", - "\n", - " this.ondownload = ondownload;\n", - "};\n", - "\n", - "mpl.figure.prototype._init_header = function () {\n", - " var titlebar = document.createElement('div');\n", - " titlebar.classList =\n", - " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", - " var titletext = document.createElement('div');\n", - " titletext.classList = 'ui-dialog-title';\n", - " titletext.setAttribute(\n", - " 'style',\n", - " 'width: 100%; text-align: center; padding: 3px;'\n", - " );\n", - " titlebar.appendChild(titletext);\n", - " this.root.appendChild(titlebar);\n", - " this.header = titletext;\n", - "};\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", - "\n", - "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", - "\n", - "mpl.figure.prototype._init_canvas = function () {\n", - " var fig = this;\n", - "\n", - " var canvas_div = (this.canvas_div = document.createElement('div'));\n", - " canvas_div.setAttribute(\n", - " 'style',\n", - " 'border: 1px solid #ddd;' +\n", - " 'box-sizing: content-box;' +\n", - " 'clear: both;' +\n", - " 'min-height: 1px;' +\n", - " 'min-width: 1px;' +\n", - " 'outline: 0;' +\n", - " 'overflow: hidden;' +\n", - " 'position: relative;' +\n", - " 'resize: both;'\n", - " );\n", - "\n", - " function on_keyboard_event_closure(name) {\n", - " return function (event) {\n", - " return fig.key_event(event, name);\n", - " };\n", - " }\n", - "\n", - " canvas_div.addEventListener(\n", - " 'keydown',\n", - " on_keyboard_event_closure('key_press')\n", - " );\n", - " canvas_div.addEventListener(\n", - " 'keyup',\n", - " on_keyboard_event_closure('key_release')\n", - " );\n", - "\n", - " this._canvas_extra_style(canvas_div);\n", - " this.root.appendChild(canvas_div);\n", - "\n", - " var canvas = (this.canvas = document.createElement('canvas'));\n", - " canvas.classList.add('mpl-canvas');\n", - " canvas.setAttribute('style', 'box-sizing: content-box;');\n", - "\n", - " this.context = canvas.getContext('2d');\n", - "\n", - " var backingStore =\n", - " this.context.backingStorePixelRatio ||\n", - " this.context.webkitBackingStorePixelRatio ||\n", - " this.context.mozBackingStorePixelRatio ||\n", - " this.context.msBackingStorePixelRatio ||\n", - " this.context.oBackingStorePixelRatio ||\n", - " this.context.backingStorePixelRatio ||\n", - " 1;\n", - "\n", - " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", - "\n", - " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", - " 'canvas'\n", - " ));\n", - " rubberband_canvas.setAttribute(\n", - " 'style',\n", - " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", - " );\n", - "\n", - " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", - " if (this.ResizeObserver === undefined) {\n", - " if (window.ResizeObserver !== undefined) {\n", - " this.ResizeObserver = window.ResizeObserver;\n", - " } else {\n", - " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", - " this.ResizeObserver = obs.ResizeObserver;\n", - " }\n", - " }\n", - "\n", - " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", - " var nentries = entries.length;\n", - " for (var i = 0; i < nentries; i++) {\n", - " var entry = entries[i];\n", - " var width, height;\n", - " if (entry.contentBoxSize) {\n", - " if (entry.contentBoxSize instanceof Array) {\n", - " // Chrome 84 implements new version of spec.\n", - " width = entry.contentBoxSize[0].inlineSize;\n", - " height = entry.contentBoxSize[0].blockSize;\n", - " } else {\n", - " // Firefox implements old version of spec.\n", - " width = entry.contentBoxSize.inlineSize;\n", - " height = entry.contentBoxSize.blockSize;\n", - " }\n", - " } else {\n", - " // Chrome <84 implements even older version of spec.\n", - " width = entry.contentRect.width;\n", - " height = entry.contentRect.height;\n", - " }\n", - "\n", - " // Keep the size of the canvas and rubber band canvas in sync with\n", - " // the canvas container.\n", - " if (entry.devicePixelContentBoxSize) {\n", - " // Chrome 84 implements new version of spec.\n", - " canvas.setAttribute(\n", - " 'width',\n", - " entry.devicePixelContentBoxSize[0].inlineSize\n", - " );\n", - " canvas.setAttribute(\n", - " 'height',\n", - " entry.devicePixelContentBoxSize[0].blockSize\n", - " );\n", - " } else {\n", - " canvas.setAttribute('width', width * fig.ratio);\n", - " canvas.setAttribute('height', height * fig.ratio);\n", - " }\n", - " canvas.setAttribute(\n", - " 'style',\n", - " 'width: ' + width + 'px; height: ' + height + 'px;'\n", - " );\n", - "\n", - " rubberband_canvas.setAttribute('width', width);\n", - " rubberband_canvas.setAttribute('height', height);\n", - "\n", - " // And update the size in Python. We ignore the initial 0/0 size\n", - " // that occurs as the element is placed into the DOM, which should\n", - " // otherwise not happen due to the minimum size styling.\n", - " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", - " fig.request_resize(width, height);\n", - " }\n", - " }\n", - " });\n", - " this.resizeObserverInstance.observe(canvas_div);\n", - "\n", - " function on_mouse_event_closure(name) {\n", - " return function (event) {\n", - " return fig.mouse_event(event, name);\n", - " };\n", - " }\n", - "\n", - " rubberband_canvas.addEventListener(\n", - " 'mousedown',\n", - " on_mouse_event_closure('button_press')\n", - " );\n", - " rubberband_canvas.addEventListener(\n", - " 'mouseup',\n", - " on_mouse_event_closure('button_release')\n", - " );\n", - " // Throttle sequential mouse events to 1 every 20ms.\n", - " rubberband_canvas.addEventListener(\n", - " 'mousemove',\n", - " on_mouse_event_closure('motion_notify')\n", - " );\n", - "\n", - " rubberband_canvas.addEventListener(\n", - " 'mouseenter',\n", - " on_mouse_event_closure('figure_enter')\n", - " );\n", - " rubberband_canvas.addEventListener(\n", - " 'mouseleave',\n", - " on_mouse_event_closure('figure_leave')\n", - " );\n", - "\n", - " canvas_div.addEventListener('wheel', function (event) {\n", - " if (event.deltaY < 0) {\n", - " event.step = 1;\n", - " } else {\n", - " event.step = -1;\n", - " }\n", - " on_mouse_event_closure('scroll')(event);\n", - " });\n", - "\n", - " canvas_div.appendChild(canvas);\n", - " canvas_div.appendChild(rubberband_canvas);\n", - "\n", - " this.rubberband_context = rubberband_canvas.getContext('2d');\n", - " this.rubberband_context.strokeStyle = '#000000';\n", - "\n", - " this._resize_canvas = function (width, height, forward) {\n", - " if (forward) {\n", - " canvas_div.style.width = width + 'px';\n", - " canvas_div.style.height = height + 'px';\n", - " }\n", - " };\n", - "\n", - " // Disable right mouse context menu.\n", - " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", - " event.preventDefault();\n", - " return false;\n", - " });\n", - "\n", - " function set_focus() {\n", - " canvas.focus();\n", - " canvas_div.focus();\n", - " }\n", - "\n", - " window.setTimeout(set_focus, 100);\n", - "};\n", - "\n", - "mpl.figure.prototype._init_toolbar = function () {\n", - " var fig = this;\n", - "\n", - " var toolbar = document.createElement('div');\n", - " toolbar.classList = 'mpl-toolbar';\n", - " this.root.appendChild(toolbar);\n", - "\n", - " function on_click_closure(name) {\n", - " return function (_event) {\n", - " return fig.toolbar_button_onclick(name);\n", - " };\n", - " }\n", - "\n", - " function on_mouseover_closure(tooltip) {\n", - " return function (event) {\n", - " if (!event.currentTarget.disabled) {\n", - " return fig.toolbar_button_onmouseover(tooltip);\n", - " }\n", - " };\n", - " }\n", - "\n", - " fig.buttons = {};\n", - " var buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'mpl-button-group';\n", - " for (var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " /* Instead of a spacer, we start a new button group. */\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - " buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'mpl-button-group';\n", - " continue;\n", - " }\n", - "\n", - " var button = (fig.buttons[name] = document.createElement('button'));\n", - " button.classList = 'mpl-widget';\n", - " button.setAttribute('role', 'button');\n", - " button.setAttribute('aria-disabled', 'false');\n", - " button.addEventListener('click', on_click_closure(method_name));\n", - " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", - "\n", - " var icon_img = document.createElement('img');\n", - " icon_img.src = '_images/' + image + '.png';\n", - " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", - " icon_img.alt = tooltip;\n", - " button.appendChild(icon_img);\n", - "\n", - " buttonGroup.appendChild(button);\n", - " }\n", - "\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - "\n", - " var fmt_picker = document.createElement('select');\n", - " fmt_picker.classList = 'mpl-widget';\n", - " toolbar.appendChild(fmt_picker);\n", - " this.format_dropdown = fmt_picker;\n", - "\n", - " for (var ind in mpl.extensions) {\n", - " var fmt = mpl.extensions[ind];\n", - " var option = document.createElement('option');\n", - " option.selected = fmt === mpl.default_extension;\n", - " option.innerHTML = fmt;\n", - " fmt_picker.appendChild(option);\n", - " }\n", - "\n", - " var status_bar = document.createElement('span');\n", - " status_bar.classList = 'mpl-message';\n", - " toolbar.appendChild(status_bar);\n", - " this.message = status_bar;\n", - "};\n", - "\n", - "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", - " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", - " // which will in turn request a refresh of the image.\n", - " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", - "};\n", - "\n", - "mpl.figure.prototype.send_message = function (type, properties) {\n", - " properties['type'] = type;\n", - " properties['figure_id'] = this.id;\n", - " this.ws.send(JSON.stringify(properties));\n", - "};\n", - "\n", - "mpl.figure.prototype.send_draw_message = function () {\n", - " if (!this.waiting) {\n", - " this.waiting = true;\n", - " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", - " var format_dropdown = fig.format_dropdown;\n", - " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", - " fig.ondownload(fig, format);\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", - " var size = msg['size'];\n", - " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", - " fig._resize_canvas(size[0], size[1], msg['forward']);\n", - " fig.send_message('refresh', {});\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", - " var x0 = msg['x0'] / fig.ratio;\n", - " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", - " var x1 = msg['x1'] / fig.ratio;\n", - " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", - " x0 = Math.floor(x0) + 0.5;\n", - " y0 = Math.floor(y0) + 0.5;\n", - " x1 = Math.floor(x1) + 0.5;\n", - " y1 = Math.floor(y1) + 0.5;\n", - " var min_x = Math.min(x0, x1);\n", - " var min_y = Math.min(y0, y1);\n", - " var width = Math.abs(x1 - x0);\n", - " var height = Math.abs(y1 - y0);\n", - "\n", - " fig.rubberband_context.clearRect(\n", - " 0,\n", - " 0,\n", - " fig.canvas.width / fig.ratio,\n", - " fig.canvas.height / fig.ratio\n", - " );\n", - "\n", - " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", - " // Updates the figure title.\n", - " fig.header.textContent = msg['label'];\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", - " var cursor = msg['cursor'];\n", - " switch (cursor) {\n", - " case 0:\n", - " cursor = 'pointer';\n", - " break;\n", - " case 1:\n", - " cursor = 'default';\n", - " break;\n", - " case 2:\n", - " cursor = 'crosshair';\n", - " break;\n", - " case 3:\n", - " cursor = 'move';\n", - " break;\n", - " }\n", - " fig.rubberband_canvas.style.cursor = cursor;\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_message = function (fig, msg) {\n", - " fig.message.textContent = msg['message'];\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", - " // Request the server to send over a new figure.\n", - " fig.send_draw_message();\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", - " fig.image_mode = msg['mode'];\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", - " for (var key in msg) {\n", - " if (!(key in fig.buttons)) {\n", - " continue;\n", - " }\n", - " fig.buttons[key].disabled = !msg[key];\n", - " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", - " if (msg['mode'] === 'PAN') {\n", - " fig.buttons['Pan'].classList.add('active');\n", - " fig.buttons['Zoom'].classList.remove('active');\n", - " } else if (msg['mode'] === 'ZOOM') {\n", - " fig.buttons['Pan'].classList.remove('active');\n", - " fig.buttons['Zoom'].classList.add('active');\n", - " } else {\n", - " fig.buttons['Pan'].classList.remove('active');\n", - " fig.buttons['Zoom'].classList.remove('active');\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function () {\n", - " // Called whenever the canvas gets updated.\n", - " this.send_message('ack', {});\n", - "};\n", - "\n", - "// A function to construct a web socket function for onmessage handling.\n", - "// Called in the figure constructor.\n", - "mpl.figure.prototype._make_on_message_function = function (fig) {\n", - " return function socket_on_message(evt) {\n", - " if (evt.data instanceof Blob) {\n", - " /* FIXME: We get \"Resource interpreted as Image but\n", - " * transferred with MIME type text/plain:\" errors on\n", - " * Chrome. But how to set the MIME type? It doesn't seem\n", - " * to be part of the websocket stream */\n", - " evt.data.type = 'image/png';\n", - "\n", - " /* Free the memory for the previous frames */\n", - " if (fig.imageObj.src) {\n", - " (window.URL || window.webkitURL).revokeObjectURL(\n", - " fig.imageObj.src\n", - " );\n", - " }\n", - "\n", - " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", - " evt.data\n", - " );\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " } else if (\n", - " typeof evt.data === 'string' &&\n", - " evt.data.slice(0, 21) === 'data:image/png;base64'\n", - " ) {\n", - " fig.imageObj.src = evt.data;\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - "\n", - " var msg = JSON.parse(evt.data);\n", - " var msg_type = msg['type'];\n", - "\n", - " // Call the \"handle_{type}\" callback, which takes\n", - " // the figure and JSON message as its only arguments.\n", - " try {\n", - " var callback = fig['handle_' + msg_type];\n", - " } catch (e) {\n", - " console.log(\n", - " \"No handler for the '\" + msg_type + \"' message type: \",\n", - " msg\n", - " );\n", - " return;\n", - " }\n", - "\n", - " if (callback) {\n", - " try {\n", - " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", - " callback(fig, msg);\n", - " } catch (e) {\n", - " console.log(\n", - " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", - " e,\n", - " e.stack,\n", - " msg\n", - " );\n", - " }\n", - " }\n", - " };\n", - "};\n", - "\n", - "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", - "mpl.findpos = function (e) {\n", - " //this section is from http://www.quirksmode.org/js/events_properties.html\n", - " var targ;\n", - " if (!e) {\n", - " e = window.event;\n", - " }\n", - " if (e.target) {\n", - " targ = e.target;\n", - " } else if (e.srcElement) {\n", - " targ = e.srcElement;\n", - " }\n", - " if (targ.nodeType === 3) {\n", - " // defeat Safari bug\n", - " targ = targ.parentNode;\n", - " }\n", - "\n", - " // pageX,Y are the mouse positions relative to the document\n", - " var boundingRect = targ.getBoundingClientRect();\n", - " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", - " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", - "\n", - " return { x: x, y: y };\n", - "};\n", - "\n", - "/*\n", - " * return a copy of an object with only non-object keys\n", - " * we need this to avoid circular references\n", - " * http://stackoverflow.com/a/24161582/3208463\n", - " */\n", - "function simpleKeys(original) {\n", - " return Object.keys(original).reduce(function (obj, key) {\n", - " if (typeof original[key] !== 'object') {\n", - " obj[key] = original[key];\n", - " }\n", - " return obj;\n", - " }, {});\n", - "}\n", - "\n", - "mpl.figure.prototype.mouse_event = function (event, name) {\n", - " var canvas_pos = mpl.findpos(event);\n", - "\n", - " if (name === 'button_press') {\n", - " this.canvas.focus();\n", - " this.canvas_div.focus();\n", - " }\n", - "\n", - " var x = canvas_pos.x * this.ratio;\n", - " var y = canvas_pos.y * this.ratio;\n", - "\n", - " this.send_message(name, {\n", - " x: x,\n", - " y: y,\n", - " button: event.button,\n", - " step: event.step,\n", - " guiEvent: simpleKeys(event),\n", - " });\n", - "\n", - " /* This prevents the web browser from automatically changing to\n", - " * the text insertion cursor when the button is pressed. We want\n", - " * to control all of the cursor setting manually through the\n", - " * 'cursor' event from matplotlib */\n", - " event.preventDefault();\n", - " return false;\n", - "};\n", - "\n", - "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", - " // Handle any extra behaviour associated with a key event\n", - "};\n", - "\n", - "mpl.figure.prototype.key_event = function (event, name) {\n", - " // Prevent repeat events\n", - " if (name === 'key_press') {\n", - " if (event.which === this._key) {\n", - " return;\n", - " } else {\n", - " this._key = event.which;\n", - " }\n", - " }\n", - " if (name === 'key_release') {\n", - " this._key = null;\n", - " }\n", - "\n", - " var value = '';\n", - " if (event.ctrlKey && event.which !== 17) {\n", - " value += 'ctrl+';\n", - " }\n", - " if (event.altKey && event.which !== 18) {\n", - " value += 'alt+';\n", - " }\n", - " if (event.shiftKey && event.which !== 16) {\n", - " value += 'shift+';\n", - " }\n", - "\n", - " value += 'k';\n", - " value += event.which.toString();\n", - "\n", - " this._key_event_extra(event, name);\n", - "\n", - " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", - " return false;\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", - " if (name === 'download') {\n", - " this.handle_save(this, null);\n", - " } else {\n", - " this.send_message('toolbar_button', { name: name });\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", - " this.message.textContent = tooltip;\n", - "};\n", - "\n", - "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", - "// prettier-ignore\n", - "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", - "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", - "\n", - "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", - "\n", - "mpl.default_extension = \"png\";/* global mpl */\n", - "\n", - "var comm_websocket_adapter = function (comm) {\n", - " // Create a \"websocket\"-like object which calls the given IPython comm\n", - " // object with the appropriate methods. Currently this is a non binary\n", - " // socket, so there is still some room for performance tuning.\n", - " var ws = {};\n", - "\n", - " ws.close = function () {\n", - " comm.close();\n", - " };\n", - " ws.send = function (m) {\n", - " //console.log('sending', m);\n", - " comm.send(m);\n", - " };\n", - " // Register the callback with on_msg.\n", - " comm.on_msg(function (msg) {\n", - " //console.log('receiving', msg['content']['data'], msg);\n", - " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", - " ws.onmessage(msg['content']['data']);\n", - " });\n", - " return ws;\n", - "};\n", - "\n", - "mpl.mpl_figure_comm = function (comm, msg) {\n", - " // This is the function which gets called when the mpl process\n", - " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", - "\n", - " var id = msg.content.data.id;\n", - " // Get hold of the div created by the display call when the Comm\n", - " // socket was opened in Python.\n", - " var element = document.getElementById(id);\n", - " var ws_proxy = comm_websocket_adapter(comm);\n", - "\n", - " function ondownload(figure, _format) {\n", - " window.open(figure.canvas.toDataURL());\n", - " }\n", - "\n", - " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", - "\n", - " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", - " // web socket which is closed, not our websocket->open comm proxy.\n", - " ws_proxy.onopen();\n", - "\n", - " fig.parent_element = element;\n", - " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", - " if (!fig.cell_info) {\n", - " console.error('Failed to find cell for figure', id, fig);\n", - " return;\n", - " }\n", - " fig.cell_info[0].output_area.element.on(\n", - " 'cleared',\n", - " { fig: fig },\n", - " fig._remove_fig_handler\n", - " );\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_close = function (fig, msg) {\n", - " var width = fig.canvas.width / fig.ratio;\n", - " fig.cell_info[0].output_area.element.off(\n", - " 'cleared',\n", - " fig._remove_fig_handler\n", - " );\n", - " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", - "\n", - " // Update the output cell to use the data from the current canvas.\n", - " fig.push_to_output();\n", - " var dataURL = fig.canvas.toDataURL();\n", - " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", - " // the notebook keyboard shortcuts fail.\n", - " IPython.keyboard_manager.enable();\n", - " fig.parent_element.innerHTML =\n", - " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", - " fig.close_ws(fig, msg);\n", - "};\n", - "\n", - "mpl.figure.prototype.close_ws = function (fig, msg) {\n", - " fig.send_message('closing', msg);\n", - " // fig.ws.close()\n", - "};\n", - "\n", - "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", - " // Turn the data on the canvas into data in the output cell.\n", - " var width = this.canvas.width / this.ratio;\n", - " var dataURL = this.canvas.toDataURL();\n", - " this.cell_info[1]['text/html'] =\n", - " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", - "};\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function () {\n", - " // Tell IPython that the notebook contents must change.\n", - " IPython.notebook.set_dirty(true);\n", - " this.send_message('ack', {});\n", - " var fig = this;\n", - " // Wait a second, then push the new image to the DOM so\n", - " // that it is saved nicely (might be nice to debounce this).\n", - " setTimeout(function () {\n", - " fig.push_to_output();\n", - " }, 1000);\n", - "};\n", - "\n", - "mpl.figure.prototype._init_toolbar = function () {\n", - " var fig = this;\n", - "\n", - " var toolbar = document.createElement('div');\n", - " toolbar.classList = 'btn-toolbar';\n", - " this.root.appendChild(toolbar);\n", - "\n", - " function on_click_closure(name) {\n", - " return function (_event) {\n", - " return fig.toolbar_button_onclick(name);\n", - " };\n", - " }\n", - "\n", - " function on_mouseover_closure(tooltip) {\n", - " return function (event) {\n", - " if (!event.currentTarget.disabled) {\n", - " return fig.toolbar_button_onmouseover(tooltip);\n", - " }\n", - " };\n", - " }\n", - "\n", - " fig.buttons = {};\n", - " var buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'btn-group';\n", - " var button;\n", - " for (var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " /* Instead of a spacer, we start a new button group. */\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - " buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'btn-group';\n", - " continue;\n", - " }\n", - "\n", - " button = fig.buttons[name] = document.createElement('button');\n", - " button.classList = 'btn btn-default';\n", - " button.href = '#';\n", - " button.title = name;\n", - " button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n", - " button.addEventListener('click', on_click_closure(method_name));\n", - " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", - " buttonGroup.appendChild(button);\n", - " }\n", - "\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - "\n", - " // Add the status bar.\n", - " var status_bar = document.createElement('span');\n", - " status_bar.classList = 'mpl-message pull-right';\n", - " toolbar.appendChild(status_bar);\n", - " this.message = status_bar;\n", - "\n", - " // Add the close button to the window.\n", - " var buttongrp = document.createElement('div');\n", - " buttongrp.classList = 'btn-group inline pull-right';\n", - " button = document.createElement('button');\n", - " button.classList = 'btn btn-mini btn-primary';\n", - " button.href = '#';\n", - " button.title = 'Stop Interaction';\n", - " button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n", - " button.addEventListener('click', function (_evt) {\n", - " fig.handle_close(fig, {});\n", - " });\n", - " button.addEventListener(\n", - " 'mouseover',\n", - " on_mouseover_closure('Stop Interaction')\n", - " );\n", - " buttongrp.appendChild(button);\n", - " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", - " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", - "};\n", - "\n", - "mpl.figure.prototype._remove_fig_handler = function (event) {\n", - " var fig = event.data.fig;\n", - " if (event.target !== this) {\n", - " // Ignore bubbled events from children.\n", - " return;\n", - " }\n", - " fig.close_ws(fig, {});\n", - "};\n", - "\n", - "mpl.figure.prototype._root_extra_style = function (el) {\n", - " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", - "};\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function (el) {\n", - " // this is important to make the div 'focusable\n", - " el.setAttribute('tabindex', 0);\n", - " // reach out to IPython and tell the keyboard manager to turn it's self\n", - " // off when our div gets focus\n", - "\n", - " // location in version 3\n", - " if (IPython.notebook.keyboard_manager) {\n", - " IPython.notebook.keyboard_manager.register_events(el);\n", - " } else {\n", - " // location in version 2\n", - " IPython.keyboard_manager.register_events(el);\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", - " var manager = IPython.notebook.keyboard_manager;\n", - " if (!manager) {\n", - " manager = IPython.keyboard_manager;\n", - " }\n", - "\n", - " // Check for shift+enter\n", - " if (event.shiftKey && event.which === 13) {\n", - " this.canvas_div.blur();\n", - " // select the cell after this one\n", - " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", - " IPython.notebook.select(index + 1);\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", - " fig.ondownload(fig, null);\n", - "};\n", - "\n", - "mpl.find_output_cell = function (html_output) {\n", - " // Return the cell and output element which can be found *uniquely* in the notebook.\n", - " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", - " // IPython event is triggered only after the cells have been serialised, which for\n", - " // our purposes (turning an active figure into a static one), is too late.\n", - " var cells = IPython.notebook.get_cells();\n", - " var ncells = cells.length;\n", - " for (var i = 0; i < ncells; i++) {\n", - " var cell = cells[i];\n", - " if (cell.cell_type === 'code') {\n", - " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", - " var data = cell.output_area.outputs[j];\n", - " if (data.data) {\n", - " // IPython >= 3 moved mimebundle to data attribute of output\n", - " data = data.data;\n", - " }\n", - " if (data['text/html'] === html_output) {\n", - " return [cell, data, j];\n", - " }\n", - " }\n", - " }\n", - " }\n", - "};\n", - "\n", - "// Register the function which deals with the matplotlib target/channel.\n", - "// The kernel may be null if the page has been refreshed.\n", - "if (IPython.notebook.kernel !== null) {\n", - " IPython.notebook.kernel.comm_manager.register_target(\n", - " 'matplotlib',\n", - " mpl.mpl_figure_comm\n", - " );\n", - "}\n" - ], - "text/plain": [ - "<IPython.core.display.Javascript object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "<img src=\"\" width=\"640\">" - ], - "text/plain": [ - "<IPython.core.display.HTML object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "df_impf = pd.read_csv('Impfquoten.csv')\n", - "df_impf = df_impf[df_impf.Bundesland!=\"Deutschland\"].drop('Datum', axis=1) # Drop column 'Datum', row \"Deutschland\"\n", - "df_impf = df_impf.set_index('Bundesland')\n", - "#df_impf.columns\n", - "df_impf.sort_values(by='Impfquote').plot(style='.')\n", - "#Merge both dataset into a combined one\n", - "df_total = pd.merge(df_impf,uebersterb, left_index=True, right_index=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "8e99105a", - "metadata": {}, - "outputs": [ - { - "data": { - "application/javascript": [ - "/* Put everything inside the global mpl namespace */\n", - "/* global mpl */\n", - "window.mpl = {};\n", - "\n", - "mpl.get_websocket_type = function () {\n", - " if (typeof WebSocket !== 'undefined') {\n", - " return WebSocket;\n", - " } else if (typeof MozWebSocket !== 'undefined') {\n", - " return MozWebSocket;\n", - " } else {\n", - " alert(\n", - " 'Your browser does not have WebSocket support. ' +\n", - " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", - " 'Firefox 4 and 5 are also supported but you ' +\n", - " 'have to enable WebSockets in about:config.'\n", - " );\n", - " }\n", - "};\n", - "\n", - "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", - " this.id = figure_id;\n", - "\n", - " this.ws = websocket;\n", - "\n", - " this.supports_binary = this.ws.binaryType !== undefined;\n", - "\n", - " if (!this.supports_binary) {\n", - " var warnings = document.getElementById('mpl-warnings');\n", - " if (warnings) {\n", - " warnings.style.display = 'block';\n", - " warnings.textContent =\n", - " 'This browser does not support binary websocket messages. ' +\n", - " 'Performance may be slow.';\n", - " }\n", - " }\n", - "\n", - " this.imageObj = new Image();\n", - "\n", - " this.context = undefined;\n", - " this.message = undefined;\n", - " this.canvas = undefined;\n", - " this.rubberband_canvas = undefined;\n", - " this.rubberband_context = undefined;\n", - " this.format_dropdown = undefined;\n", - "\n", - " this.image_mode = 'full';\n", - "\n", - " this.root = document.createElement('div');\n", - " this.root.setAttribute('style', 'display: inline-block');\n", - " this._root_extra_style(this.root);\n", - "\n", - " parent_element.appendChild(this.root);\n", - "\n", - " this._init_header(this);\n", - " this._init_canvas(this);\n", - " this._init_toolbar(this);\n", - "\n", - " var fig = this;\n", - "\n", - " this.waiting = false;\n", - "\n", - " this.ws.onopen = function () {\n", - " fig.send_message('supports_binary', { value: fig.supports_binary });\n", - " fig.send_message('send_image_mode', {});\n", - " if (fig.ratio !== 1) {\n", - " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", - " }\n", - " fig.send_message('refresh', {});\n", - " };\n", - "\n", - " this.imageObj.onload = function () {\n", - " if (fig.image_mode === 'full') {\n", - " // Full images could contain transparency (where diff images\n", - " // almost always do), so we need to clear the canvas so that\n", - " // there is no ghosting.\n", - " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", - " }\n", - " fig.context.drawImage(fig.imageObj, 0, 0);\n", - " };\n", - "\n", - " this.imageObj.onunload = function () {\n", - " fig.ws.close();\n", - " };\n", - "\n", - " this.ws.onmessage = this._make_on_message_function(this);\n", - "\n", - " this.ondownload = ondownload;\n", - "};\n", - "\n", - "mpl.figure.prototype._init_header = function () {\n", - " var titlebar = document.createElement('div');\n", - " titlebar.classList =\n", - " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", - " var titletext = document.createElement('div');\n", - " titletext.classList = 'ui-dialog-title';\n", - " titletext.setAttribute(\n", - " 'style',\n", - " 'width: 100%; text-align: center; padding: 3px;'\n", - " );\n", - " titlebar.appendChild(titletext);\n", - " this.root.appendChild(titlebar);\n", - " this.header = titletext;\n", - "};\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", - "\n", - "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", - "\n", - "mpl.figure.prototype._init_canvas = function () {\n", - " var fig = this;\n", - "\n", - " var canvas_div = (this.canvas_div = document.createElement('div'));\n", - " canvas_div.setAttribute(\n", - " 'style',\n", - " 'border: 1px solid #ddd;' +\n", - " 'box-sizing: content-box;' +\n", - " 'clear: both;' +\n", - " 'min-height: 1px;' +\n", - " 'min-width: 1px;' +\n", - " 'outline: 0;' +\n", - " 'overflow: hidden;' +\n", - " 'position: relative;' +\n", - " 'resize: both;'\n", - " );\n", - "\n", - " function on_keyboard_event_closure(name) {\n", - " return function (event) {\n", - " return fig.key_event(event, name);\n", - " };\n", - " }\n", - "\n", - " canvas_div.addEventListener(\n", - " 'keydown',\n", - " on_keyboard_event_closure('key_press')\n", - " );\n", - " canvas_div.addEventListener(\n", - " 'keyup',\n", - " on_keyboard_event_closure('key_release')\n", - " );\n", - "\n", - " this._canvas_extra_style(canvas_div);\n", - " this.root.appendChild(canvas_div);\n", - "\n", - " var canvas = (this.canvas = document.createElement('canvas'));\n", - " canvas.classList.add('mpl-canvas');\n", - " canvas.setAttribute('style', 'box-sizing: content-box;');\n", - "\n", - " this.context = canvas.getContext('2d');\n", - "\n", - " var backingStore =\n", - " this.context.backingStorePixelRatio ||\n", - " this.context.webkitBackingStorePixelRatio ||\n", - " this.context.mozBackingStorePixelRatio ||\n", - " this.context.msBackingStorePixelRatio ||\n", - " this.context.oBackingStorePixelRatio ||\n", - " this.context.backingStorePixelRatio ||\n", - " 1;\n", - "\n", - " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", - "\n", - " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", - " 'canvas'\n", - " ));\n", - " rubberband_canvas.setAttribute(\n", - " 'style',\n", - " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", - " );\n", - "\n", - " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", - " if (this.ResizeObserver === undefined) {\n", - " if (window.ResizeObserver !== undefined) {\n", - " this.ResizeObserver = window.ResizeObserver;\n", - " } else {\n", - " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", - " this.ResizeObserver = obs.ResizeObserver;\n", - " }\n", - " }\n", - "\n", - " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", - " var nentries = entries.length;\n", - " for (var i = 0; i < nentries; i++) {\n", - " var entry = entries[i];\n", - " var width, height;\n", - " if (entry.contentBoxSize) {\n", - " if (entry.contentBoxSize instanceof Array) {\n", - " // Chrome 84 implements new version of spec.\n", - " width = entry.contentBoxSize[0].inlineSize;\n", - " height = entry.contentBoxSize[0].blockSize;\n", - " } else {\n", - " // Firefox implements old version of spec.\n", - " width = entry.contentBoxSize.inlineSize;\n", - " height = entry.contentBoxSize.blockSize;\n", - " }\n", - " } else {\n", - " // Chrome <84 implements even older version of spec.\n", - " width = entry.contentRect.width;\n", - " height = entry.contentRect.height;\n", - " }\n", - "\n", - " // Keep the size of the canvas and rubber band canvas in sync with\n", - " // the canvas container.\n", - " if (entry.devicePixelContentBoxSize) {\n", - " // Chrome 84 implements new version of spec.\n", - " canvas.setAttribute(\n", - " 'width',\n", - " entry.devicePixelContentBoxSize[0].inlineSize\n", - " );\n", - " canvas.setAttribute(\n", - " 'height',\n", - " entry.devicePixelContentBoxSize[0].blockSize\n", - " );\n", - " } else {\n", - " canvas.setAttribute('width', width * fig.ratio);\n", - " canvas.setAttribute('height', height * fig.ratio);\n", - " }\n", - " canvas.setAttribute(\n", - " 'style',\n", - " 'width: ' + width + 'px; height: ' + height + 'px;'\n", - " );\n", - "\n", - " rubberband_canvas.setAttribute('width', width);\n", - " rubberband_canvas.setAttribute('height', height);\n", - "\n", - " // And update the size in Python. We ignore the initial 0/0 size\n", - " // that occurs as the element is placed into the DOM, which should\n", - " // otherwise not happen due to the minimum size styling.\n", - " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", - " fig.request_resize(width, height);\n", - " }\n", - " }\n", - " });\n", - " this.resizeObserverInstance.observe(canvas_div);\n", - "\n", - " function on_mouse_event_closure(name) {\n", - " return function (event) {\n", - " return fig.mouse_event(event, name);\n", - " };\n", - " }\n", - "\n", - " rubberband_canvas.addEventListener(\n", - " 'mousedown',\n", - " on_mouse_event_closure('button_press')\n", - " );\n", - " rubberband_canvas.addEventListener(\n", - " 'mouseup',\n", - " on_mouse_event_closure('button_release')\n", - " );\n", - " // Throttle sequential mouse events to 1 every 20ms.\n", - " rubberband_canvas.addEventListener(\n", - " 'mousemove',\n", - " on_mouse_event_closure('motion_notify')\n", - " );\n", - "\n", - " rubberband_canvas.addEventListener(\n", - " 'mouseenter',\n", - " on_mouse_event_closure('figure_enter')\n", - " );\n", - " rubberband_canvas.addEventListener(\n", - " 'mouseleave',\n", - " on_mouse_event_closure('figure_leave')\n", - " );\n", - "\n", - " canvas_div.addEventListener('wheel', function (event) {\n", - " if (event.deltaY < 0) {\n", - " event.step = 1;\n", - " } else {\n", - " event.step = -1;\n", - " }\n", - " on_mouse_event_closure('scroll')(event);\n", - " });\n", - "\n", - " canvas_div.appendChild(canvas);\n", - " canvas_div.appendChild(rubberband_canvas);\n", - "\n", - " this.rubberband_context = rubberband_canvas.getContext('2d');\n", - " this.rubberband_context.strokeStyle = '#000000';\n", - "\n", - " this._resize_canvas = function (width, height, forward) {\n", - " if (forward) {\n", - " canvas_div.style.width = width + 'px';\n", - " canvas_div.style.height = height + 'px';\n", - " }\n", - " };\n", - "\n", - " // Disable right mouse context menu.\n", - " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", - " event.preventDefault();\n", - " return false;\n", - " });\n", - "\n", - " function set_focus() {\n", - " canvas.focus();\n", - " canvas_div.focus();\n", - " }\n", - "\n", - " window.setTimeout(set_focus, 100);\n", - "};\n", - "\n", - "mpl.figure.prototype._init_toolbar = function () {\n", - " var fig = this;\n", - "\n", - " var toolbar = document.createElement('div');\n", - " toolbar.classList = 'mpl-toolbar';\n", - " this.root.appendChild(toolbar);\n", - "\n", - " function on_click_closure(name) {\n", - " return function (_event) {\n", - " return fig.toolbar_button_onclick(name);\n", - " };\n", - " }\n", - "\n", - " function on_mouseover_closure(tooltip) {\n", - " return function (event) {\n", - " if (!event.currentTarget.disabled) {\n", - " return fig.toolbar_button_onmouseover(tooltip);\n", - " }\n", - " };\n", - " }\n", - "\n", - " fig.buttons = {};\n", - " var buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'mpl-button-group';\n", - " for (var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " /* Instead of a spacer, we start a new button group. */\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - " buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'mpl-button-group';\n", - " continue;\n", - " }\n", - "\n", - " var button = (fig.buttons[name] = document.createElement('button'));\n", - " button.classList = 'mpl-widget';\n", - " button.setAttribute('role', 'button');\n", - " button.setAttribute('aria-disabled', 'false');\n", - " button.addEventListener('click', on_click_closure(method_name));\n", - " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", - "\n", - " var icon_img = document.createElement('img');\n", - " icon_img.src = '_images/' + image + '.png';\n", - " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", - " icon_img.alt = tooltip;\n", - " button.appendChild(icon_img);\n", - "\n", - " buttonGroup.appendChild(button);\n", - " }\n", - "\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - "\n", - " var fmt_picker = document.createElement('select');\n", - " fmt_picker.classList = 'mpl-widget';\n", - " toolbar.appendChild(fmt_picker);\n", - " this.format_dropdown = fmt_picker;\n", - "\n", - " for (var ind in mpl.extensions) {\n", - " var fmt = mpl.extensions[ind];\n", - " var option = document.createElement('option');\n", - " option.selected = fmt === mpl.default_extension;\n", - " option.innerHTML = fmt;\n", - " fmt_picker.appendChild(option);\n", - " }\n", - "\n", - " var status_bar = document.createElement('span');\n", - " status_bar.classList = 'mpl-message';\n", - " toolbar.appendChild(status_bar);\n", - " this.message = status_bar;\n", - "};\n", - "\n", - "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", - " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", - " // which will in turn request a refresh of the image.\n", - " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", - "};\n", - "\n", - "mpl.figure.prototype.send_message = function (type, properties) {\n", - " properties['type'] = type;\n", - " properties['figure_id'] = this.id;\n", - " this.ws.send(JSON.stringify(properties));\n", - "};\n", - "\n", - "mpl.figure.prototype.send_draw_message = function () {\n", - " if (!this.waiting) {\n", - " this.waiting = true;\n", - " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", - " var format_dropdown = fig.format_dropdown;\n", - " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", - " fig.ondownload(fig, format);\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", - " var size = msg['size'];\n", - " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", - " fig._resize_canvas(size[0], size[1], msg['forward']);\n", - " fig.send_message('refresh', {});\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", - " var x0 = msg['x0'] / fig.ratio;\n", - " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", - " var x1 = msg['x1'] / fig.ratio;\n", - " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", - " x0 = Math.floor(x0) + 0.5;\n", - " y0 = Math.floor(y0) + 0.5;\n", - " x1 = Math.floor(x1) + 0.5;\n", - " y1 = Math.floor(y1) + 0.5;\n", - " var min_x = Math.min(x0, x1);\n", - " var min_y = Math.min(y0, y1);\n", - " var width = Math.abs(x1 - x0);\n", - " var height = Math.abs(y1 - y0);\n", - "\n", - " fig.rubberband_context.clearRect(\n", - " 0,\n", - " 0,\n", - " fig.canvas.width / fig.ratio,\n", - " fig.canvas.height / fig.ratio\n", - " );\n", - "\n", - " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", - " // Updates the figure title.\n", - " fig.header.textContent = msg['label'];\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", - " var cursor = msg['cursor'];\n", - " switch (cursor) {\n", - " case 0:\n", - " cursor = 'pointer';\n", - " break;\n", - " case 1:\n", - " cursor = 'default';\n", - " break;\n", - " case 2:\n", - " cursor = 'crosshair';\n", - " break;\n", - " case 3:\n", - " cursor = 'move';\n", - " break;\n", - " }\n", - " fig.rubberband_canvas.style.cursor = cursor;\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_message = function (fig, msg) {\n", - " fig.message.textContent = msg['message'];\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", - " // Request the server to send over a new figure.\n", - " fig.send_draw_message();\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", - " fig.image_mode = msg['mode'];\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", - " for (var key in msg) {\n", - " if (!(key in fig.buttons)) {\n", - " continue;\n", - " }\n", - " fig.buttons[key].disabled = !msg[key];\n", - " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", - " if (msg['mode'] === 'PAN') {\n", - " fig.buttons['Pan'].classList.add('active');\n", - " fig.buttons['Zoom'].classList.remove('active');\n", - " } else if (msg['mode'] === 'ZOOM') {\n", - " fig.buttons['Pan'].classList.remove('active');\n", - " fig.buttons['Zoom'].classList.add('active');\n", - " } else {\n", - " fig.buttons['Pan'].classList.remove('active');\n", - " fig.buttons['Zoom'].classList.remove('active');\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function () {\n", - " // Called whenever the canvas gets updated.\n", - " this.send_message('ack', {});\n", - "};\n", - "\n", - "// A function to construct a web socket function for onmessage handling.\n", - "// Called in the figure constructor.\n", - "mpl.figure.prototype._make_on_message_function = function (fig) {\n", - " return function socket_on_message(evt) {\n", - " if (evt.data instanceof Blob) {\n", - " /* FIXME: We get \"Resource interpreted as Image but\n", - " * transferred with MIME type text/plain:\" errors on\n", - " * Chrome. But how to set the MIME type? It doesn't seem\n", - " * to be part of the websocket stream */\n", - " evt.data.type = 'image/png';\n", - "\n", - " /* Free the memory for the previous frames */\n", - " if (fig.imageObj.src) {\n", - " (window.URL || window.webkitURL).revokeObjectURL(\n", - " fig.imageObj.src\n", - " );\n", - " }\n", - "\n", - " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", - " evt.data\n", - " );\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " } else if (\n", - " typeof evt.data === 'string' &&\n", - " evt.data.slice(0, 21) === 'data:image/png;base64'\n", - " ) {\n", - " fig.imageObj.src = evt.data;\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - "\n", - " var msg = JSON.parse(evt.data);\n", - " var msg_type = msg['type'];\n", - "\n", - " // Call the \"handle_{type}\" callback, which takes\n", - " // the figure and JSON message as its only arguments.\n", - " try {\n", - " var callback = fig['handle_' + msg_type];\n", - " } catch (e) {\n", - " console.log(\n", - " \"No handler for the '\" + msg_type + \"' message type: \",\n", - " msg\n", - " );\n", - " return;\n", - " }\n", - "\n", - " if (callback) {\n", - " try {\n", - " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", - " callback(fig, msg);\n", - " } catch (e) {\n", - " console.log(\n", - " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", - " e,\n", - " e.stack,\n", - " msg\n", - " );\n", - " }\n", - " }\n", - " };\n", - "};\n", - "\n", - "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", - "mpl.findpos = function (e) {\n", - " //this section is from http://www.quirksmode.org/js/events_properties.html\n", - " var targ;\n", - " if (!e) {\n", - " e = window.event;\n", - " }\n", - " if (e.target) {\n", - " targ = e.target;\n", - " } else if (e.srcElement) {\n", - " targ = e.srcElement;\n", - " }\n", - " if (targ.nodeType === 3) {\n", - " // defeat Safari bug\n", - " targ = targ.parentNode;\n", - " }\n", - "\n", - " // pageX,Y are the mouse positions relative to the document\n", - " var boundingRect = targ.getBoundingClientRect();\n", - " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", - " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", - "\n", - " return { x: x, y: y };\n", - "};\n", - "\n", - "/*\n", - " * return a copy of an object with only non-object keys\n", - " * we need this to avoid circular references\n", - " * http://stackoverflow.com/a/24161582/3208463\n", - " */\n", - "function simpleKeys(original) {\n", - " return Object.keys(original).reduce(function (obj, key) {\n", - " if (typeof original[key] !== 'object') {\n", - " obj[key] = original[key];\n", - " }\n", - " return obj;\n", - " }, {});\n", - "}\n", - "\n", - "mpl.figure.prototype.mouse_event = function (event, name) {\n", - " var canvas_pos = mpl.findpos(event);\n", - "\n", - " if (name === 'button_press') {\n", - " this.canvas.focus();\n", - " this.canvas_div.focus();\n", - " }\n", - "\n", - " var x = canvas_pos.x * this.ratio;\n", - " var y = canvas_pos.y * this.ratio;\n", - "\n", - " this.send_message(name, {\n", - " x: x,\n", - " y: y,\n", - " button: event.button,\n", - " step: event.step,\n", - " guiEvent: simpleKeys(event),\n", - " });\n", - "\n", - " /* This prevents the web browser from automatically changing to\n", - " * the text insertion cursor when the button is pressed. We want\n", - " * to control all of the cursor setting manually through the\n", - " * 'cursor' event from matplotlib */\n", - " event.preventDefault();\n", - " return false;\n", - "};\n", - "\n", - "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", - " // Handle any extra behaviour associated with a key event\n", - "};\n", - "\n", - "mpl.figure.prototype.key_event = function (event, name) {\n", - " // Prevent repeat events\n", - " if (name === 'key_press') {\n", - " if (event.which === this._key) {\n", - " return;\n", - " } else {\n", - " this._key = event.which;\n", - " }\n", - " }\n", - " if (name === 'key_release') {\n", - " this._key = null;\n", - " }\n", - "\n", - " var value = '';\n", - " if (event.ctrlKey && event.which !== 17) {\n", - " value += 'ctrl+';\n", - " }\n", - " if (event.altKey && event.which !== 18) {\n", - " value += 'alt+';\n", - " }\n", - " if (event.shiftKey && event.which !== 16) {\n", - " value += 'shift+';\n", - " }\n", - "\n", - " value += 'k';\n", - " value += event.which.toString();\n", - "\n", - " this._key_event_extra(event, name);\n", - "\n", - " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", - " return false;\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", - " if (name === 'download') {\n", - " this.handle_save(this, null);\n", - " } else {\n", - " this.send_message('toolbar_button', { name: name });\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", - " this.message.textContent = tooltip;\n", - "};\n", - "\n", - "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", - "// prettier-ignore\n", - "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", - "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", - "\n", - "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", - "\n", - "mpl.default_extension = \"png\";/* global mpl */\n", - "\n", - "var comm_websocket_adapter = function (comm) {\n", - " // Create a \"websocket\"-like object which calls the given IPython comm\n", - " // object with the appropriate methods. Currently this is a non binary\n", - " // socket, so there is still some room for performance tuning.\n", - " var ws = {};\n", - "\n", - " ws.close = function () {\n", - " comm.close();\n", - " };\n", - " ws.send = function (m) {\n", - " //console.log('sending', m);\n", - " comm.send(m);\n", - " };\n", - " // Register the callback with on_msg.\n", - " comm.on_msg(function (msg) {\n", - " //console.log('receiving', msg['content']['data'], msg);\n", - " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", - " ws.onmessage(msg['content']['data']);\n", - " });\n", - " return ws;\n", - "};\n", - "\n", - "mpl.mpl_figure_comm = function (comm, msg) {\n", - " // This is the function which gets called when the mpl process\n", - " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", - "\n", - " var id = msg.content.data.id;\n", - " // Get hold of the div created by the display call when the Comm\n", - " // socket was opened in Python.\n", - " var element = document.getElementById(id);\n", - " var ws_proxy = comm_websocket_adapter(comm);\n", - "\n", - " function ondownload(figure, _format) {\n", - " window.open(figure.canvas.toDataURL());\n", - " }\n", - "\n", - " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", - "\n", - " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", - " // web socket which is closed, not our websocket->open comm proxy.\n", - " ws_proxy.onopen();\n", - "\n", - " fig.parent_element = element;\n", - " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", - " if (!fig.cell_info) {\n", - " console.error('Failed to find cell for figure', id, fig);\n", - " return;\n", - " }\n", - " fig.cell_info[0].output_area.element.on(\n", - " 'cleared',\n", - " { fig: fig },\n", - " fig._remove_fig_handler\n", - " );\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_close = function (fig, msg) {\n", - " var width = fig.canvas.width / fig.ratio;\n", - " fig.cell_info[0].output_area.element.off(\n", - " 'cleared',\n", - " fig._remove_fig_handler\n", - " );\n", - " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", - "\n", - " // Update the output cell to use the data from the current canvas.\n", - " fig.push_to_output();\n", - " var dataURL = fig.canvas.toDataURL();\n", - " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", - " // the notebook keyboard shortcuts fail.\n", - " IPython.keyboard_manager.enable();\n", - " fig.parent_element.innerHTML =\n", - " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", - " fig.close_ws(fig, msg);\n", - "};\n", - "\n", - "mpl.figure.prototype.close_ws = function (fig, msg) {\n", - " fig.send_message('closing', msg);\n", - " // fig.ws.close()\n", - "};\n", - "\n", - "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", - " // Turn the data on the canvas into data in the output cell.\n", - " var width = this.canvas.width / this.ratio;\n", - " var dataURL = this.canvas.toDataURL();\n", - " this.cell_info[1]['text/html'] =\n", - " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", - "};\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function () {\n", - " // Tell IPython that the notebook contents must change.\n", - " IPython.notebook.set_dirty(true);\n", - " this.send_message('ack', {});\n", - " var fig = this;\n", - " // Wait a second, then push the new image to the DOM so\n", - " // that it is saved nicely (might be nice to debounce this).\n", - " setTimeout(function () {\n", - " fig.push_to_output();\n", - " }, 1000);\n", - "};\n", - "\n", - "mpl.figure.prototype._init_toolbar = function () {\n", - " var fig = this;\n", - "\n", - " var toolbar = document.createElement('div');\n", - " toolbar.classList = 'btn-toolbar';\n", - " this.root.appendChild(toolbar);\n", - "\n", - " function on_click_closure(name) {\n", - " return function (_event) {\n", - " return fig.toolbar_button_onclick(name);\n", - " };\n", - " }\n", - "\n", - " function on_mouseover_closure(tooltip) {\n", - " return function (event) {\n", - " if (!event.currentTarget.disabled) {\n", - " return fig.toolbar_button_onmouseover(tooltip);\n", - " }\n", - " };\n", - " }\n", - "\n", - " fig.buttons = {};\n", - " var buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'btn-group';\n", - " var button;\n", - " for (var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " /* Instead of a spacer, we start a new button group. */\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - " buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'btn-group';\n", - " continue;\n", - " }\n", - "\n", - " button = fig.buttons[name] = document.createElement('button');\n", - " button.classList = 'btn btn-default';\n", - " button.href = '#';\n", - " button.title = name;\n", - " button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n", - " button.addEventListener('click', on_click_closure(method_name));\n", - " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", - " buttonGroup.appendChild(button);\n", - " }\n", - "\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - "\n", - " // Add the status bar.\n", - " var status_bar = document.createElement('span');\n", - " status_bar.classList = 'mpl-message pull-right';\n", - " toolbar.appendChild(status_bar);\n", - " this.message = status_bar;\n", - "\n", - " // Add the close button to the window.\n", - " var buttongrp = document.createElement('div');\n", - " buttongrp.classList = 'btn-group inline pull-right';\n", - " button = document.createElement('button');\n", - " button.classList = 'btn btn-mini btn-primary';\n", - " button.href = '#';\n", - " button.title = 'Stop Interaction';\n", - " button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n", - " button.addEventListener('click', function (_evt) {\n", - " fig.handle_close(fig, {});\n", - " });\n", - " button.addEventListener(\n", - " 'mouseover',\n", - " on_mouseover_closure('Stop Interaction')\n", - " );\n", - " buttongrp.appendChild(button);\n", - " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", - " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", - "};\n", - "\n", - "mpl.figure.prototype._remove_fig_handler = function (event) {\n", - " var fig = event.data.fig;\n", - " if (event.target !== this) {\n", - " // Ignore bubbled events from children.\n", - " return;\n", - " }\n", - " fig.close_ws(fig, {});\n", - "};\n", - "\n", - "mpl.figure.prototype._root_extra_style = function (el) {\n", - " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", - "};\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function (el) {\n", - " // this is important to make the div 'focusable\n", - " el.setAttribute('tabindex', 0);\n", - " // reach out to IPython and tell the keyboard manager to turn it's self\n", - " // off when our div gets focus\n", - "\n", - " // location in version 3\n", - " if (IPython.notebook.keyboard_manager) {\n", - " IPython.notebook.keyboard_manager.register_events(el);\n", - " } else {\n", - " // location in version 2\n", - " IPython.keyboard_manager.register_events(el);\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", - " var manager = IPython.notebook.keyboard_manager;\n", - " if (!manager) {\n", - " manager = IPython.keyboard_manager;\n", - " }\n", - "\n", - " // Check for shift+enter\n", - " if (event.shiftKey && event.which === 13) {\n", - " this.canvas_div.blur();\n", - " // select the cell after this one\n", - " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", - " IPython.notebook.select(index + 1);\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", - " fig.ondownload(fig, null);\n", - "};\n", - "\n", - "mpl.find_output_cell = function (html_output) {\n", - " // Return the cell and output element which can be found *uniquely* in the notebook.\n", - " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", - " // IPython event is triggered only after the cells have been serialised, which for\n", - " // our purposes (turning an active figure into a static one), is too late.\n", - " var cells = IPython.notebook.get_cells();\n", - " var ncells = cells.length;\n", - " for (var i = 0; i < ncells; i++) {\n", - " var cell = cells[i];\n", - " if (cell.cell_type === 'code') {\n", - " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", - " var data = cell.output_area.outputs[j];\n", - " if (data.data) {\n", - " // IPython >= 3 moved mimebundle to data attribute of output\n", - " data = data.data;\n", - " }\n", - " if (data['text/html'] === html_output) {\n", - " return [cell, data, j];\n", - " }\n", - " }\n", - " }\n", - " }\n", - "};\n", - "\n", - "// Register the function which deals with the matplotlib target/channel.\n", - "// The kernel may be null if the page has been refreshed.\n", - "if (IPython.notebook.kernel !== null) {\n", - " IPython.notebook.kernel.comm_manager.register_target(\n", - " 'matplotlib',\n", - " mpl.mpl_figure_comm\n", - " );\n", - "}\n" - ], - "text/plain": [ - "<IPython.core.display.Javascript object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "<img src=\"\" width=\"1000\">" - ], - "text/plain": [ - "<IPython.core.display.HTML object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "Text(58, 1.01, 'Korrelation = -0.809')" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fig, ax = plt.subplots(figsize=(10,7))\n", - "plot1 = df_total.plot.scatter(x=\"Impfquote\",y=\"Übersterblichkeit\",title=\"Übersterblichkeit vs Impfquote\", grid=True,\n", - " ax=ax, style='o', legend=False, s=150, fontsize=18,\n", - " color=range(len(df_total)), colormap='Spectral')\n", - "#ax.legend(plot1,[\"1\",\"2\"],fancybox=True)\n", - "#df_total.head()\n", - "laender_short={\"Schleswig-Holstein\":\"SH\",\n", - "\"Hamburg\":\"HH\",\n", - "\"Niedersachsen\":\"NI\",\n", - "\"Bremen\":\"HB\",\n", - "\"Nordrhein-Westfalen\":\"NRW\",\n", - "\"Hessen\":\"HE\",\n", - "\"Rheinland-Pfalz\":\"RP\",\n", - "\"Baden-Württemberg\":\"BW\",\n", - "\"Bayern\":\"BY\",\n", - "\"Saarland\":\"SA\",\n", - "\"Berlin\":\"BE\",\n", - "\"Brandenburg\":\"BB\",\n", - "\"Mecklenburg-Vorpommern\":\"MV\",\n", - "\"Sachsen\":\"SA\",\n", - "\"Sachsen-Anhalt\":\"S-AN\",\n", - "\"Thüringen\":\"TH\",\n", - "}\n", - "c=0\n", - "correlation = df_total.corr(method=\"pearson\")\n", - "\n", - "for k, v in df_total.iterrows():\n", - " c += 1\n", - " ax.annotate(laender_short[k], v,\n", - " xytext=(9,-3), textcoords='offset points',\n", - " family='sans-serif', fontsize=11)\n", - "ax.set(title='Übersterblichkeit vs Impfquote',\n", - " ylabel='Todesfälle KW1-42 (2021)\\nverglichen mit Durchschnitt 2016-2019',\n", - " xlabel=\"Impfquote (2 Impfungen, Stand 30.11.2021)\\nDaten von DESTATIS, sowie RKI\\n(c)CC-BY\")\n", - "ax.text(58,1.01,\"Korrelation = %0.3f\"%correlation[\"Übersterblichkeit\"][\"Impfquote\"])" - ] - }, - { - "cell_type": "code", - "execution_count": 171, - "id": "426b3884", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "-0.808719600395588" - ] - }, - "execution_count": 171, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "\n" - ] + "source": [] } ], "metadata": { diff --git a/Uebersterblichkeit.png b/Uebersterblichkeit.png index 61b72d1f671768aa20532370bfdbeba9cb8f9aba..099a70af5c5801e5f03a389510ccada9d4b96452 100644 GIT binary patch delta 37095 zcmbPsnEB2b<_(8@>rLNeZOuv2b@k%r5Nph0@y^uU#Ia}%lOAiJLX$>^&;o@MlTIWZ zabdZc>dA0(yMx%KGk3oKR!%!(U>uqLZs+r7e{IiK?$h6V=Z@t4;!D$KR=+nsZ_~^z zu4hqqZ-2dgQc_aQUTM7?v)QL}zrMQq*~?Mhx@^s2hxrzTho1h^3|^+<z`<y5Z@;{L z4MW47J25P*td1OwjLd91?*7}Dd|ZaL?%tltr;{Cvq+{oce>pB+zvqb1&WwvnHeW6{ zFU?ce*5*z=-gmT_->##LS9($1-(P-*rT2th=<Z9GH_4cA`?s;Nv7nqBpCZe#Ug_s0 z_jeXQmwEd8?e_cMeps&xUCpM*l6GcB;JVt!lOGmKgnq1a++XyRYhCQ_XCME4eSKZo z&~W3Gw_o1g7XSaf{(pP@zt8h4Ua#G5Q2i}u`9t1&8ZX-U<;z6gOzIP?f7Ge2(BiPW z?CqSq>n6O3iHWKISZp;lSH}FF99StiSs|Fk@TsV%XsfJs*^e*f6^j?FkJ))Ca2~&$ z&5MtPi{1O%1ehjHoT&G`SITsi&+!HJf4^LQI=Qw`x;~S&_Q8Qhi{fWKGv({A$Cgix zsMvc@nzi=bot=F}u|XHo&(C{X5tEj->~gJn{=E{bz?i^^`c~c5&1}2|rLRJ^AHO)g zZE`^UDxC`{erM!Q9{DrT=ZyTxC0_q-@b(;k&RYBa-rhWS2M30*wNX!h>@@M7rgQMJ zzkTnUH#zg)t~TeY|MhzP{&yNzSy@@-<iG#>{oY!x{M(zz>AydJ{%lzLtK_)k{qFv# ztyzg@W*DYc=@%6j7ykWKdfcM+mr0Ajj+&oFpFV%KERnc*^QMP~heKJ}wlB30S5!6s zd_2K&hCSa*FeBvT{imm=M_%AP_MG)@(#8W>TMs2|+|je>_S&%3^|zmI%eu<7HhOzm zPe%twOMClb*KRSt?c4M2-qQY^HKnQU(GkuqIX8uzI6(2Va^=bsXU-g18N7T$#mA&S z_y7NuZxPt>|KIOeyW0I%e|&s=H|}-q%}uEu9v%-6V8x>3o10Q~Ua&p>+*EhJ_WQ!< z?Rgd@F9a@KzFa?X-n_moTTFiZ{+)bznQ!0iJ2MRuoo2S1OFYzmXEyt6;JN?5uJ7Mf z`|e;fyX^ENY3s6_&fkaqFFfTB{l_}>@EouQk$fs|?`SSJU;N9SJvK*<9$gr@Iqk;Y z>g|uq>g(%eED8=>-@h-Wr(n{KudlCL&-?$l-(Iq+=3lVCEvq8SEVJCGb$=fhs{J~B zKK!wS%H+giVd2}JkFKqc@3(%pgE@GaPvhM@{qo801LgT9^%=?=r}4B1aPaZzU7y@I zO)BC=mDu;s&(A;ZRG;UNlasTPyXy9~+>bZY=kL7p@8|RRj~m(LKAiejxp)Dy!`)q_ ziY*5=pSOGc?cbU;IxX$(&K!+}kB?d2HP61b#;BIbzTklahho9)-0f4dC-(&@Mpk?} zsb2W&%S$7BbsZg^<NfmGJO3W(6z1UP|9+~ja`l3KS!*#Tj+VAIC0*UKPyek9Uhc#J z%JwprMMqxlTe3vO-Ld{*tN5L~|95s4cXV|%2{74Kf77|XZ?Z#_WWC33zN*U5)nUB% zYd-g$ersL+&ZVTJq;*^6*H@u2yGl+PzT5NJk3-R*>PyD*+xfP^RUeHP@78`GDJi)k zbhTKEK*qH-l0m`2j3RRV|L;}5S2QpXaN^*RHaqilXW4Gq?{~}PTLd;l=tx)=EqPq^ z(LDd&k?HYuoo>BSmhb$%ytJ6FXFmg#57`rgE+{K0-Kmp`n`Hm@rT>c?8<mZWjAXXQ z?k?k%wJtj%|NqBvuD9+N)t@cxWn^ZvuwB2UiH~9B%9ShP_U?LIC@3iCcip7^&Bo&s zX3u{8ZRhbmS?6Xp-Z|eCZER%1R$u+NdH#I)XJ=*xzq@{BvSGADz4Fop?d|Q;cQ5$= z=kxiD3kw(*En0M8Ww3h5t1FxrFJ9d7d|q|It1BzH-nQ#=TLn~{`Fmob^2HT_$}H^c z%2rlV8#iu@*pR^ZrmVX2_q3@~Tesh<;+|_&>eMS``r!Th{tFiZOfoOAIJfg1y|=eo z`^zj#&acZ)G5J1&mJvrL&ky31nxgr_Au)5VeZ5^9zkJ{H_&UjtA3wJ7@4Z+s*)d9j z-$V1odHer1da=7y9*2ilP8N)iR5&$9CGX>-qd)Hd|M&by<(C&1JG#0Kfr{uaUrIWw zmx)cTFO<}I$@=%t&(AX~3X@j$XW!XjxGm=<6T^>Zv-1UngqnVSe!kefU+%@--P_lf zUpAR+A1b46Tm9`o*4Amic1)NcFvq4+h~dNe`hUXpKTpRqF#P`h-o01Kv}RX-+GK-h z8O?p=@9zm6|Mc|q>5vQgyWg6<xwluE;lip=?IXvJGi&ToiHwMt;UC{T6XXYJgJ>PG zh_zu6I%3lUOR6Kes`l6Yy|Bzznn%t?V&TGtphAox;p?lb8Ta<=Tp!<-3DI<YMIf_$ z-4De}moMM#D}8-!>dFQ2yUTc$-Fh6(&$Ipbbb7p1p1gUUjGF(vH>am3Xn{gT!cPCi z{@-`s8)RNm>Hq%z=4N)W?xWXtJMN$SpjcApW2NK&N8S1xQceo>e~;f=CE6{nuXlOd zy4c-qz0&4MCnu?P^!Jzd^xOS95j~kNLPqY=`A2bK+1J)My11~c3DaJ*Xpw-d>{|&# zL&Htw{*oXIrS0@z%r?t)^7Hdsy8ZHsK;<Jxk1ASQ-{!6kEd}K)l@~=~-xn-U*ph!= z?(wl+=cFX1PoF-W+B^5cg#a1*x;yOE5nI9DH3p@?A1@a78&rHqFv+;UAlA*QsHphj z(o$|U-&rlP)@2J8ELd>m?U#3VrB6@S|NiyeEV;=WBPA`~9bYits+8;F$Bz;w83M1a zujgNVwd=!&g6;jWd#ko4*L*n0z9M?N-m!l9{;AsGR(H2oea)I1-@0pZe~^^o9F=!B zHYQj6|NH&o`gnU6H#a36oilGA>xg;Jbc<ZK*spbRe~_eFiRO#r{qo1#<?A~B{r$bz zZ?08GPtTFZ{q}vD!OIe!pPSppzYY@9QrFi;i(kBW@x{Hp*2{cnx5e%*JD9fl=dbIN z*g>IXV5k3L`~5oWMT-|-T<p$&W{#!s%9SfGn5?~XyYgYHxIy|knd!Ih*Zs~ta`b3r za`<W%P(rqh-S?>O#RbJb-}nD_oo`oL@cZp{Wi2hPySqvce|dTN<K6Q62lKX1-_?6- zYqqkf>D8y--tYe}SNiJ8$H{9W6%}nN1m5rat@rQ8aeE~rBcZ^+z@>KT8X6q#{c@!{ z|Gv1mc=G#5Z8gJ^7Xc=DcO=BRSq~mOxYTZa<>zM=zu#_;&6{sst~bjp_f>bSsVc}h zZu7;zaEt3D{QUG(!YoH(mPsbl>Z@I-QCw79?0xqfD7+?25a^LM=kxUR^ziaJw0ix% zt_v3e_Wb|%d-D7!b&YnpDvtj@&)09rysY-*$&-+b==XcS%e}g?^6`#;m4API6_l5M z|J2sZ9AvN7eDN=;-qRGcwO1cGt`oa!%aPyQTwEI}J|@kvF6Uz?`1r^*B`vKgSAMk+ zNV(#C@h{7KXFqy%b+z34|34o03knDXyee~Ya+)x2-n+B0t0#e?R--2Ff_2%O4tBYU z18<kVm|ydWlZlDRAp6>ypzW7e2CJ`$+ImWScf?X~5;aOsOMCS1_j~v2>tg3J?W*}% z#KOXo@axOV)LZAeM71w0aAe-|_uFky5woHEecW=#)We`cR(J8~)N6Widpgv7XFXWC zd|uPC%!rLitV~QyAD+$5pH?aDs@|q;w<c`$<NrZ7K^93UyeO0X61?1RVcy+cpbWso z%xqZs=}D2Ty{+xuBM@Vy1>*i>zc@Wz-#s8e;NO?!_8%uNj8QOt6z{tK>+6@Pf4iz` zYHB*0PvL8t?cK6|+4QfIzr<K^$L=mW+QuuL^1jOm6fQhd^j<Jbm^7)W`rS_V$#Jm? z%+=rXCO5_^ONOtHdut*jB=q6_|9|3VXPX~?+;6W}{e8+okXP#$`#9=bJ+A&}y#IdP z@3$4tW~LW>dlPwc_i`RTr@t#VIZU=RtiQK3b#C+D45l}~?Hc~JmnYo+uK4Eob*Ixi zRjRM^bpBMHIm3RE=hQzNr6u~;vF=^4fMK>-?x8)Ep9>xz<7GH7(>Q&?%$X~n=Y?d> zY55hL+Nf5X^ly*z?k)V^?iSZ4`1ds17CzDcZ+`CQbKCchyNe<o#Yyphb~iGtSDCE! zGuhlg?k-nVRh88&lgy?I7Xp6#{Q2<5$Hxo}J9b#`$XbQ0zq{g-1-zCD?OT?)K|a3u zkkUV)Io&_kF5a*rTix9GvPu7K8T&e$Lx&EXDw!{E=<SEkpFf}D{$g1FtUo2`pNCrL zr{j4EHoHW>#O<wGSpWauiPNW@D=Ky@UZAe3`taTE_j(_9Mn*<fe7zceaZhD&OKU5r ze%6iNcH~H>@Wi=u*B*a2n@xS;zmUiUC+E!Af9mJfIn(nqmT#-NlUB+7i(7wB!;>c| z%Rj!|e!uGR)1NX3-_=9B_x07)!XE_>!~b`Qf7!Cdq@|^$q9!gbPVU|Q|8*>^tPfAB z&p)#N-&g$}Nn<wK>TfOy2@1EiW~cvnAkB%ewd=CpTX)w}I~OlWmnq+U_mkL{mzS4U zKWFtkfZV`$-`*rAEZoe@&c{%o_oDvx_I&rVvrKL6^1r>gx#RD*+p<sh?Qm}Ad-&~k z{_#6Ii)%MuRy*Rk!ah_i!$|$v`bTeeKVS4^{nqIpO27Z*zMD6lb*_gzyz}6`z3JX^ ze|eklcZwOfxPNsDt529Yvr{j2SHgn>jdJs^FLY+#^U<dH00V;pgQtsQ$metQ)^hJb z<&{;*iw9r-nrb5wo#^7!xz4F}w)$3Sv8T@#+$;;^)Ys4`kX*m-*D7zv`BtT?PCw2u zo6R4;_q##8ituN5qm`5F%a|WuT)SYtWieZ?w7J{mWxfyJzwa-5duw6U*H_@C(ZfTm z{pVK)E@u1o{{H)q|7z=he_QC*E4A-NYVaeKEAzFuO=bp%o|?Zb^TL*z8(VWSqWDbK zK2p6_r^EPdN%Z+^ag9xNMUzi&JKit<{^OH;rw*gJD(jMu_lef!R;}{-sr)z*k(T1p zbk)__LG1yz9*M@p!)=KNn^;erJgNE7^54II7Ul2e9RGd3ex7Z2Ljyzp`&F5RLa+R% zvd%iQQtOHTWv+k(f9G|%+IhFGS@hc6*1NHVTXkOOUD@CJ_yb@1UzqH6sP0Gb^xS@V zdpSi#MGsHULdo;C-{*Kc_IGy|SI*gecwf&7ttb6G-9MFQhMbh&-T3iE)CKKBSz8}H zI@&Gw-oE~y&6=>)ebx0#%wR!2)3ScnvV{lgM9gzv$8`N%pRAjA>zcy#ZJcFqi&oy= z^Y!xE2M+cotHXIWyOkU`_+!74#sPj|wrz*krv7<8)mcDNtV3|`d*_e-7v8czy8Dk$ zuG#NNH9Tb;U(Q<l_0`o>xp@&fVq0=<3W0iW)=}H)b51tJ@xjUkqwIeszRvS<^Er>+ zsg2y8IdA_&)<3^qeml4H|G{(RzY{K>S^nXC`nz@krsDWFErrZ=-47h>Wg@K@j&fJc zKi3<$+f8EK-}jXk^-cTkynUbGsQ$_JS$|59YW*9wV~;O4<!y{OW#XlELs-p6<MM({ z4^^(ruLs5W<jBv{^X+5K75&Th+@2k7lec|^!tMV5{NIkm_dCA7^NX(}ua>>YtnYwr z`LPER?_Vjsvpw<GWC5oKn>+75_;d1?_XR)Isz0)-fBz}zyl@dc{%4}kswe$-4^;5{ z7cKv!2M=Jw`ZC?!O;2mi>c^M+f2r`P3UsW$R;0JM;^w=L0nA6Xt>LXslG(QJD?5kc zhmWiKmD3+{nCw!Px+}km|9bKTcgNG`KmD-w`t{efMWEtgtN4UDbKV#g6&GuNcYAf9 z=cjV10ldT%`=SM}M$*p2@B5pul<Sx8ZK)euSLbby{Uel7d4GR*_J8TV`lrHm{RbHA z_n0nX?mG4T!137&!?p(O`BIYI($1pr_OfGvrQ@B0OI82%ZMqYF>E^x5mo902HhXml z)w=m&Uo4BCO{tt<2P=tFw*ASR#cQ7XT08Q>b*1y$ZomCz8_Se?;IVJw?O#e=TtAjx zbuNr9;izvBm|?lcHpb4@zlQTx@8zn!x^1c3{!ENQR4M-4zhcYphAs=-UsoIdj!pD1 ztTfvE^!&QmRbQ4rZ%v+i`|bTI&Mj}XpC^2~Z>^-IBXGVnzwwdkpZLFZ%@Y*rpXApu zZWk+g`(}I9Ue&fVga!2*r6u_HKZ-kA0L^_TbAE2lOy3i7;rb3+zPop?pWhnXIm2#^ zZHvH<!o+%!sUJY8Zo>lxi`uoeA5}A+m%aSpx8h*VPvxzM&`;&6s;Sv?TlmqFr%x5_ z?tQh|{6r2`OrM!%|6Z(Q_vvr8vhw@hZLV(>a7wtj+W)}3A3|?DmAgg1Oi%EaV*Pz^ z>7S_Ix@V@@2XP}xwyg{1+to^e+J?t^B%3EHyIb{MidY*Kv!meP({HDz>wmU-@$>*v z=qx)Ne&?>}m(0t{961_&Uxzze@09#@__Sf(kI5X|yiH|V7vI+3ymhh$#qsmSzFb`$ zZtb+Q@^e~CTic?_&(A)5|L(pzY^{K-Z10K{8YS=U?7Wg2sUsG%r{dz%Z?@In6x7s? zz5bmS2G7RP|4i00nCHIUQ!r`A`#X92Ur2me<UO<Y@7L=yOtZz5l$9^8i8NmRedChN z^&5i~H$UyaatNMhYN9UaigiB@e$Osf!LWYcFD(WI8ylJ9{qpW<X=+v9-gJJySAG7m zS=837)@y5{4`*#%lzMtv#@$_8lkZf&-`mmAaX|k65BK<eJi(y+4bI+@pQq>FZ=bzw z>r}0mW^X6m&b?nHR$gCUe`S4qz5L;J{_>w<(<Qm8_SuSGFFODD(%Il0v#P}+e_pqV zQ{Lxv+dT1~hb+7xbKkyxM|*qw;};hfGc>$-k@4pKetCz7>JLBznLqY$3acd?YT?`v zq4VRo{lAAlDi5`A&M->lnx-4wwr7uxZCsNkJfZdc+?;J*uN8W(I5&DvlvC*9OsRFx zV~-qMeS1R5Gi8-|k#9`)?cN}jzPY~XY+S(0`>DtNOteDD77HAkAx*5e+wb=^v-2}C z%rebxySh4@SwrVV>Q9!WkB^S-sQkR_ec86I2hiFLRMw^6j_&k7AA3GMD75~`?av#Y zUvg8K7umDK_@my_JwI;Ll}WC9GEcK~_V&8h3KkX;XJ?rnj?UlPx@V7#`@cJ}@p0f` z8re9@P}j8B{~o-MvaTlT!u*;~p2zFo$k|psXy&(LVCa#vl`6kqYp&)$ug5I+)`INo z>-OE@MJk!j&aYo~b7K1Mb$6cbIZzk$ZJqbz{PRcGaj%{b;bmAZ_i@LJ$#IX$@@@0# zPfyd8Fa`}?&9JTB77QL3lIho$x?guX``G0C8Kr-fO;<pw|F_!j+WF<(va+-o6s)bK z54Z6;pPr_Bad&zClI6SqKb993ZuXwe)i2!B*XQQrQ{QvkG4(Jk&lo@Vzijg4_P41U z=d5q{wbrhlzI0=DSxtRmtmWySkK*kz|8rdb9OHi}>d57dKjvDOyDj&dJBRDnmzS4o ze;RepnNj&y`Ef9;wy{e;Cv*JzCI5Lgk?)fKiRs6^+41e?qodv4G9hNLoU+Q2>*wVy zGEZ*vKVFvGJp1w4$qAe1H!ZuF@_t!}c=4svv1hvLyZ#+s$}6}1?aBq;-`o`DxBp|n zZRHs(I=M7cu|8C@epXt0>~6;0WvpdyrA&0Azv)RHd*>Y=_TuvAN6Nbu4!_;j%~j>- z$jHUTRq*#$Y0bBr=^Q*fN6ySNp3C*?%F1Bber+kU=&S#Z3xArsYRkWgA0ff`G1GDX z=X2H{K|^D<wz6W~toQ5x+xpG3d095)YAd(+hWz_>Z|>IbzMdIy6PBVoe=c70r^ie5 z^CJI?{b_HCcK?m`7Ya9F<CBS4Hu*^Dn;U`m&0ALStb^B5^TodW{QO+mz(62u_0`84 zB6K!HtzDX@ZE7ldcD8xB&GH`_r$6UUojbSp>+9>umzH?GxVzi@)wQ*+f5>w`KHk6n z!0P(a(tm#{d!$UcK+U~^0)wQaBmrsZZdPuwDL-HTbMKcsx*~A#g*}zUpn(Dt6Opg4 zue-00+xy|&?)THG=ff(iBY!TQk8Ix?a6vrzdTVIj_V|)XJElw#S+ZnF!tp-Y8OG^+ zixw?1NI4;}yh%=6{CP#pMT?pr8_vDws1Fs5`48(n*x7sD>6JDIg-nEwSkBE&tkvJ% z6k2-)mpJXr-~U%EGc(h}-@jby>C_oBUVM!Iyf^SdaBy(o-m22$W`_?Se)#_V`yW3y z9+xYYiGP0*l;0LCP&i)f<m4nEDERP)rIyyJJHL;@QtGq*OZjhf>%UIQN|m%euUo#m z*8li|^D_*YojA_SwVr-_!DJDH%XZB@y7vd?eJv#$8yWY0xv#hWsi>(bsj0Dn`j9U! zF8+8@eg1;5wNY`JFC--;`*KY)FR^H9YBDtJ*<-Wk^Eqn{4vq!^ro(N#pLg`mG){No zVC+8HB&h6WQD1wg;O#Bbny**GD}FwmetK^{EMX`8d-0^VcB<V!n~!IbYKrq(Z@;b9 zdhz=D`gQ@P|38k~M_lmaLL`K{T)$QZFE9A@CG+_C-DPi`Vq#>Tou41S?D_XsSGl#r z*L}J5Z-=#}@7}7fdx9<;?~{G~<H+wLox*zc-~DGAu{v>p`h+JYD(ig*4IA_c*{7eI z<MsCRTBP{B`DXr}Pom$abZ6hmyC3X0-z-<EMPP<Sp%S;1=fSVAHsa!F$Nt{lqweyx zEDRRq?_`vels-IY=3i9x^%Zzj^8EgimqK;_f8S3&)WR9Dv#4G*4Ai;ab1<59?~96W zj?HX4_u3m93qO4LP{1kS&W=L8@893v7I)&X`EY=F>Mj0qgo^^_=^odPFSM^ro`3tT zxNP&hIdgiRJV~iRsw1~#2Co6l2wjM;c*uJEaaaGTn!|l3gpq=+o~x>)WXt31TgA`L z9CYTlWns9nqfq(P_4V<uK8LT5>pgM8W4iE>&@U>5?<y8AkhiP3QP}gNOZ44-J`M(d zn~y9l0vXrW&At3KGBUEy|NQf_v%??${m_D#8e%-qsO>pb>!oM9ozuLx%aAKhP`!D) z{=EJFm{*Z^S_M43y)S>~U8vRg8a9yx>Sv0HJ^R6YXR$l~o}bTVGc-(A_gAv8*m33g z_0{40%5FUeetv#lyRHA8#tZH6btQlJL3LPF&7Bt)7b~_nq@*ml{5E=fUa8Ih3k#iZ z>?+mXRr<Q^)z#I?8X6p5Utd4I`Mh0y_ut>&!!!OPf>n?q<w@KM7t8+RjjL~KeW{*l zKM6EI0qp{XU68MMzzFI@-`<w%Tu`v#@tL<LPo7*6yxec)d47KW;~SHY*X#m0sQCH0 zQjs^4n(V5-<s5%(WNa+E{rqh6^Myq_JSVFiOxozc(YRrQLH+UTk6Hydcz9fDYHD_V z??(!`hGm%+HE(Bg#s05(zVqpct*N0ez8j(SQ`Obfl&q|z!d72>dE-s}|KImt+}&Ni z^8EkT@&CJ6xy61IiSG@%5MTed)V)(rL*v7b9pCTQ-~YH{bNYF!y!ywz<}&rHu^f$J zx={~i=kF`L^Z#!7{e_{c!}`_>ip^ELH~G$;n3(-_cMbjK+wm&0=*92r`SYiSPu8uh z%uGl~Xu{mNy0!5ZtL`QIv*>cmi_@#yGofSca<S=|D)YLIZ@WDIQPj7iT>t%^^*cXH z_-B#A7y7CE=ciP$lIDwR7cjS``|Yp#TEFUYZf0iYj)I3yE6>lhsWi&EvH~<wn{cd0 za)xnw-{lW%$|7GLo#*G`Dyr`NKEM8-<idpu1)LUyua8rGcYf`0HnHB+)6*0c6&su3 zU~yMp>gj147fAPDA55CF@6p?nvE_H47EY;us#2Vq*s^|yczxafe}8T5>Q78i>|4KY z_wJM!!MY~B`W2t_SI9h*IV0b`d*bBTy}^>~6Kd2Bz6}1n-oL)bdHUpu6KhXu?{9}q zJvvYQ^HI3u@x`?ZmM>qv*mJTP2QP2y{Q2^I^7ecT9o^lBFD!KadaGAR@}WxM{Q7@8 z>mUDIzyIH^<Im5}vAq0o$EF(Qg&h6H7vt;pNgY?1XlYm<BDFiseV?tk+1bzA_i1&Z z43*`v?hRib_u~G3`%j-f3CPL4(|F<O>AB<gyWJ2gjIu!kzBcuzrfAB|w@*ICbNsPh z+@6SMe;-4ea>Ab{zbY1}UkeJ&yM?k}9<kc$>hdZoDptL9>)aD~fpJ0J-CY7s4{oN< zFRiW*3!C=1=gs3|y~R8CJ2tZ|tvg!#;laT^{|9f&s%L)hMI>F+`Cw2sMhq80M~grX zgw5b-gQoDT*8PpUb7f_)VoL)kxMVCJ75&d%zxSDi=bYWo#qB*~?(eHTy)}QbV1!h? z=oh=%Uk`RZpT`^!alwC%MdO(>J|!<Nu`;vsUCB0|6SKEUbh=(_QIGZeJ;F{LJ#x0U zUVe-APYVBY=EXa%5;r%ttgEX)bDyT!ZC9>@FgV1;$=$1dZ_C2Q=EMOSX4!dn{hBp8 z$L+zx3@1;X?E4)Q6eKe}lADuL^P@#MV>xKJG`U3kMf$lpj*pM^Ufhxy{NwlU#j(4~ zR>bYKdbjiWyrQ{J&dl!eD#%Pe(7@<-UVH5VW{0dStySUc-&Mr8xUeuWG0E85f4h-< z;_TV4JM!E4WS!<(mCE$<^YfS2=<a**d~5dgX}>2g2$srwQ8jbxoH;TzKOVMA7$&i_ z@k+O`a*HXbt1mxuet+3pDYLvg9iTySJG*<CAuamcRt$6O>*bW)`&<^g^$N(y^t^bH zapc&sq=QYYsaAP5%F4`-kM$nj`~6<`hYtlUEiDh`Rlhsft-tTZw_h((!9%)oi?bcq z_n2m1Q&3W33R^827#P^m*H_jvV}=B1SQj+ZE&=J}O|P7?EO4<~M|Zb#S=l!I@|#~k zK_dm}fnDAZwKgw*Gq^=&VsfSMS@|l9$@PU&`uiU3%e<_%CG#?yv{}x9udlBcK0d~q zb7KSJ{-0;_KU@uupZe?1y}i}RKR-RSdb4upWQQop<QHKVW}D~ty}iAC_nm#Yx6Mp4 zFD<$9ydHI?XWDP=Paz%n5~7Suk9_@~i%-Apt^N+FN$&r;`XhS3ntv*I;9g;Iv}6AL zeYU$wUN(VCN$c`=GIEtq1WR6Aa0Cq$gZ!smqW!|XU(U5#OjkfaprMUddQsxxHVzIB zhtJQ>7Jhkgu_*WTv$M19Zh3zOEdh}<|7!JO*0RLM$9h36!L;-9de`s!#Wic$)R#NW zX7jG!`%NnA`Z`{Fd;8;(caQhUcJtf)I52&8E@*a7N<r+)DNrjz$|R#<srPgx6_q1_ z7pCjS_m#c9<$2G#6g+uQ|03$b<Vlk*?5!?0$+;l_>M>P)dC{1Ad)w5PJ9(wejyyX% zn~~w+!-suMpjjmsclX~p^UuP^chFaGxNmRTmvT}Fl%)OV+x4yA@%`mxc1A|VA3q-V zd)L+#6c}8(e3{Wg{0lQXpMs9gndQvC^VC2&Q&aSdn(wTHYilC)wx6G4x!LEs<Np8u zes4@UDa3G&wf0a8XGd@E*LUY;Nr0yDO!8Q54Gb>4y?Lu&&bDj8f(1eI_otnea&dKi zc-H*BOGbvqGXME~iq35c1_lE0wO^;|m))EK3V*{A?H3?l?Wz16lQ-WyU+&$$-|via zlMlD?zPPZE`Ou+50zyJf?ecXJ(&l+zzO9=j1+q@-JohhXe|OLKd)1&m%;)p={rz^o zIJ~Fn9K5j5Sx`je$+jJn^Fd)MZ5Rz67hz=ha8x}0!NYcWx2;)M1J*{F+Wh%&*u%p^ z<NCKxpFS1*`jR=vrt%V~6EoQ{N?JBrN6g)Eeb4;5Uz{5^Zrl*H*6%QQ@kv#p|7y0$ z^@WlFv0T57c8hE8oeP=?leH>2@ayaAkB9l~6VA`G^}{oH<37DfPFA*e#*7(4?wL-` z&V?^7D8|2E_Y#ynq+SGFcz$MP^U-ec=@wp}XW#$Bc6)n1e8N<AVZY=4y1%=UL468- zyB`Wd!or0=Kcz1JEwN$~IEe~;)p_?cw1jC#v_Hr3$wxwEKp|GY(B2WWRN*sZq!T<6 z^78ZYr;OXQ8{XO^>}I*KIrY7uX!5T=6Bi=pTIP$F7>U70ERE`Cg+-hy4sLi8>hMkc z+~a509S)vvNSnTQdFVXN&+exZ;KSXgM833gizglJ64l$jK4Rk{ANBf~i=ANI0i)P| zTWlUY+ZKOn$LykaCfAs^tzMc}^ykM%0VfN$f&v53xCLk_!mMS9A0HhRaC)$OeqB-3 zz1{EkaVxUKRX!D6e%sjC_~G;C?bqX~&#u;wbzOE^Ub7WGxUCU<LE1d8XKnQMU3cb9 znbLBsSK7P&hO%iPY*a7g=jEctIlZYG&*DY2KX5j@P3oL2YhPyrnq7pnyg`ARe5|KY zfGL0fU$Z`0Yc@p|G2N&qU-sDl|9PH+m)G@ppX}Vc`&%-FTLf-wO6{J0pW*8at@<T0 z@FC{KK92lcTuxC@vrfOw%&gDk;N!bi-!200v|WDUznRf8`gGvA?*6L{f7_1xg2wL? z6BG5em%qCsIoG<Jjp53wP;Tcop2A)K*X@3H=)=Rqf<i)%zWno>VZiwB-@g;5PJO!6 z9X>ttle<?Ea@d0^%hloQ%XZo-Dl(S7x-xNtdwmvcMq_g3r|=1JjY)BDCV#mTD`yTJ zO4zt@BSXXTc~xA#v&~BHls`Ko$)Q;A<3l0~8(Y%#b@AK(zgXPADEIcZxSEfzjC}uj zc%Ff`?PoUGRej00vO1hUdV5~$*|g@fX@{rjMhC2qv)%LO(`nFJgE{rk$vz|Be?{9u z7A^Q6bZP7CJoDI)3*1~>0RaIGudlCvy!pJHb3%eb+WC3B44|<=9Wm~8F*}(SeE6fj zHTyan!<Ovpe4EqGGBMnETjt{8@?h!oxJwUx4ec&J>7N2xlL8rgnxgrlva<5U<>mZ3 zV%$tjOacM|4EFW*_B>K19F>)oVCTSG<N7ZrTs!hyz2wjKJ9+=EO+F&p+sMrBblHUA zz`EGo3M~h2ZOvw6(BJz-XkOi~Oojt10vCU1xBtV)up#}t9EakDqNiT6_aq)0yZ-Zt zL=KR+CnqK<gQkhEt&8pc@}=Zv{qDsw@QkEX|Fd1Y;?2(4r`PWc#5TO}Vf+5SYYW6b zeHN6G>M~3|#=vlETW&WfPcVS21SN|D>(k5Z%iqo6%kTL(Q>lK54kF>jI4(a0AMVur zG=2MdYu0+(=i1w6e=p(r)gx)F&~o74-`|W3ptU|ZIXas*Zx$2~cwq7F&zqZ@1)Lt- z*qHp{`g(aOvz!;ZzdIQ&J0Y)$m^qTzwV+?d@=~GLor%is(=1lxz`9#0U4Ndw{T}3a z|4rHFd0fAKeSNLia$x!VIxdDE=j;E~H$QlgkaK6p#iwW9mftNEfAsiq;QBaQ9tnd5 zXY_qHKXuq$DHZk2FvC)P;nR4{`_;(>7}l1*y25#VU2O56|MT1~rWULyftM$)|31}! zI%oL8eEaUZdzLrZ<=!&kP~1>ioVZb6>&@L=rOxeq^|Ev1Zm*BGFL{4Y)`>$WV#9(X z(-&t-ZMkE7LGK@b)GwcmmzU=rpV_}4^<8sX_>cWJ^?fGV2Z_Ol+YL(`)!)O~+LJXu zrJw(D$@5X)?z=S?4PTr*dD6qr@7VSD`rgRRX^KWhLT6{07VjySl$6{MwH7q~d%b@D zzo%Pz%kNdPi*>U)amd(ITzKq#F~{=4x!PaelJg%%o$J0|_bNBT+<)q?Z+EID?S6H2 z_2Y-_^2c_SzMdl&zCO<Oc=De=e?W^Ac%;pErt8IOeJu}}qWQ`F6e8>Eya?q{ht50u zOx{2Hw)Ric?^he1{j=RszxBbd-@g~v{rx3jS7V_Uv*W>+8`E^7oj4jzv#(j)-B<lR z&)rhb>htflCedbF=G$v5oUvQ`mGQz<dF_vDcYc+Zu>1d~cuVeWv9Q&m*5&U?Y}Uo? zt*ZF-a{0tLb9!=bZ%e$jC6j}f_b6!GVfWp*Y5%#Nrp@{@aT08Zx?ZAxA$QgLdwWmY zASIbue?;f3b+L?ReezeK^t<U<wzqF46;1j4C|PXFp3idI-@eoSm41F+>(QjbIjwRU zIxm#niY7GJ!X}J+3aaj8uiwk2$PyG3wC8tIeIl}rAPavTXk><1SPxmbmNM&4rqqPr zxkpb`o}1n<O}qU2X1>q`GsJ(Z{5|wsZu{Gp62E4dW<UCPT)zCzn{^A;M{nnI;#d>0 z@ldt?HVM>Xh9~yI$=~qAzv@rsw)lOo;`)l_?Umbbf5P797tYnj9P~fm-P^>o{dQS> z_ytg%_5S_)kP~-Bzkm{g6UUny8xQ~1mr^?|uh|Z-y*4ZeH-x9`*ncM06Lv43^7vx? z&iBvE4$M=o?qB#cc1?_-{x6Zgude59kB66_pcN<a`|DPOt(B_#^-}%#<5yQ#w?91G zzIed`2FrR&OAj9(m$$dJUR>bFd}mMPW%c!Y_x!y4rtF51apL(?pDJ|h10!eV{Z(EH z8S@QXwqQGSU9Dv9tu3GdrI!8wzOKKqt9137yCyd9!py8bD(~Ub>qYxYY$apv$sNd> zW9qki-mBIoJK0+^E4JU>|5c^jHN8Gl|E115*TuQFxBYm?eqVNe{IoxrX40D`?LWA4 z<A1lP_3u1h-&|Yp<y|Lt{+_-$d#fX_*>1R<bHb*SG5njH^Rb7)C-!RnzpZp{Litar zb9I~eUgqn&-a6xI@%0~9%<a&BGBe8lDyzbs4jMIa3JDQON=`P+x}wn|Q*SBs_V#x7 zkPwkaj~;z^vAF+G)>b7&MaOUJq@>_kX1={I^A;wD-H{d3%9zD0-`?W;e%)ICy@l=l zx8J(YJ(@RZQd8{ivc#8{mhO1mXANpV&ath&_Hjqm*H;Vu=i7OBdLEo-TV3$<l<55Z z-!6TczO`1`kM~7<#EJQD>OW>%>PzjvQ&#n&c*oBA_?7$DzmV6ywLSm+w|$S=nK%>; zYJYv{+HcWWbT0njyzA2+O}45(;^Zy9eB;B77cF+CslPFs{pPOD_Sd`lA6>9tmQ;OO z?#8`6)@65Y3tPW?8~USobDl@#Bg;9FyVzJGZ>HXw_wu^EkqKlW%PEmBiuKNI54K*9 zE8baqX^E$VQ3?kGXhagU@cHXK)1`<(`^o;hzx9@L{W{NmC-44U!xt-8uG|o{w&LH< z=d#;(TC?4~?sY2O?U4Ao);pJ9T$Rn-TdkCxe)9M!@&9HAr|Cw=ybIpD;C8Oro2sAt zBSb!Ei2W=r)qKva8@r+Y#D77ZEhPt+mw!3<^R4}~U1yhiPY1OpI(m9sTwGW{>v;|~ zvs=d|ZAd=e_u|^x*|(ohFNu%LEVK4I6VdVZ?5;%j)AMfJTQmFj#XSWz-%lt!S@J*T zky-b@>fNW~D>p4j@;f0B^7HrUyabz5B419N@Q|^sy7KhfV)uT~vN?wOf)^JQTiV-S z@6Gmt)s4cR)#sNzW`AFE^zWVHdE4K=)OiP5!7nHx(o+2V9HT*)<M}(AcD{MK=f{h? z!sg#A_2#<1Kbl|vJG$h>g@bQvT|>0vzA;IgeXkScUb}ATowpxecO7l)fB0n9T)FK( zk4fhrNZOciWkukRPp9=a*4O>5@|kVM`~7bD{L2gZ_vyTtwd~=GBjq;Ji^><L@~hbY zP=7MV=5^t2ofj&zwd(6{^7gpTY>L~Q=6mG$Zn=7KdHMcXrrAskd@>ddudc2}_eR)+ z$e+eLmixDt*<OA7%~tfw;dcJRSzD9N%rIo=3BK_5X8lc%`d=%%M8Cw{Ev!1BkWse# z_WkfLaU!vHdWMD<pYBsyCAwbLIX!XV)xXQ1$+d6Q7GwX<CtfaFwEOI>t=Y*J7C7d; z-z;9;UmJPheBGvXHBa|Mc=}i77`&-`cil{^WRmaH{rlgr9b4?<INu~w$jQm+!=r9} z(2~@MT_u`vH6QC;TiV)^K0P_f&=9#f?cqdsxruw0A3Fx0!8k9mg`0D#&dbdUZr+`r zc{kXRoy*>}zo*B=&8;nw>(|%+Yu83t>YEjn)xZDtU9?^w)E?@SwcfRtKVWr5?5}?w zKf5YFuHW<9wrT6zJO9i1d3ld&uiq2&>izdn$Ll#}HTAbQ)*t2irT_TQEtl=L(;U@r z!V^o$f)5re%ii8nR8wO!G&Ib(zE0Ne-;e9-|2%#2<j0#J!?c6QuAHr|UEaCXJN{H1 zr)Uvqh05WV&;N(*Z2FhNKWDzl#kcRZ<Mv!z7t5{4GHKGJn0L%qwBl~J`y8)d)Znfi zb4fgE*Mn2@lJ#!q-rr}tDs(ky_{V~;wP1Pj@xC8_-`Bt2F(v-v#f8r8T;g9&M^DlY zJ-2=Pi$>d8_nmjkF4n(4Z~tG$($doJ_n%j**Y8S6e061IUi^G7OU2~Cr|<Q5H-6Lz z1huCP5)ZM=u`2cYwoU^!3SIAaX1-y@EVj3oesxX#eEENC+UZGug|wbr`}1_ZUF=K$ z^WFPit=oC>%UabvzO&6<+}XML_U{nQxSiLHHd_2BpQ`n|n@R5IxrLi!w(ZToZ+EBm z``td_*H_oa%j@s^p>*ler8#ofHzvDJ_x>U(FRJ_EcUw>CoP~RhlwW(yI=$^~Y~6<X zA3IFBRe42=oQ^F%bw9q0`ElT)1<Vc+5i?H9^Jv+_Y7@iyV+%9QGQ`8CuAei%N<8Xc z>doD8iQAvOf7bZ-p5_bN-3QCwt~&jG_tqA56%_{#(6ESR^o7g9Wg)BPi1(&${r8~k zcV%T|#P&SdM~@zX7Ibqc3J3~5Eb^JO<Hn7MB}<m<08KuJ>{w9$yI{Z9^v{RZ@60c~ zS$6R$d-|Cfji7aTwRP`yK9AWXATIv=+t-zogpK4v|NYw}EzxfT9-@udk}+}e!48r7 z+Y9H`tbUR-&rbH%&Zif+@=n})>b29f-qQZv*C<E*9W^JPe&1;=w?A}s*o#|RS8rnd zd!qgI-k=MQo$JDv-QS*gnC-{Up9{<1-|M?wQ_Az}+_k;h@fT*7AHJFTzxbwEKXL;7 zQu+DW!mzbbpjowzIX8{g#O=M6Ss#Ej)oQGEb{_ZJV|f|&^)F)1`JZbnOYOcif0lT8 z_P<Y;{3_NixLq83-tzIf1@#|~iVHY_=HBD<Uql_VywU%z;q8I&4f0+sf1l)Kn7uz| zx)-!lAj4s@ny-xg?^O%bxBs3TZs%zK|ESvZ+|3In=dAkkH`Uxgu0EA(*U_Yp7Hh&* zzquQXSng>5__B$#Ni?6y?w|jpcg|7KvzJ%@Z6Eyd@%i&TJ;lF&-w`eGy<G5q@AqA{ z?{+91_1=6t(cjzk;H{G<=6_eezA?ifXSZEr+2OCk|GGXr4Zm}KzWw{6Xg@!`yxnij zN?u(#SvY$=*RSt;+v=06Kfjx*_u~4b`huHg+*T)-L6g<81(VAW^_lX_J5S%gx}@q+ zy~%y4SJks?x_R~UmwTUE8?*D0Hf!wZlMeq*)r*UL{CR$d{tMUdXWw(*Zd~tmH|^rd zGoZ@(<5!WnD(il9p8nIqYU;`%Cs>}aF5|t%BU6`pgIk@qWBr80g@yVW8W>X2)2+AF z-_G5>F!l5_4i1h3({!Uhyj(v2(ZhE6wxdZ0SB0*Y>Hi$+`2XkP7BBHHv9kY}&Zd3- zac|>-$vV&wRpqwQUm8{jYx{wk_2oacca(5u?%fr>W6pB>%k1Cw*xZfpo;JDhPk;UY zxFW-H;~aaHDLd{yN|(OBDYg4_ZDL|#-|01+iWfrfH2&}SZRob;*yKfae_B{|T}<62 z>jUoey;8cda>0JZTaFx!6DA0#sHs_P`~PnDd(hNVV`C#|_Ui4etsj3p?oWOl_I&cX zpQ{##$DBXX7v>-K$SC`6Vb;H*{`cD4RwwJ1z{C4?j@h1Xx3X8n?l$}L=TE_(AB7AD zZfs2cc#vJ*<DPXXa%9*%eSc~Zzjn-p{G1E_XMLD;H|)pBO3Txg7dOcNzxH@r_o+vS z`gQs~`$s=m_V(|%y|SiUXscq&0iBNqVo|#u=s%L<P^>rjJbk|SPur&HQf01--FiQq zQ0`Co^yFmU+viW8Dr#tO{QviTf9<z>Q=h$PDc`Wyl~r%+HBfu$I(OytnDfu#TM%=T zGn?!RAGv@wEqG7YbM^4(SiC?#exJ<STU#gZDSri9D+5|oT6t=I+V;nXu9%;Wtv|P3 z@2AJ9*Bh2E4Oub6`k1=D<7JcWxAn9hzP`4$S>Vu1;dhVbe|h)gw$FCfzxs;|TLgae z?~v!#jr}mIg29QyMt@fF!mZq(TDJb>S9cy63jxqjzOcW|!yEt3&9zo+Ik2nrb<MAT zQ<o@cOW(J*T=eI<bN)Tv>1OXV3U9~!_o#=iQa&Z}rHxlQ>GQL*3=JPX6u3Lum%I>I zw0LpqyIDc7-U(=IMD?lv=9>kn57}Fv?p~67sk+oX>ixVO``qq{Msr>BTlHc2^FIHJ z=Vc0ZzkQ^-C-?TY7dJL8zWw_R>$XEpd4+l}_KSZ_5M;{li~u#_+7}r+)wkNqZM@S6 zZSZ7VTO)a|{(miK<p1Kui+%MvGt6?OK;t)YU;k)sk^7_<d-UD%IE~xtFLkRDs=MWO zY`FEelB4VKFW5@mz-0^A+1ZtCZDkvZ9qkJqG~5<GG@%+PGc4QmMF0OE%b4EymdWS8 z6xM4#U(WVV^txR%<L#~4R`0eN>pqToYG?cZ>5@WL>GYj<>plwYD|;Kop*Ug6lqW^< z0Tni1?%)1?jQwA%;rUyf`kmE+T7NEv-ud{N^Wh(PNAEycUZ$jiy5Idfs=jLJh;e^= zf4{${hbLlf*qhti`58Vune4yFwOh=tj{WqpX|=+c^_#^W&MvE!IX>N5^mDvj;{U=A z^#y;czyH5csEwGEPv!dc_xt^RRqtt__0_^^J`OoKYtF<5bHVx?Gwdg=wE4OD`BTO3 zClXWY=XcGydtdqcjlk{c&#%q?yZr4`{THAAwfy<9f9KtQ$aQm9{rsbQGfad6BNVJG zxqh`BcY7@V_dlDxy?shrTGHKJr5&A}g*93C7P)eRHlDCDTv-z-eBS>5p7r;3aczA5 z^zorvYj1qNv--!r>jg_}KFZYnxa=`!#y7^IOXsI#M<Z5?oD%s0nmp3d;>zFmQ_acQ z8MLR9N79I;zOk|K$E($s^pl-hk<(e)iTSzr*`Az#9sRTE-@*7hdH=5o&6_ZRL6K!! z?(JvW792l%R8dux)zi~c!lt6&VeWapqg$QTCsr^0kY61XB-A2sV^5`V9B7dD@wxxs zw(nn9|Nq~Qm&@lXv=r3*NOVg(A-~dl>Yt6$^`Ht_mccCNMgyO$m4c2AkD{Vt#gB*W z8w(%1-Q2xY1kt2WnJoD!-G0YW>-h`xWuBD%ez)%Ky;Y&wC2wzS^_kB6`s!+NCT8Zs zS64KT=UQ4?f(q{=ox&G4CcFF0GC5gz|IyKI&}vhis4W~$97~oit$Y}3q-I?Ir2ooN z@FrRJl}&zAkHg!D{V7Jy|K7Y@c~A4j{JxUiwdJgTyY=^J?0Hssece(qXv6%`QStba zU4I+d<s6=$n=2?K^{OQH^CJIqyGviUS(UyD`S#Y(#28`2%qF{n2M#&+_S}4&>IE4; zsfTUEOFJ<?Y(o2=)@H593%?J2`zxNe{r$QH*|XZJ-|rQ7>ImYtV)*j<IzMEi+NQ_b z0vEd-Oxk$h{(bq#$Vk8b{cpG3PS_Z6VY&bOQ+rI?(%b$_+yz-6p%Hwc`pb*P1q&3e ztc#Ui?ACke-QC@(?<Y+HM|VARA7I+a`MQ;vPxUsN{g=$Jl+4@ycHIKz1E;2HpN_e} zFK@?VZ*SitZ-1}w_VfAme2Of$wq!p3^kbfFwG&6<&f@1`5AFuEM}Bh8f-K8k?BmGZ zkbQk!;=eyXL7OMnglW$*%k8=zU%%JsxPNMTdh*|2UuT$P3RQitf7iRK^tIKwj;KHU zF{z+w(#3AQPLGfE3d+dz%$OkoohB9irFP(Pzx}%##~)qy)a6G`6p^2n$L<gKD17v6 zJsa!nXD8}7Lnk3QCB#wx-Ite_LFE`|la#&v{vvyOL&J-2pL*>Hy%1cFZMBwjUS8hJ z?cpUx;$kIVS8M|Bmr<EK^Hcio!rInTmH#F^ys+tM?D4%?#=-wQY@x%|Ixl|y{28$| zOZ4A|c6-ng%dOeh^}d@42@4Af3pcNe-JSI1#l;^_Ci@4h4%1yP@};MT=lHf+^(L83 zQ>KVOX1pt(%d)VrIDluor)E|^KR4Ie$A<^BO>IkNuvp1axKnO^O81V9{8u!uFzj1i zcx2jX`IWAq+$7N-#9I6M+FH=a0BG5qq-19!GkenIWxgA3zkPad+S#<?oonOvR>f() zNIu@zD!`;zuc&BI_^9RdU(mK<0j9dTI*Xzw9xHFZzPsDJMF6y|)T->wiKcZDki8=P zDMrcv-nf@5{eLW8r~6Rv=$`eDv)}%C5~FAQtpCbFNJg636t~<@mW7>tarpW;(CB&I zy*)3#-ha5ZDXzrk_X5Xv>nmr?oZ0!|LjkD%&%3ijX#3WhpGEG9*G+m^V;x~z*i)|k z$(+UZ`=xx~hD5eckLNr8Yx;NMe}Td$`_AUKzx5-|@E%(86ShP&aM^<M^X=us*T;Q* z`Tm2OqkYYf4Ua88ifV^d)Z7vFw_#LdxwSR>`A5U)`tfdOXPJT~7Jn?6%jz0y3$qVY zy&@0(uVc>_`LgKrA`ZoZ4-Xvs`=xEGOj-mwdV0S6m{Irlmm^2x$;s;0dC899{gW3) zh}I`M>K~JaY}jv#3qowzKm9lR+L}fICf%ql1+#8E)qSyZ=gu9VslPdPwNg$TG5cyH zfByU_W7YHKO^%9+ih{Lu^sjvdA$t%0DLesM<#GnhSoP%nr>CcNUa%c*it91wf^65n zhqPTku>9Ma&ysP*Mn(b4{bVE7hN-BlTi*@8*JM}sr(*l`NzvPKB!z^8ED&JTi->JG zlH9uvZdf3mJf+F5;zI(5;)n11|KELD`G+NT@8rxtX+@BAg8RVB12_~5j?0!mIMyqz zcmA>Ai&rPlgZHP$&lL6U5%d!(zaCp|xvy#7%$YBZl9H1ZTR@fMW3%$>CEt;jpP{Zq zX=mLlp&XNT_U^|=OM63ChfS^g51LL^i@4DJ(an*)VOQyECyvJS`L);H{*8=`<lyIT z7hnRdciGj?dbeh>{Y(ip!+ToL#Jq6fLJx26;+^%cuB;SrI&l6xzk8pI=JjorJiDqU z+s_pB_MfWvB7A+^(WTzgWgefie%~U%wAj7BY}emwucwIbFPXWUY2L(%jZs^(961`( z&dyRaH5Fx;FnxOa_j}d+jg5^0P6;<QBtE^DE>`k&^1*4MM)R~{FLc`(>gV!E7#w(6 zxm2`-!Nb?r_3Nvvvi;p19S#l-4UeB6m#gO4xpOC6o47`ayl4r7Mg2b;w>}xr?sG*8 z3yF&tFLw0y9&KXfPS}21d&_y97q0>*KlBr24c)aM+!eHIm09OS=w!uNGEAc2Wf820 zo8pdwro|;#Kts)gSVcY9r9!X38=*i8_h#5na=dKv<ffjI@pB2#s<l#M*)m=CZ+U^D zi%<PJo|j;QJOeTVyxPz9=GK^$r|*xp&gm~StCsVNpWolo!ZK%{oqYP{=Z~}Ar9HWM z&hfIz&D~z14O*||cQ<|ng$lUcSr6Wv=%Mzk|I4J{0-5y9;tz7Z*&Hv>d-1uzZ1;!% zar<_PmFcd(lB*ZHOC<O9HrJFC6(uF53rjqOL0iMc^<oNs|G2g`+L@#A$dMyL+p{;{ z4A`9J%b{5C=m_WZ-<L04QfMjYdGH|NPVsqL3Hv&mqM{$Z452GF{R8bo;jXF|g|9`2 zY)s_8$;v*rYv=POyYqop^q=Xp$DaPW<E;6;3TClxR!{{EI+XylJo?s_%pLFd{r+&6 z-+qV9zY7bU`<!f3PD~K`{{6K6{t}zAPft$jeHRz~q8YqQ!O~K4wt4<BZ~eV2iY#q> zvQhucJC+2b{!KQoH;_Z#Is{o-vi|8UzumgeRmHy?npF4mSyq31`TE%1W^BAtPrljh zzWc7|_Kl6npt<>VvAdP5tfVR{=h-iOe}BJyQc}`|ZMo4Vxwo!7{kN#;-_7*-mUsW{ zzW<l+;K74=_4bneXu;oD584|F3jUh6N$1i<bzZb8UoSiLw#?bt`Qs_=^;0VCK`Uw8 z<!eR2T`s28VQY(i?|Abjr=`99@y_S-4ue+=w47G|G>_|-{r{i-9Et`1{`@q0FMbkd za*02+Irc-up3`9$o<FWXb@prC_PhIPt3y_Y@p6ml9N1a>-0M#NlP4)0iW>?ZI*Evg zEO6_U0!@S6wfi>N->y-BDSCSzsF(nqpHTnjvAkdZ$B+xZzrF1~al+$9&bFdG-YVVb z{)Bt;Wz@T{<DK`lesTV~`KD5%e#8BOo8R`;{x0}_x7@l<bbb7OySSQ<u1l6K-D&gf zef@vyrlzI|6DKk<fadg?nw#(b%U}EM?rzWy_rCQjK^@@oUy?tzf_t;9tgJig{#s4b zi{+}XuRk-#^0N1Pxu3IeyQSt_{UootrZ|ftuDYV#fA{RMSrfgTuduK%<LWBW7J-hA zj)GraRTm|1&aZl<c|6y;{9TIxQ@5CI(XD$=Pfr&V5NHTo>}Hww`^V${*mHmCUPs>P zcDui?cJJq76ZJwO|KH&4X=mNrg&2$f{{QXW${3Na|JgtAAJ;owyP~6hfrDH_)V-PP z@fY`;-Q&G^-^5w>uk7jGWb$!!>b+Sje@+$AU2k*RdUMF7JppH=1GgBQlok~fsQCNu z!*=1r?+z8cee<!(PVTctnw_z=_3wH8zi;jI@LXfB<-f9j+B8oG|MPaaS6;upwUwKX zkMG6J&C5;vs@=ccxDjz@ce%gRs<5^7U1e`?oqYEH)#~*MEeFoq|JT{N8?>)Ns`t&g z_qQ7CYJZi;SeNnG|NSCd_2mVlB8!-QT#T7?|Eal4zto>$d)Cf)_gI0tiLLj`1t+aG z{)5{+HPFF6`%AW2))kJ##KcSY^Y?sgySMnR6UU9)w@<H&=jZ1)zhU-&?*00&vCZ=) zPi}VWm0Fl|w9CWaU%z>+`_r>QzwFbPKOb($OWq+oYu?h53n_CW>X)colb^a=S~B~T z$^!ekNozLe)RudlKXJlgsn^sCyGpYe{@<Cn*S%lv#_sa<IiT^;7J(Vo<$4Sc`tAQU z%$+OS#v{4ta@oH>KQ~$Lm)_-h$KU>MJ&Pg>=(Le*vnQQu#N#FYO?^{;sTHp5-{+P$ zFRwOiRR||DJKvG=`?c*mc37;5-7TgYy{%>L+_@r4J}=$vwhA_Xdw*i={O9xQ<$PzE zFf!Eq`}thJ>A|O`r>))=6%_?6^%AXrdG381lNAGKhiK^Pu%~vZj5<sICz~1A^Sm%? zvtIZz(u>{qTIW}HucW_$m8VYn>ZdyVm%p@$??vplL#^BwR|cztTE%O_4&T2oKi8^s zQtL-hp=4knP+3`7HGN~kK_(8x2{UGNq|dJvd-(7n+x^qO-|yGI`*ZJxhIO`GarGbA zN>b|ZSh@Ri#q@&{^3Di;d2?sC*M8PbLDMe%H<X?s&sHLRc<zNSI!l|?ULX0Tth({v ziaoX`Ya6b(pZ?nRWf9Y_<~57G*4srIdcXWXgZB(S^RC{9ei>EME;&vvP5L`=Qbc_U z*Ug>v+b90g2vc7oE_UIvQN3wJmQ`TnhAIF0Zyxw#u;8}DyOw3?nzAO5>eu8oJHNUw z`=s)nG0*;<Qf%}(=?nkA|2J>#cCGrB*;cGoj?-BuuFQLK@9^I>%^tNPv-KAoe{k*b z*%K9$TK4RbSsGqHF{cG*v<C%+g{kfP|F1eFHC1!3R!TF@Z~}Q}iHi419Eld>cCSrS zeqqLIJt$(y)=jzQ`bnT{MTWyEw;F77{lHlbwz(c#8G}2zsN`#~)nJ?J(TX?Xtxn#| z`1j&s_Zu6N*_ZjuY?^0Vtz-Z?(uqS+Kvp(ZZT-jZ_v@42+}Oy$$=T?(xN-Y-^FxOZ zgL>P0_SiIkR#jC^{PyPNi~3tzwV9Zi7ly5V_~=nn)Yh!T2L~EE`up`iS{0%e>p?=V z`=_L6em$O(P?ux2;Qig*;apEx+c$B%`1tYTihzYpTYSvT%`L2~yz0weTwt6zbEeg2 zS&IUP^x8Xj?=B2my>$QEw{Jlkucl<|Me;PbP)GK)ne2tVd-q=4mK*Kj>Y8|Vmg$Gj zpS349%$qh%O;;Oqu2!EcGeb&hD(G;5fR!NvP6;nAEUdbI`rtuE+o~@Ietmsi`1@Nf zgM*(RU!R;U=$IYN74?6=UOyUVj#ip@CH<XPKS^ilzZtw|`p>d`nKMUbZlR;2W2(>v zb)OjwiY#;H&Yd`C&Kl!dNT2E8LB`I`&P|z`nwmQ*J}x?#nx2}vFm7*^fD@>Ngx!3E z@g=pVv=(HqPnS1HXt?*1U*4`|_H5~vdeEM%q>a--+Z|qN{JOilyxUa2-0AY>DSWfm z2*2*10x4QOJf{Ugs$1Lnn>b#G>%~ks^m$k5Yo2Yd@9Z=NAMO>oF+Ta<pP!eq@9ZjF z9r3vcckD@A_^jF8urKj2o2E_ueCzUa3A<OU(BM#f@bF>ao9i#Gt`=_*SP`_;Yhiiw z^>)-M2(_e|=O4-P<&XPzZf(%?o#$IQyPAwIpXz_VHNSEDwlhcIBI}*S1e{Ud0BR(A z9{hcBvO3#s-N;QYS>=C!l`fuE`}vt~rfl}rRjDBx&YwAR<nQnAOF@IGP8@gk)k@#I zc~i#6z^3X82WXe3oNd*TAG-=R>}~vd-0>uWI2iQm{kONbd0wQoG1|%(^S$7gw{zK? zc6Q10Me}VcFRl36*;n6p?f07RS67EW{{4Rc^8<~{?0hm71rH81Huv(a4qu<<U~bIw z;^&Oln(tn|e3=1m6&4g1A6~!zU)GmjA2@b>YF_%M>C{0h_G|L&sz`+QN_#m+b9<29 z$G(p)UA`<RD9EVD5)&J{vHt%*q4m-SUi(a$FgLee^18xAXnhE3-e{f-dIhQco+sz^ zN1m2H7aJ3^A^-k9q4m?n2&M}L0SO5XMHV(bnHA-r6J+k(xuei>;7F%1@3xEcuDyHp zDoX94%mcp_Eb!)9{Th4Zj15W}s~hYR53#&l@qMaxc*!#V`F65S92OQ93WkP(=~V{{ z;%;5O_4zSsO^)pH8zm0=tH0~z-QA_idv#T4vj9_IVBn^Ytoe_o{Xh5O7gI%4l+>R; ze-v6A=312s)XU5BGn_be>d+$B?ge416<ZEmSm<2(toF+b!Km$dx_1Ti^z_#G+&9MU z_2bK!cYW)q40KLOS(3AF5t9|ek>ke~JGF8JS(lfWuL#k4`5rWQZfqQ!zE4y;%p=!C zidQRqUCfJu4-XC|)$dKmQYt`mEkARWC2I-8kKgb28>XF+04+(C>Sc?Ii{s$uclYt( zDJm}hdQMncI{S)MX8Ydi?_#fQ@uc@0s|B}}&@HP6HH9EW5SA7aa=2n?4uJ|VxKlBj zSHx)Ms=pQ=m&Ue<KgadiDai^MW5NF9<qE}zou0&4w(r?vbM)F|L`&?rJ_p!LNNaTB zq%B{k|19S+x_;jMS9R<JyG6Q}+)FEd-Jke&>HqpKKNC{^Z)2|9X{i?Pk7&uu?N^up zuJ<ABIj>9g*Wz#Oi1U!Y`Y%(%+@vR`{fl7k$BL8cCr+QzDcO1P;>Ci}Qq!!cgU5}- z*TqQMR)0J4^YiniW=K7cI!6UnNXG-5kiS^GymGn0ZkhMPhcRMTZYw8Ww0QDV!fsOB zod&z4BOEeTB^>+zev<~RSq2?OR&QV+@bcwLh8etP1fea|KTQtcfCV*-uE}ev>MP4; z%J2VVvY`K6N{xg3MX{I4w-mFZ*Bne0H(zjmj%Dz*wEzG93OFVF|MwT4Io9to4fG=& z^1HvR$Yb*_)z5XXFML$b(jstUb2>jm8guaxNN)!{j82?BeR#3vL=Wk^JD)Jtx<seQ z{|kKoX{+L&latl04y(_vStJaa+2~XEp9k9iKV2`@>G`?2pmTtFdUzPlus!R5_R-Kn zYQp3iv6uDAx2C=0_;sS}#0=Az_n#IoUR;{@Z(6;^8?{0wjvv2%J^JwQaF8_a2s~l8 zY4;b9tCrN?a0cst_~uPd^6|cxJk9L<*EnA+cI%zAEdTyK+1Onrjs5-ne)H{k8*Uzu zF@&`4>(LUG(5A=x+<$eHE#-faZ1pm>E_1!(`7>u+j&_M&T<$NA$2SRG$}g63zF@ep zB{R6CwUsf!%)lMmh5E?N1a4q}vRXv_5|-eY=D1l6|9*T-4p~tj!1(atLp;%TFr>WD zJZ+W$6KMPHLg#kS8avR=iMdv#O#)2X;p<oq<RtV-T*&1qce?yooCTZ+p_R7gvoA7V z{xnaYE<VdVzwhj9bMIWFo)9>l)q{IN;A{m=XhDY>?(s$5PV(Khj)+ulxXw1ezsL3Q zgz1x$H+@Y(^c&GUt&;n9Y47XSFM)5n_h`oa>eyDX=ZSFh@@@6g#o>|rPua{&Y~H+i zPxr~7C6y&>_n+AxJYnZQ?<M=cU%G5yx2m~hOU&>8l9&HAzj3ynI6Zrp^7AODb2WAf zySce7s{a0NQ{n6D>)R(!7GCB*Kkw65O-~1YF0Mm&b{3~THZn2-o#fG6|9Qq|@s>S% zY+T&k7kf?Bx{zT4I?-gNaeCLB{C9VDLRznmS677^R(;8^srwT#%dYfQh)L!pmb|>Y z6(K8yc9p;H;}+LDF-=fbw)et?fE_z_95{WNJNNdsqYn?apZ;Te%c^*t{iZr-MHjN+ z-zOvE3AG8@M&aiUJg%RSVbk|lWTv#Z((_l9uGc3s-UW9&i@9DH8X5+yzS_~*srk`p z^QKKD$DTfUqF`>m{Y2$ytp(yo=j>MiEp~kO?%j<Yh01>O?Rxjs{$AuYRjcB|gT{lE zVe4Wz)zv|#^Kpf*i#gbD|F1(UbXCHa7Z-zO_sLo-nVE^DpPO^A{^Vr!kC(jlLC3Ma zeEBkHcIfJ`hs)>J9eR3tdf~G(lAsM8a&mGzDnF;~+?O7meD16JwSMquz(i2VFLB{4 zsM;``4j!qou(V7(+{U}fOxi35RJ$$+TMb(18M!&_<T7?v*2Gg&G&_2FTH4#$@6~+v z)y&AhyQ^MwYxecF=4R$elP6D{I<<Ah3XLDXe;+=2l+|~(+0lD@tCyyV^1J|*Dckez zK6w3_J3Krb6!`Xkzf3l<RZ?<#UMTu&8Z$$;n6A^;S63GXtpv^B^+=g|U327C6c83} zmb0xoaPy|5Y4)`v{PuqWcJapeR904g`26|smdwjb>I-MiocZC)mm`mkcJrS5{%-es z(6sTCUTNzxokNEY^PVgI{LGg_aYOz8y5`(1TX&|PpO>_UTdQknjiUl|*a6%&=6L}g zikji<@c+YM{)f+=sd4XT5RjMWudc54nP(%}+1c6A+uOQ%vvE>#@=`NLN5>BzJ{&kR zv)*{(lqoGsmZ%&#cFbvM&_dU4F^h^13VJa+8oqof`SSk0yl&JMhnN@{z1UqXGmX;^ zojl1Yt{=y;Kzfb;Je$s=-Qth0tPI{!@lokmzdV1hTeJPYAIuB|&(Fz*tc?<#tnLpw zmnA4T_^V#}<z>DBD?=i76etP_3mYaM<GFGBc5?mqcXxxN6<Jn=t?jzHI$T*(lT+Ef z57aeycV}mE!SB7F&si6gmg<&VShw0xFMc17B8%S~3q|SsYopCUXAH1CkKUZdYh!C$ z_~e9Ore$Jc;*UR{&-0#}JY@=tB8%UAyS3$2VPRrv=jL$w`}^P7ReJixcL&$aQ}j6? z18Vix<iSl&XtH0*yen#Ln*fvj|3910eF2>$TKoIkrozC$z!kyE`@WP11PD}pd7+ps zEG^Bg$l^E8MzeQ!$xER(Z{B>k9$$a**0$W+V)C_LCYr<tF5hu|WiWeu-Or_OzH-ld z6jxxW8@1)YgM-aW_ix_3`Qjp1?vi(RBI~8pTMo2v3NP7z`SRt&^z`<**5y($)1}Sx zJnX$Bq~_UF2EF)w^8JH@%>qs@auy$KW?$^w&ewX*y8d6yiV!UeD=R0C#)Z!9QaQ7y zPj8<dUl;ja@Y~wx?T4;j6)h_(`|$ny@r#Syd*kYj`miRM`n$(8WG~D%$!vP?AYn_+ z&7kL2&p~UAE-mrgR0!%@glLHt{rg`z!O_w2$Cu0gskuqX$qU0)Pn<qoy*GM$o@|SN zmHP}?S=o=TR<HN^{FMLN%a<=Zy1Ja+-rD-`<x9@+@bDYAZ!2qQd1WR0IDG&1?bxTM zr@<j$m~lbD=5zfS<4YEbEZ5dXt4H^>x3h<>i3mI)rn7UZcKE4n&M`4_L@un4->;Yb z``hjO#mUF}*rsnSe;*gJE=JPO(9ojvm55pHt(L5-s}eswIazg^U)qev(b3Vv)AQoY zY4hgwEm@)hYVa_#^SKlh6f88qv-lAr>cKHz|EeDz^;O^B-Tio6zJ5W~*H;-A7q#jv zG0(Wb@c-}o`qa-k_x41pFAx`<z?ks%*4Bc8f&;DG;w61X(pILmFD@)x5x3V0<dWd! zeu|o!oS@SxRs=3yVs?z}%O6K;Yintc6TZH>y0p-V17y@T8GnEOn=k*c)=zyV@|~Su z?!-1nH#fIV|3c8A6rd4G>F;m1-#>KoX5{l{HHX{z-LI|+oj7MsPC@0*t7{^KgO~f6 zuF{n}9<)zk0=)O+z0#ho1U#y8MsWeNgO?Xq*0nXAX=i77zD{}}@_kq7Yp;4~=?lWb z!ip^pF)?!ve$}+7zrXpsowhaCpAQe6E2^qaF;%UN+FFtqlm15YUF@!siN~g@ESUaP z^WCl4N1oOni46-2n`qvdePxB9-H!*%H+NiJ9qzpNqKEyGCr_U~yjy<1b^reTC1>{= zW?fm)_~J#z;@iO&b)IrF!NxDaV}K5zZlT$+7$z%*nBDbdyj!!b9s(Vhxn+xqjD1~9 z+2kEhPfvfn*K>{`qbx&Q{ohg+cJ}1Q$9h5AuP!cjH_W|dl5>Aw?E4zqsxJ=BY`haD zOlX*_?*HiN^!T>jyLam>*q(o14s`PF*6iy`X3rFj>HD_ge|UUtYqz+*mwD&u`rtj2 zSiXER$h~D!QB_|BS^!~D`^zM*`mO2Q<7@u@zW@K&j>5-F_Ag$%_~E;EeW0aLmX?yc z%ip{8N|`S4W^Y)Yu3S-7m2`h!?Iqr?LBYWjCr)I1@N(r_`Pwgne6m(8tHakn`tk8G z=&a*8bLR9^@mWir#}!fanhTggTk1iZ072vA-{0MxEVp@C&`JRbiH@1Z>8Eaqt1n1T zPfvbyq?3b>ugz;|)BO4Jpi|L;m;1e(`~K8a?TpLIc<0QW8@M*gR3~BsgP@?`rUuZq z@hhvt`9Wts*PWSV$pSiS-o@Sh@cHu~v5c#$rk<O7O<75)UO-Y(^Y7m$Cxv}xnQ)qB zU1@Mz?6@`SszJ^T1JE2vR`7?yl3R|y|H;|c^~|%aK6L-SeAZT}&{ZLh+w<;LOx{tH zpcyZ4!V200nY8qZJoB!fi4NNh?{NB_53<VG<OgkdfZBwSUVqVs&g<co*c$sFknYWm zB<Lnf^W<sMAlu0b{{O43=Tno&yT7j&Gy?MN?d`7h-0ZidBkE<Q$RG%vrT>D0f)rXD zqM~M9GHm@P&%CSm;=2|Z@Hh!{z(nE5<>vAfIf)CoK6!b1K|w(ircGP+L%(dBQAWMU z!$@wKDG~?+!7QDn|1Mp+R1Z4A_s*S|rO8}>?b%8e6_x$BTmM$^=?3sr60|YBcv6ys zx>ov|1)iQrfw}SDiX{>kI!{SjXF%0~CLzExP?{i<rp=t$`Qk-JN?Mv0XzU)^or82< z13e8F2nz}d3f2n>&SYdOQGx*D0}XyIV35KlaiOyV49+kxTY;1c3Qm+va8TE3{r&xY z@~thI8Ta;BYK5)g*c#Q_(7>=I@2(W+IQsJU^X~op_wRRpkF2$rqN3u343iJvzPVLY zSR^GSO_)AC{ZYB&v{gI4ip$FKD!NRpcMb}g<n+Gd%uK_ri)Ev>=j9eyzWKjG#Vfl0 z&Hoi^KxekE-}8x!iJAG~lP4^_Zq4cQD%t-2{(gL4?QgER)Bnm#HZ#s$(Ng#Gsd&h` zn8;u5cQ0NPjEjrgRR2O)NT}plcYnWoE0^dJv%I{#f|8Oc|K43#$Si--(N)XyZ|435 ztLj6vLe|CHd;r?em3mKP=GH@5%Zi?!`tb4N#4LR+EwA@RH~t5DPTltJ#{a;~r%#_g zoLhcx;$Q347c(Bbd7~q3o_0oJ@8`|`m6Ht@2u}qKpDp3r8N0j8qTm5TQE@RNgQTQn zM}PnEA0Ho2oHIvfw!W?|Z(UuTfD>pj<MBRO=6Z~wT(x@t6ictD`dj)d1O)}T)|f`_ zj@+E)8E>K=vtxnr+`sZumoIwN|5twMwN0s~mq@+7yqsSzZjXlV?t+I*yUO3|`QG1> zIXNfpTYZQO&kL8MUtU~P4p|>3>%{Tp-Q8#|w_`I55}8^A3d+i^ar!eD)R(>r;ZS_= z;6cNYBS$vH<ZcpLy3)SRap|X!-DSBPiUM+S>&mTu+iUr|UX}lCueBDk)B&`A64d*? zym|BHrS<cFe|@b!``Ew!E>K*|5Yvy-Dc!U^@2=LhJ&=Vl2O1cwmfP3-5Xj5R6L3m+ zbfhzN<F1rcui*MW^-W$+pFTL)d}-ohP^q7L_+S62Zo{v~|Mh!mo0x?BD!elxZf}(% zN8`HK-KUOi{=fJUC<!hT(~WxZw{(jJXdrl>!<y*r=Mr|Gn``Y1UYawtEc7JT)GhxQ zK>jcW-%|15;loDvez})E>HpoIu3Yhp`NsdimzlrSlk58y_|G!&lsf;fzpI;Z?g|Mb zW8;P3aX3(oaeBIb@`D47pySY@*1A1CHTB}!X!AEWHae%@<CQk^ko~f=_&Lu$w~&x2 zUtF6t_FuXp|KYs&l`c{3MR|93UC1ygC@ppM@Zh*t_d9ovMd6_%?>p8w{!_MhZsWOl zyX~+1RPp5cSNsY8-Is1pJuP<A^u^EjKk6SIV*T>sBC`|6l@)=^-{0S#zHH<F#g9M* zK--`FO?~qAa_iQu6L4}^8}|B+<L(FItv^3M_rCn8{0{5c+2;OP-#<J&{He}6#nCIc zzTuCd^S5u`K#BRT<F#|=_#Pkc4}UOsqH1?%=fo@xJG;32dg*WVA#pt`?Hm5ePwfS* zeXyUBt#5w$-j=JUPjiE=g_vtyp7MDE%n8ozd?)`ke*g68&@9vJ33KQ2GW_^_-X3%^ z|H`v_DnBo&wEz9aICIaw;Kf^}=|n1R-Cg&$YUh6SO)^VY+A~D#EK*H7Go$gy5tqz) zYu4!e`SG~EKjY4hjVAZkL~i!^cke{e-VcYk1)LVt{r$yud&B?5pOSq3GQRo0;!V!& zZM^&T?b{@ObZg?@Uh{hwc5=%6w%5{QD_N9uqFz}_k>%RD*wvTS%+1AlrOl@JExlZJ z?9GCeTfBnnT`T|mFq~Kauae{Amz!%cGc!~7{z_>*H^)->>f`D4@pYLSWPjUh@gKVu zA9&;cL_;~-s+REhT2UtsP(N>X`TJvUZ*MPreN7is7WvLHnfUMR-@o7QFa3Gre_)~E z0%6g^D}$FWIk!1#YZlw>wJ|$`vdVvaNMx`%+Ud34<ZC+UXc5m@`HzqFrfxiy^3<(g zj#rVzM2h#_y}j8RWPjI#ZJuv<<9}da8?Q8*A`9q%iir~!8rv!>Gb<`83ON1SVgIc@ zBnFh3LH(+gpL6c-+k3F=c)$GgTeaWsmNQgL7SP&z>B@Y=OP4P%{h4-dPNdjspD-P5 zZEjKRuoeNP_51%-EzG_7KQL0;@2_O@UwP4I2b<Y1*>XQSKfgYIL+n3;y2r<O8Q%O~ z@k8Q5XP2ge0)rC=X#Zov>>ocWRvKTk3u^AaxnNVkrC-Ku`xgWiu8H36w`w|Q!1va) zzw%SJKDq+-K;ozWyLZ+8E^B^U_U_KgVm4`51W6erG?a7|#>LIMXLi5t_u4Cx^44WO zQt}cK9QDxA`h8!%l)Nl76jt}snf_J%bl9w4+Nb8(RxkOPmpq#jwwS;y=SD!-YM-!G z&h2~xk6s!#@?K4<d-H#Vj_CG(U5Ebla}_^2!nx8;OgAcJ!(C86qb&XWys3y%W5*7Q zm7ilbr}duu^2huo7YBz!UVYv=liWisoB~b<jvi$VUl((6X8Er#F9n<qKxVt1{xmz` zG<D0ru3t>EXU^2T%X{<cRnhP7?rKl}s{Z=JarycK_wLC#arn%&y1JtB#{a-b&Ah)G z|1Z9D>coi&a?7u+2vpu{UVZxHNylz6U4@p0?c2?Zii(zGzWKkxLgGTF*MfTg`F0?$ z=wDwKoBhEs{PcAF>1U@;n+96t&!Grftod^0+Q`UA(3Z3>IcFC-x6k@xJMpQ8=ij%t zxATJrdA8rL>z*=2B(tWh%<S8no62_&MsPH~yu5t&AKQtk7wv*?f$qB4&Aa*k;!Qz! zekK2RPfa}1As93lbbripzxugOd3kz8#l;_gzu)hjUdo{ex-}r&O#ipN79U&5A|Vfd zf6!6DOZsk{Jjr?Q-n~orTjwqkk(cl164ml}3!2&tTDfGub;*l{GiQ8+_bYEwQC+!z zZ}s<6%dD-f7bhL<+H`C4_U*@y%h#{Duv^J{;_TVo3l=DFC|+0_y*=sd>H2^DUaM6= z<^3rqH#at`(pM_0Rn^tiEi5fh9^3ovR`#aF&!gV_KM}$6!bNq;?AhHjW=L$wy2@o| zXBV(C1ayYe{<^=QnGC1re{oDx^t_o;q2$~ZUB5m5{;@TYn=kAx&u?jIIdJ?qdtYCD z--iz$9RB|LYFP85V2)L(S7W);v}ecV>!<7s$h)~|>5b2u|1Z9z;R%Y=O_QciZ~yxG z`r_*E?^Z-@)w+^pI%m!t&=&D8@9s+9-j=IfQunPsg@=^pRJ}T+<z>Xo^8(!Pa&bv( zV4MqXcy*lMF@Utv1o1V}a;`i(J3DZ(8!u=)<;sdcul0VNu{#PFr)q~EYi8%45;s+- z`pXN!s;{qD%gf6-6bs(pvt1f~QjLX`HSt~jot<9m+pcC^TEc0TcW1?yECInt5s(Lr zg(M|A-`(9k`^nat+S-o~+vOjv-~Z1jbI0A?<@qz)E`SdF`t;=Frl;kvuYsC01%-u< ze}8@5SoHK%lK%HoQ?&)06ciN~`dr&=02&)x>NOQ~_R^AN%aru>*WZc1e5I(U$e{F9 zeMn1No73Wp2X5b%*5C7iX_{`d+SbmF4uhBduCA<KdZo=56+S-p;memPSubbj@4J|} zz2Kn}3p@MalP5WQrA(b-VqzAqum1b1bkDb2*`UGFxpU{<`(E?xjO3SBSGgS>9R-{u zzB)H;+`2#izMV<d6%Ic?KhT{QpkvEUF4K>!-^B9p;lmG~J~d6BE)LpotnA)*;uh$P z=h)q4u2Z!_6<Q8FJ3G5H?s>a>ox|FwtrKR?j()OBSny&nD8kZ?gfRYnc(`4_>B02) zI?eCbwN~gbS9y7Hg=mQe1qCfBoL~D*Qq5;ZLo+-7qf1M@e?02ePsq>j*NxsLl6`X- z&x`u^d%w#?ZOsaOw|?;wPGPkJ*RPAezP8r6sL04~o=xZa{r{vkr=Op8Yeuxg{oUpI zpfQHx=jR??TIxN+JYP;mMrK3yb-k6K{o4zJRtg9UHy1xYmw07GU_oi=QTh5mi3K}B zqpv3>DsN0W%4L#q!Qp+iUDX#2&_1p;k(=4->g(#<SWA+#>@6)N_4M>4OtVDJ&9!cy zF+*ZSh*r*x4USot_t)3!#Ox5@<m9xd|7XL-Bf;SB?;o?f%r|Ru@^QW%d3!l&^E?xY z3&ll64_?3SmbESu+4;`J<%<ZjmEc54O$pF-Sq3#f3P7j!#>K^b`1<we|9{`@mn>iY zc<uK3drh-vORoxFulJj24ex>5+j5=vR(*Z&<Vg$YW|%80gEzhW37T4DVn|9(26b^Q ztgRQj_sfBf4zjVe<y|Mw05VrlQ1H_InKNff7$&i3g|1>zS62tED0A<ZWBuU&;w<Re zASQ-SpFSDX{wlHge8%`fhRKTX^>WwN*T=`d_%_S7+H96dX3&$ex0jZ3v++m-r0o8~ z#a8mR?Dp1daVe7whF-U3v)o&t)$O45CWj6kdhqUDU)|qd4=*luzf=S|H5N2-3mO1f zzFfVgrpBP|PsK}(N*9-woa&72OZQ!P{PJbzjT;d+f92lUA-Fbrd)wyC#-Ou1>hIV6 z_BA^{N!2@GYgXt><GHrg+uj(nHt0rgJJGkoZ<YzC|2&(C%die5uX!7}zpmD2mdVKn zUrwCxn0sqS(Niu^wkmkwz{1Y%y!fJmiVDl;XJ;?Z++O|t-3-fOwLgFUJb3)LIq`6t zqP2B&R`KKdW4tAAZ;49vvK>5lFk)v>YNuae{*4WaYCba*{@&e^8O$ST<Z?|-M~CO} zv0me>%42^t0%rw(<i7TgUB0Ga!v=%M+2!{t+0V{0HQv!PXO7H{-Mf>Ic8OLkm*#rG z@Znl?{=@tK|CMuIo6~W^4AkYEDOk&R_wHTU;AK7sk9Lb2)~B8lxpDjU;^OD$A~vOP zg6`m1=-j>tG<~gch3zEhT!QcK?pl<-64_Puw(G%zgp~AjWo>Ql&d$!D9p1jau3=$f zeDZcY*4Eab)rB5DK1amkYZ&$Q*C(-mnW*dz8n3V}dvoCC=5#?xNzVNI{5v~~*)1(C zF9~ixa>Qjx{jz0By1Kj!A3h$JSJu(t*<JP)H1!}TEzPa2uKwos_VW+Ey}Gw|x1YtO z<*BEqRlMK(z2_It79Q3wX=i6WJkZE&QTT`jG|bk~0ctWas{73Wjh1VLtZ2x*yv*}- zXGcfF?Ag+8y;7~98=0P-np#j;cyN-cHv>cYyE_LT)E{gH-7m9b*|JCH=2|oK@V`h* zOuVrzS6WC|7&PO@!piFT5Ol=NhV9#rpP6YqamI{}R&Mb_$B(;zoB8h6R&F^txrlu= zmU{8~dhYHnSGKT-5L?zN0IHtC*2ncOS)$S-V=0uEmv?EG6lnYuw1gw?-kz1^RZ&q= zv&{4B`wlj<E1Q~%u3WkD#L1J6Wo2e+esek&yZ0+uT1MUiU4%H-BtIoZ#m2@4bRafp z6IS&0ys5d#3@`5NG@e)cE%MK|+xZ>+{qEgjx)0vG$tn48_Vnq)^K7dhJbKi0cXv56 z!=_D}Kpjlq*=8qi^~qRXdSR?|%6ftLn!ojbU)RTjF5FvlcA4+&2QOY|{B~5{&(1IB zu=rxa>uYPPmWzvB5Z8@rdGO$Y&{}K3iMmM+>Pkk+znH2jDt3G+_w(b6iH%KlUlJ4? ztk`m3p>sRKA7Pd2>teOH?ks-JH)rnLr2)n7@7dm*Sj<rIcI$P}wRtyxeR+F(djzAc zt*xxqRId8fVQVKXOHWS+tsgZ`J2PQz{J-EkmoHylcrl}-?;oF(3CH@q-)0?r8@j)) z_U6~;zt+U>m&@8Jm40rH=9XB;Hl|;oR;t<j`hS+-t1dU0yqjBo&+&Ml?9%<pN=gB{ z%W`j)J_X$glXZQa?%&uC?tBM+H2nK|J>L8B`FXb7^@=R#=G*f>c=`PMC2#$c(?0%s zz5cY_<@&#`<7Zfvu3B>z)V$LQU3KD`>i@vUU%r&wxOp@2`MJ3U*KTf358Pdrd*k+P z@H%+w_j?u>zuLTU`3`<*GoHQG->3cS>*;X`2oL}@I1538D8IhF<z~3VAJon-KW*83 z`}%t;vUk^CzI5rqt5;m^?(U%3vzM2aUfQz%-!E?P@l^q4=hNrcwoRBYLFqnwz&^&< z__x<rg>uiY{Wf#W-Gj~SiY=g_%ddLrH#Q`$2wco2XJ5Cbyeg6LZ@YY5!`{8N>z&n= zjD(m$)xbsZ3+=qpYT3dP5*n?s4_;2RRct9awb88JLu?P*HpgbROM!v4jC&oM*?zpQ z|F1ne{obC+qg*fc|Nm#*BCw<C>#8-r{c^TTF6Vq@{j%7---&}UJUsm7f}oY4`R?Z1 z+A1n8+jO~Z?Jn1kiH+r*H*59PmBH#SO<!MG$$X%|;e0(y#m!Br1%-tZb+aEG>CCvX zVd0l@7nhcE^)J7IW;tYJWtTcc&T3e<w}ye?-MzisiY(vW-{*JupZ@Epc>D>wU~zHr z3=^rFW!E!I1e`q5Q#lkj<lVKpS!82l({*PZ>(gh?9=*7@7<67})t48H?Ck73QYId= z@-)`eeZ3l<ac762R@fSit4BYdx7YXW@9A-wt{0o~xktvbUMTn07RCj;_io*@XHOT; zzMVUFdU$y`IXN|zoNO=Kf06A=lf6#uub0a?czJcJnnga%`>gHhU>@>&Yu43EKOLVP zXk->}QZO|QO}D(f+`oPMcJsRbf6JTKhekNu-&<|oB5>lw35{#NgavPEfm?Np^cRT# z`Lyo+>8gMFCt6uc>T@G5i(hzseSLh2gS<fk!>-cTYT3p)Hw-jm=GjyRz0WRxe@~W~ zoo~w8_<s#`KRzUKC~nBVZ>OTFda}*_|DWLh$CxfGa^<f1a?!nNIjBpLmzVeB{{MgJ z1$Aq)udnl5zx;3E!2pNz`|oYsxY6o*vAerF=zy|I_f>gcl$DiP)i3wky<^7<mM?$I zH){Xb`O5n6f(PlVE@pr#>bY;{O_`!1`&H-F@uo??zTM7OY;h<mGGh4q_21p{`;Ln* zCOkaU3MzjmO`7y!{{KJj+j_fyJ<Rz0>})|v$ra14Y##^xj0+1KUtCzo%<$Rv=-v&t z^v`L&GfqF(vV6IEpR9G*i`Vs{Vi&Hji(UO$Sxit+@>qkPON!emqXp0RyM2FmclV~( zWxR7A-P>85ezOQP$i-bOU-O~y%?Z^HCMwVEkH)SIdp+looPa>XOyhK>AJ0o}-QJ$> zohxTk!Jw|LzPEpa)|uV!_pScE?)$C9?c8EI8rMF3(mvfV?|(@dgM@ir%*5q8>VN<G zmGtmX>!thR`f)7+iy|2J=HK53I!z>JCuq+=&fMrN8H#@^k~}I|zdSzP@66G7dAUC` z!>#T4{h;anTRif1GWz>|EXs+wy)Cy}^n!lO4hF@RH-U+_3Xk%>0L5HwnD1<}qZbxB zr{-o|U$^##@1w3&fBEfxI4qZI=c$)mR6Kcyq;cAT!-t)Bl`J!8W&Oe_tad{0vZB(W zL*N>F;wGLKrLV6Yoo8DOYQmSizQ)_w*m&a9DW(PX3*@azILgY(X4utQ2?+~-d^$b; z)g6_*>+51SY~FmhOH{ky<0Ds}ITnI)a&nsv7-d}n&8{auKR0*N>?3#gR*N5~zr6Tr zSy>sV3d_5<r?Z`3o{0f;4<whUR>IFuPj{5O6!M#6(a6dz2I8`9zdlVj`oZhh+Sa9& z@9*se)urz8wJLXWbpD^c&hX&GL}d<M-l?``s}^kHd6Acw2f9K8G?#sKb@<_{S4F$U z^{3@-ZerXEIzugXw^^Tjy?tNu@xF&g#p7GNmTHALT)(H12f7!n;-iw7eq0ZisMdkg zr@d#TUtbqnP*UPjQetv$jwQH}{r1*Y3H!P|SC;88fzG@$Og|?hV^<>)zCI4LY~bRW zNaL2477z2S(l!+apwXw8okgtM^X`JW+t1F<X6NVUe{*XqcYSAPCul?#RE~&VXk0$s z@XG3N{&s$Ox0)K8Lx&G{@9_j3v%RtUdmd;n==1aQkH5LO`QeKf9W!P~tnB?}nC(4X z@956r=b(FUckJ4AO7F9TdET6JbI%A134vzDj`d0}uK)kf!@~pA23q<uGBPq~wpQq> z2Y<iccXx8CXPPu=(h@W9H1%=r<gEDLGqxHgAA4|TXK}=?l9lI@uPyVR&$l(Imsi^C z#I(hC!yA|PXI)u0Ux2Cj*%?PCr>1i^jRge-UGJ$kb#(kY2+KeDcXx@FzP{EPwf5NO z^Y;Cd)&0HReq}9T0Gav4V;yLo`nh5Dfy>$TYqZ1H@%a1u_edJE9d75J&bsh;zkKqM z4#5=>8yB5RzP3fpe;#Oq`Hh=5Ps(lnc2qoG!Nf#FYbw`Ntx%`qeX>hmul#!Q<Vi;d zhlV#hul$m`KK1{{)SufgPSp<Q(c7)V{A)wvVNk=RqM`!S$9#OOck*2mzj%lLuh;Lt zu+X`leaEg{i^A4M-PoAielPn1H}{JJmyfSuWnuB?kNo}Rvj4;9&(*8f#_lfjEI0lB z;e*5FWxlE94(4hL*jZT>t*mZ6_!hG%h4a>y%x15tT8?YOlno37^7nq7rgK6~O>I%+ z=Cp#cvT1hn&z$ku^YvQvhc91RrcW1d<CE<we0)sQdO`j2Wy>BdogUXTd9pAQGxNu@ z=J!P^Q>y;___!i+vzmz%@1DJTK@G&4XT`UQ>BV#`SfH@tYL-dX6_4d<%F4=L?<FsI zARr>5;(PtO$DyWD8ChA~*~e$xVxKpU>Hda9=M`78SlHPguU@}zk}p3O*QMQa{>)#$ z@3<+~$Mea;jmzzi)vpZETC!w`#GPX<E-J@C(U<y#_2i^W;tpre9%|)Yn%#7E;>L0{ z^QqhK*X=&zZ+Y&-i3YdD2le;=30ihq_4K!YzuzZ+cyQ2bJ)7V}*F*<(rA<cL#4gOY zsciDM|0}{TXA@8r`X$H;v`$c1-G81-P>|5G^Yi(qdZ}8w?$&v8r+#PfbG=tC#%X5` z+^_$?7BT*yot({h_l~CQh4{*+q9Ln7IHh{oN?%>MXgPOgM@PpQc9c0OlrfZ$q+jpU z@;UeY`<1;V|Ngxf-;P#_S-$-Kbb35!ia4yww4>vU6sS?s^vPbV{^Z4rg8TOE1Dyyq zO)s|V&Ye3+x~Ij~iJ$+Up>Az$T~Sf7z_FPPbb0aD*Vj{X7cXA?)s9We#3UrE_~)n8 zFR!ojhpq}~1jQZ`(}lIs=AesK%*?{x|M|)O_VJmZpr8doD^pIJefjmXT|0c;3!7=W zwzjhJH6Iw~RX&rnu&lRSm~^xYwB+mB+UV2ekEaFr`SAq>2QN*ZIo;);d)dz)KNk4T zHnS*r(6A=<U@j{|VPPR?xzLA)hbK;-o_?in!pxbR_4V~fjvf`=_2v(#40Z39oBH7H z%yWN#fBy*T)tH!w`1$#*h}mfb8sF%ZHa{izdis<pE!*!^aWmF4GG1DI?bp}W?a9ac zBxA}By6*s4nG8Cr?EC$RGiP>MmA-nhH@P|_L<Dq##{Yk{DQRhk&Y$Ps|L<4!&OP-? zO4*=E!zBw&obUh*DXv_(a!1))sXlr8zVmj!dGhk|UfkJPywRy&m-P#%!?kRglA)m> z=)&T|ZM+X3*FSC!Uhd}!3fI8xd9h2DEj!f~y*-Z+)M*IVTU83WC!n2A_R!VU;e`(l zFxLF}c-*4ui-wVrQOal2{ChIZ?EKSuPoFx)#Nad2h;{w`e^#qPSF5$2YUh_fbt??A z1Zi6D>60ffa<=8~`N-zv<g}socNwTK{`m3Z4Ey?eyJ`CId53g!qgd^)2QT+~cr`q} zb@_7jygNG-w`%WLyDj%NTY7rB&m4<Dsq`~-8?vrywY0RHI3_B3;q2YL)!zfQ=f#4S zI-Q=bfBfd=bWs0H)q5IfL&POt<$hUfHhzBoEg2V?Zg0yyywrO-s7UsltOmNZgKhf! z{p;(!e0^P=oS5ROUaEq2pn}(IP4#M>YhCX38MJn#udi>@@%O#5)?(}T{mQb;WmQr- z4a%pG0DpfkHvP|e`~N(OEpG}VHm9FIw)wmrx45`C$Vs5to5St=j4$LGMVu6@tfUTH zR*(`EWv#ET-?3xIg3QayE={bDe=y%+bM|$;me$sTSFei7T9;k1R9ZWA_U!J428Ox2 z8|CfmWFY4dFo1@;7esH*D<~~(-M!lybb!lE<>^}*U(C+m=NJ$mU}Ix*VSE04C;91V zFZjMnN=kyx&^|p)w{%**hm#W%q#b|I?5E@|>FT&RxmDro`(o>NmpwepZ-1nLk@?HH z{1+lGn_j<s`7-jA!Mv$cTg&g)ir3ZE6%-XY1q28z^P8*XtN&)Rr?+?W-o3Vu9zS0C z{rTIsy=uO*JU*|F+bdO9SI6*W{-e5YZz4<H-H}|kZXIZ>NjiUz;$MSB{rk>;y|OY` zz$xMMG~G)({@l*Gx+*kab^TS)kX*`XBeezl|9m=K@&E7l)W=<`rvI5gf8l2BEx%<L zbfUNMBqk<;9FdWsA*L6j;d?o6GiYG4^!2rZvNE^5RbM~c&fo8utE8mFGp}^v`3no3 zAHI6kwg2BQ@AO-T+xb5}IVt?)=~K{E!Jx^md&VVP)t{R8?bFiJ<EwY#xU;8Hm;rPf zI13BQgL`|cEB^d2Jap(#$+wxczrQ)I4O3QDKKvkCQ1GS^s0Gg|$@PLEV1HdLX!Y2y z>UVc`{&+e)e!`qNJ@f0qm#s)xm1s09Z_K&3r}D#x4-@(dG7ne(|M&OeB3JGsM~{L> z4lRq-=FFJ`YML?B`yX!eTI#gB>}|oD8-_CWbuwGCue<&K_m_9w_v-h1+dq6Lm|J*u zwmJI;lPjh<Hv}F&d<dG)et5VYbjQ4li;Krw&^noC&)VYlRz3Xk@^VLack}%D@^=4z zBsZ^*zM=f&*}1vgiY+Bawyro(`u3J7Xps8an#dC;Pa59vI~`E(@c-xY`JlbzbLPm* zu`Fg=w{BfkeTsqEg7&tyM_0q+b*~oRO+PoMGwbRqMLj(}Q1fd2{(qpgg3Jc*HfLU0 zA((b{7Au2A<tLRrd-pC3TV447UoFFd`hTD0zr4LI-jL_8zwWP<R@j=3e!E{Bp!QRz zu=<64wbffPFCTmGt6uC+jJ$1Ci(&FH2M$GRrPX)CxW#lDqShYUe!p(@W}RfFUDKzF zUt1TeEge3mA@0MQF4OF52QFR|++F^jjX@`J6HDl-kb}p1r6<mr)6*+$4jP#G_0V<q z*+Yj8ZOFZCrlO{{$bY^a2N&0*bF+39Kks{ETJ`l+>xByedk>nKn~T@qyLa!$`TBps zFMit<K4NJR2+|dCKe+GJ!^7<r&*zqd&JxgkV_*4+#dns;!TtaL=I;UBg}}{yIr2Vq zFyQ{a+M{voN=ng?V)zhK)%|_7ppk**&+DSM^NDJOO!#+A+($2V7mKyE_1wi-ph+W8 zqxr0Q%Ymi!-qV-7<QCU+d3tIp@4j!H!s-d>>FTnz*W^O4%c<VkTWu~QBlF?;{Ccm? zb8M@{oH%4`t3(c5c6jpWkrMZ!z`#Jzy`((*@)8+qpP!p6-~?)dU;6a+?c0a1UTI0Q z@k*(j-JEccX~&Ko2kzdL&Aqkd;FFV+ml`v08Hrr@{r!D^{l&%Z-u2hl$H$jFYo4}| zvG)JJzo5aZ5G_&Aaj_Q{yT6X<j-4W??DpWOc>I*u@-?Yv(v8dBM1V#u84U98*?f6< znY~xa^w77rw;34}6%{W@im)>OQlDSb#3yTYBF<P<)zzvsR{rhtReyWlym_P0;_&!b z@5H%tb#I4dZI!Bb;?RlR74m*l7uSpL@9s7WIF<d~S$6Xn+m}C}6|bOf$gv*DOFOcz zu6o(>Kr?umhkZik_M6w^>vesv*Ref6KmU4VuVwMG1E)`)e(-H~;bXQI0nkNA2fwm6 zyx;em&xvD>Md6|gWxrh9+zuT)==iIr1+=$}t54ouFT4ERoqEd*6R8zfvsTXI`t<GF zwpZR}9UWfHjB`6Y99vnxfaak~UtO8_@88qu@fX&`T7%XmpFPVf)yw9@v1Ivj<_q#Z zprw=CcDD{*ycoEP&&143Oixd5(@(S9TP)VryPdA@Eqi<G$DhyVmzD;v47rqfCcfq) zYg2P`>9dcYJ{{^3t=DF-;dS|WU;cwh2WViNEq?QchJDG$`R2+qWL;ke8bG``;lD{W zL&b*&jCDUAvV&^iig!DoFSwYoM0w%Qm)ziBb6Y&okDYy<+}>+!8~^n1zF?RzcW&>F z9TuQ5*^K-9Y~Q?jV^H}irTO;K1&@#SA3lDZ9klANLr}T?!{dH?ugg6@bGGH&Wb*g- zfAZ|vqV)6gK!*z*>jU4d!mx7XN&zQOkA$IwxoWyz?1G?`C0TwPjk4BdFJj~0KCgOo zgi}RLE$Qv8tsGojhhAP@Ub-#x>#M7v5~`)G?bTkM#VZ=>{{AYBockoctdJQr^m*ve zp%2HT^F8Vx=iS@G3Et|M`u_gOlboPM2D#JfW#7RDf%L0;Wv$B`)`p$7JKO|X*u<gO zwdeGoTU)bxcRj9K?l*VI*K6+<Pn<Y0<NCU}TjXUei&!R3ocQ7E*Q+~yo_xI?f81Mt zZ%V<>fB*hPY{>{*_}alGWi@DRl}Jd0L;bt@ozIu(?+jlb*Xp+T;ERikLAQi}{PObB z(oGvy>CXV|tmot7+fnea$uGdy*VokI{<E{Q6<r?wcd7aHaycj_7#Q;R|J_z{M6{yn zN@)CrZ(qI~F~48K>`<>T%eq{zsi}!)Us@t#?YB2KH@!~uF1oya&mNmC`S;`ApWXC@ zwH|bdhZ6^A#42;c_U-KgOrR<At-5{=`WdIDXa=kdx#at@2UMnlTmrf%!^YP3;_mW% zhGVs6w_ac9m$h!|64icmW~T9vhwbto4sq)ze0_B_=mJX#bJcRcxffQ4>(8z7_VSuk z=cDCu|M{+(pGBZ!>SoTIdCB7Kwq5nr-}OKleZmBRxtpE4xL!m?MsC==`7-C8qr5LH zEiFMOgv~O`?K<8s@BMgdV&&6QQ?1_HTUtiGH)H;1xoQ6Ye*)>}=e4%CyH9jKcKVmd zchI2I>ovUhfBjkonvU4DE9uXVkDETWe$8fB@Q$nh2Ll7^dC*Pd7c(~0{r%-sf4#Be zM3~_MVL{CmD`p?jjo!w?up#j<n}wCtsk}EPsi#CDS43{j61{WhPReOdAD=7LR{3?R zyrAm<1e_G??BwF&;vzPu^_r~RaCybn{vxf@4eR!L#{5f&y|lZiU&4^7SK9oV<a+%D z=2=%b-tYY`=QrO@R~pn^{C=<6|Jt^C6UN%d$9gwx-aL67qyD<s-DQp(jn?JwB);Cv zxF4O8qM{YL3bZ}s&faSAtgTX@m2cYX_b6@EmN47e|5NLnFvpkLbvt+NToJc-m(HAL z_ro$XGeJc%Xcq!_jxPC(DQNWO>Q9|6=?m^X5{&ir^?S`zxj8sAzVxss*E9WkdwV<R zPD)Vsv~{2OT1DqJi9Mb%RaLu6ChxE+eKqB#@1vsPV$f39jmgKwZic<SwA9;b`V|4e zi}sLod?WeVuCljUclY>IAOBeS`PsuyPf!1NHalNHKtO@pl$~F$MS!XL+na-Hqqi?f zH{1X3*J}<wzG-<8rC(kI*89vh^W8OX#}Y<ahNvwWjlaIWK7979Z<(>i+ujrZzOJu- z_~YYai=rnSQs#MUiYM=w#8&e5@ea^}H`}zePOV&<7GG<V+q}&7sI8(RBWTetX#exK zH<2o;st;eU-`}=+_3C>Cp#}@G?S*Tv^XNxzVwtKHIw{sZH^-sBqvOD%`lH=~^78%K z;p-B9e|yWp%X_q2e_uwyZV{98b26YA(&y*ryC)?nvGGc=*xTDbdG<`|>rDp#_0Hu5 z1rGD=YL^u9N|`h?H#gt2o|Jv~S$zH9R<EgApp)W3jt0%j$k+c7WM<<rs4%v3w%>DR zzP<duefxrR#qWfDe}CV-{`0f5ft%BOmn>PrV4%04U)DOzYO#a1m6a6emUj=23A~=3 zo(xas-`|va8Z?OlnitISu1-ESV}^u<wRQ5nJ(Zw2ua&{eH{{$jIy28U`n?%*33Juz zu(hC`NzC4=(B~Ixeu0utVqzkwW(`{t(YQJN{G&%lyCZg$)N5v4TceqKTiLx2R6*-T zZ#(ks?QPIyLx2ALe*fdkW&iH4Gq!>zm2YfF1f^2huh+Mkid;xeP6j2K=Jn1lDX+oF zKtxhf)7B2uod%7}>@Ir?a?o7m7|=M;RIShlZ{GCu$yz@GP2zK!I=AsSwsMK4^w-y% zI(P2akxpSj85y3bUaa=^_FvxI46aJ6$Yk2}P2|1#{hHwPSsVK!PoKZhpw|LA#pKT2 zyP&fgU0hu~m%n))zi;315KBu-Muxn*yILnIyFa>_KEHMLZ0S39?|!^fd_M8on#iht zJu#jahuitD?`(?$UG)W8zkjS(dTHUYdbTesgO`Kvy#DyH(QUEg*H>2!i=KGg*;gBF z=AU>w^W-Gej0+1GV`5_;K781?E%)}RJf5&C>C6n#+w)oln7GAsCLHUPGUamOm}6P& zCbe8YCvH!Lpl$Ux&^XVWxpM`@#M(fun7x^@2^OGR1`pr9Eq!^p|MlH#8<u|;sL!~$ zNfoqO-v0le%PSh{{{5-6u(np#)%BH1UlF&(KIX~)KcC)jZ<E`+E$gZl==|EOty1^y z-2=_zndRO}DVQzF^WxXE_#4UB8kVPv_DGxaZOyvc1YNDTF4j8d-k!*9Z-s@0KR%nC z51I|l+A8Jf=m?q)<JwypQ-ARLn|JT}p3kqBlQzq_aQj+-!}|*hn@iqvDJfk#+TiEn zl9H&TtSl%gx$;X^#Fp^5O4n~W6<YPn{pYu>U%&oMyP%TNq+|zmC8bRU2M-?Hlzn35 zk9Bc-yMBItuDw^v?CEj&`XlRNcTb7qRZ`jv8eRu4azU&vPVPWkUW_u715!-Na+rVo Z|BuA#>||)W%D}+D;OXk;vd$@?2>^PqzF+_V delta 35694 zcmca}hI!gy<_(8@>s8-mZ9S2u8|tOa5!RT+;+?6xsUs>frC75=N6^J_3InU-G#4>t zHKh}J-b@^c>Jw~d?tK5<{fx=sGbwX-KA$)H`*)k?Klhy}Do(FC?-`%=Zm+-XR}sCK z9S?r|JkZG8(b@U&Yu=6xH*@s1n`T`(q0L(R=f}rBrrJ+WJg5J@U-MbrmqYQv^XJdM z^oue~m_NUN!2$&i#SdRD`|rN{@8jd+vaEIY_Eb*2Wj@&;S|-w6u5!s4p`8^UlWaa5 zV1AmXZf!07_;~;Ezu)ioFY}$fsPOSIzr)gdLN9ptrOR8DthoJq^QKJ#a&ml%ENVV8 z9+bqpxwS2>+5h>RwOqaX+NiAxEeCoejkUJsPZo@n2?}2qb8u_+b(?$p6A!bgsHsic zJy(5xjnMz^_5a)V|Nr}bhH17~+WC2JP4*m=X8n6&qH<qT>@~wj{dT`JS_EEPSvmRg z+gZyLb#&Gon!i9@RW&s0|Kz?PDYIDiy_*&-TC}0~x!?SMeEA|@LRW`bp8CAdx!uMt z@6C;k0!|7>Mwg!MGfX}f@<QT^`n-xomwq3gtT0o;MS1N4en}&i^z-x9et7(T$KyUD z?)Bysix-@qYkfU%-D$30Z*Fdu?LU3$RM9Sdef{$<T?$oQ_dU^h=R3>f;FXoZcjesU z<v;;fU;F#pPFY4q#)!RDTOU9Fq!YVK#NXy4OHol#&9?RTG+yNI`PjBNL|jy~vgQuE ze9eQ3J3EV?$Gp?m(K+(v<z?CQ8hzVWS68<eK0X%uV(*Fb=Z}AVeO>nPnVH4{P7gjk zJ*}am^W;L}lP6CU6crgQEiEs7Z(aP1_gTO5vxI*ZDSXfB`<<T!sMb%{k56+nmzXbJ z(tVU^^;NF!qmPWd^0r5<&6|IFU99z%{QLI|m6VhO<mCFya&KAOy|=Hndi|T#fn2{% zPFBCTEjOA&@xznJ{z|5%qLGo27PY@jrs+gB{r|oHf3pD7_j}drPcMIOKHH*j(e3QL z`tkc@I5|0Gz@Q#XnwIFq@0-JVH=!o(!uy@i<-WYTE8Wg7?^ac1b?NfuiPNUB)z{bO z+}m@raJKbiHQ!YqKCmg*9KD;i+49uS`Tzf<Z$EEa@?yf{pq$6Y`}K?Ke{k;lv+&gZ z1w}K84eDi#*gqdv1T)&Tem+)zaqRKurnrEBh8;UBwq(U$<*NSnrtr?Y_wW0g+4+C{ zx*pyo=qI#2@i5!*&-H&ky7!;2|MT&<VvED+X}a25>ut`t)VH=~$uzq>JMw3u&l&lX zAZpc<{<{Y%N~}HawDC$8+|J$p@T~d$mb-cDOD4Yylo#04XDDx;C(|Op!N<4m%D=+N z8)iyGyr>fU{`vX&#~0n@U2}4BmU34e@00y_GkyNfJO6$@pZ|E@?{}Y1{i|HOfZ5@2 z8?R!^0ps&FkH7tU^CqXIz1^9kkyBXB;;wn|vol<^O!g@!1UM86PU~(D$(r07q!{_) z{(k#&b1Z`&K5uDleR!l(Sa17$n@XXF4<E+e)Xx|F^6~L;XO6}T7Xp?nUAps*ed((Z za9(d;?A~v6clwkmPc&ZW@A=Sl`)ztkih`CFmlMaAx3{+k{XPat{PoIjtzJwGT^*)d z^ZBf~-uCymwsK#*cro<Wv#YDa3twJRJ-*}bx7&&>2X1Uko}0J-r_al!=X>6*Ye-K^ zTNJmqO2BDB=;|;JUtiXM8k>K=-|z1~aKM2>(IDvv$Mom7-j>}dK5r}FbRcPC!j~5p z`(7V?{`Bd?)B5{eHm9AH`3}mx%&$y~K|z@9q4`2kP%zJ)SO2v9zYpvsudngWoH?`a z_PW^JZFzThJ^a4^f9=$7i=PO8{&eiJzx~@Udp>blF)UfOY*E?UTYbk}U0f_;FaLSi zF7H-Xx9|3IIr};p-&rPwx7t5^D2P}acKm!@UEK`hbibwX#*+mjBy*=U$;rvZy=?mT z`MmvN&&g^XU0qJ!-`%~qx4PWL-Tm>p-R};)yu5t%7WsWTFC0D^eqZd~@3uMZtbmM6 z&x;osM~)p!I@rXz;r83qchO~KW@%?<wZ6N%d$HeKs}JA5yJuu*L~Y4vd_J$5@AtR2 zt1nGn5G*AbxNHIQ(WRyT{`{1%EK-T9`<Z&=_;G2wFK(0NXG#hvFI`~&|Ig<gB`+uS z#K%4crz-`G;z>JHy{A3c|Nrm$$Imw=A6L@S;`)BS-u}|%%c}2YMuAE`9q})ppPx_u z^yK7IyLFYHpWWD1s?G3VcK$v`4-bxK=jZp^)&5F2(7?Fwp6}%clLIRyv?s=0`2OxL z_v))r?;bljITgIRqRDXJ{{MgFe_s06Gcm|m6fl&&y7KX*-7HQ}P-&m%{<W|6_bD0e zur(_J9QQw+7QG?;yc~nW?y|Q6^78x(eoRV9OiZ+^<xM*TN>X}{KR4xVj7ZoTmAEk? z#_i-=QOy_4Y`jkGe6j{PHw;?Z+8%v+dYYlZH2d0u(%07}&x=wph+FO_s}r+B;N{Dg zdB=Z!eXSjGVSViGw!p=13-j;q`|;_tzU+4Y83v5&_y60aAK$cc^7@&Ql0Wt=`2Wm& z|G_Dm!8Z5ym%opT&=HG&&-S-za$>B6!SUy;f4lYf9k{gA+xA}l*H@uBk(-t{-QHF9 zR>~~*R?AZF=}LBX_YCcRy-?17yY6KnC>6?i*mqaEu8rL-CMYPlA!;osQIwQyNj`Gq z$ccNlsUTZre(YJ0e{YZE&Ye52-tz;c2yyZDIdf$6--Mn$3i7_n;?t3Lnwy#~EcF)m znPI@#+1aU~p|RpinUk|~;iDs*@^2E)g2Tz|@n>-Ad%U>c?$CzB!xxr#3P<ROwY0P> zNIySshEXb4*}FTPixw>^+HRb1fMHF<#zWV4XID*jERwR2Z?60GCG*Jf<H;{BEX=sG z!*ETQ_MyXv@7k4}on_kh@nO6CqQt{(Gb{>~!q!GTExA9-G`plu^wlF!{3}f?nzZBb z@&3on{B{QxI5rDNN_KA8V6eS^bA*nll<3YrE78dTl~Srp7tFUPWa1XrJM!RQ^Th>@ z%r0(jk0!dy9h{xNuQPUcnWWtgNQBEh{@iqLL!vV%-)uZCcX&(Y<qg%}^KRsr#s81` z)BuVNLr`p7i_Ui~DKYu=<z@5s`*qSQSFXHZvi8#L%7?Au2I=Qyrr*9_`CRtM(W8~g z;n^&c4WcD&WA{C(`|%<1&vX0#2M;td7rtJ*9h3w1R)0VC<>lp%cgyb|%-cSFcki#S zua!+ruRi_ue*b?tUMZ6gNAqS2fzqz(l*vbAtx7oF@BJ=U_y6~OWg{b@z`($#cIp}$ z9LM`)i+BFLu`zk_yGU*Ik9UgCFRc9hY(s<&2Opo__sX@=+mBhl-}AWW_nn=^7dNGP z$G=&n2~H+%KlUt$-%-G*9k%8`hoJI>MXuZtYr|MrSr>Xw*PCIG$Rs2zJaPW~_;+Pu zdNCanCJ2Difv2aZhnLr()$8|lUAPcX^Wh--<atr*8tifv4F7*!-@l>qbJ~+<&%!dJ z-|zo#CuNfHV8_48$H#gF<>lW$wKW5`%+x`N*4ldand3Uq+t!@<-QCr-A?2h{N=ga? zgI?U8jx}p^*1t{m1*a}0P^4^1^^VzFb@lOI`T9SGOiWCt?)rIna9p~4dGF3_Q*Z#O zpXaXHo_Dw4e(m?2e?|UI_P29%a9~I~Hz)F4*{<^UeOFh9|4tIm76G+y4A-pDxl{dq z?~ALerw2QPuZd`EXkhS}Z@1U!cI3_?)mbK)P38A0+3(kU=Kc2e_H&aJNt5%+rL=dR zxplN#{Nf^4ZkvBU9$zrw)ec|h;^4q=uj=($uKdMMjub3yznWG0Cw`R#DAMKbt^+4- zlbjm@w$<NU5)u^R>i>TAvbDFh-FwDy^2C`^!k}9JSN03-ur&?=0RsO%wA+7}ydXwF z@KU_%{-3X3ivI1Ys;Q}&*{n7BVvH>7p7qPZzfArdW5vC<>g%Cnz0#@gyNo9H1xfNu z(R;x#VbY|g-S2jJPmYaMU`{_TH@P8JS@Qat$j2r^LP8(r|Np}dN(jpRHcHjsryK<3 z@cP9*j{265t6v)LzhCuwZN;mV%M0G!vAnr^Igg*y-<6vjCR-ZT-&>lRexOc=@!Mbd zL;nu%-ta!2<9BE2g(Cfv_e`CW{&}c9>rV+%t$)LIY;m@uzLwUZXJ=;{=HIiqv!jri zq2Sw_$duI7mpi3RrPLSx3yEBCa?T9<_ZRfuw%4AQslOroIKf}$@9F=&#s4bb|GuzJ zX5x<N#|}f<FiX7t-QewU-`+HD-n>3B-6#bU6Op>QI*Y<bEDQ>IdVJ??zt4%=9r(CV z=#~Fe)>&sdf3BAEy_{gbQS7MeA5{zS&$HbN1F!q#HZIGQ+iqF-$fc#VHS~p@V$1D^ z&!0b^EB+$69<`;U{o?PhuZJHTYz_<vX!!7<z}?Z`%j?kG@_UibiZ^fG{PET5^@~bh zU*q8BcCM(fxV0^}`{ZPGWp#D;{=4S9hyc6#d4Eyd&V_UDJu93&RriJdo)1iuCQqJw zZ2SGX*S*u97b7gK2er?%Uu@03er%%h(fGgGu@^31x+EYZ^yp(HD=X`c@As+&MMPTu z{r&w|{{Ij5W4+St`)YqH85ju6wJJ5L`Ow=kIiP-(&V>}eGx1k5r}Hh)dU_}DlCl4e zyLqYHzrMV@y!UgHN&-q0MLYI)b{;&~%+6>b{-s{lx@<w--Cc6?&8xrV+^KrKwy!Au z*2BZ?pz<l{-JPBLZe|KUQn@l;i`!(T@aOQ-Z??sO|E}LU{bSefM%TRUr<?qi@FSu> z+EL!3Kw)0(w@8Mgtbd=JoP6TcDW~)EYz<RR2=t$SeQT@sWQQ+b7#I{7JY5_^?$v&; zkL~|{ey+86?C!F!zy8e<g{P4Ht1fOb4w&nI-n%dI`X}SqZLvXzy1Tk!j;&t5?^V!+ z<$iNteX^K+_Sxa^_qK@OgoI}L`FXCNpPdDjb3cCnUL3sKZ$<2Gvv<2*>&5ISIQaPU zt1By;nc4X&_SFBc|Mz!A@bW(WvYS&ZIKM7G#pL@eWb&uwnNlWe1<G{UXHDbwU0v0= zRo=hB_T{t9Tf-MFn1AcdrnjBK>Qy#BXA3NHQty0yZEf___}TNag8rSTm|;K3bLyXs z(h~jarbnJWd-mv|R&K+rD;hl#hD_XIIu3bxc{9&{{QlkD&8_YD@AGr(t=k(K81mn* z%7mrim1<A?FLwo`_&e{*mHw2IJ=d)<*F5J|tI_#Y@A_*0JB9of{<7ra2Kk>?Qf~{Z z`?+{{a0CSf#T?sw-tKkKg~yK`#mGH>w?SWd73WXo$Dqs^`ssLHg3T_mFRM00t=&=a zanbSL=jYq=ufDqKvE0h~URe4`J2!t>rp6|D=Xtq%y$%20k7&2K9rfh4+2M7udgZgt z>vze@yl4;W%}RW>Vx5J^|8y4CABmSH`0d!)^M6m4h0<Xr!>j|g8h<%={Y}_&`~Jb? z3!OFnKb2>OoRr_)`0>Y<1?wX>FFSNtxcg|+w%pr`YJY#rbHBYUw?6WMb|c&gXF*Qb z@K$^AjNSUL&CY%{-_-EGcGuqQoBKDs-rIQN&$q`veg}Vd;%MBdUv|7@d42B#2YZ>= zZzf*iUm9&^Ev}nu5cB)}=YoGMwXL`BA8hh_Qhi4LB%}~IzMS=L(#DXCDWMzGeP@L% zbQC@8xxzlQUM#~%ee<*R7wVQwditkc_3paZk2~&8YRa+y7=J_fe>qQ8|F`W6-GASn zusc)a-7Z@;{(q|$KHk@R`L{Di<9W63ZJ*U&>pNP{eetn;%GclC8x{zM%6@h?S~<zS zjQO$QpYS^;cf-<E%CSE;x6aX;_Id06n!C0a9~-_@WsR&qy|?F5>hAN*z5=(m*}ds3 zykYjbT)^qU<8XP$cgq4Z%A!r=suvi>^gGHkuQj;+_`SyK@6!dG9<++bITRIbI(_2& z`StgtS27zv>%VgF&qN<ck1ygvwgjv+nrT?y`px;O){Dw*TQ_8f-_6_oMfC#LzIy)a z|Ez_y>(%~>H8R%CFkPkXb?W;B_o#(&YXkOtaj9-;XHj^2d0~O2<DG@6ssH-A?u1{v zdGGS2ORGMcy*kwMQ@PZjUS+b@&t!80x%pyWEQ_CoR7|jg`*qu&%vrpZ+jy_)ym%du zaQkuD?|FKS-@Yj8Cf@$0<i+)4sp<KL(_RR0)GL1Yc0#Y<=NFrgsu||zUVPmqG419j z_pHQ!9%_(;Yp467{7#{JtJ~vay|p`~L%3i?#F=UKyUSMInm<px|7+g%`p>Et%GS(k zzFGgaZN&x$o8J-AQ}iDGm-wRH!t!%*!D;RtI~Qa>-*@%3uA#~1r~OwBK>`a@{{9gC zF4YE4gQw^FTEAY}wC~#6!WZxM)vcTBcjSv;tU}9y{%*F#OIrLZeqHC_=4-fo{g!Zi z)3lAz?d49qX{Y5^w!#y;M(~Blk00NiC$N0M0)~$t*Il2f`W-1?Dz`7V9lP!Q%O4-U z&eyGP5@0$VUn}zM$n*q%sn}Hu_On!9lDNUI`}q2;{G@GvCPpEZD6D_a%rvfezxTUA z-W`h`Ion&AQ;uhCeRQamTW@>(zM7fW9oMtKqg}V&Om^R+ck34T&o<+A;>fwTf$i2x z-3{`QjhxEAm32%wZoPEbo?f4={uvP(cMnw5L|p(i7&x9z(~TC8lIps)Hu~`W`|@vZ zZFMdwF<G=|(S^nC{YBeTH%1hEeB?U)_V;&pyJyUhSpR-^B&-BGne+4V7NsXQuT?)( zDZIb)Zrw@47pl{Ze*b#C-mv(YkBghzqR`c0e(#eb)069$C!q%3k1Y$Lb;OP@zxVxa zxqMvh*H8wBiV6$AITnp;*64hBdt3bd{{Q=q=WfZq&iD5A_V%k;uD7@4Uffq(eSF97 zce@1z1sm`G|Mz`gjpVXJp!^NW-p0??U)U#Kxvli7)=RUulWynUuMsP+udg@ByCYGr z?A}-MQ*62<SJgsW`Rkv~KMuN=8FSXY{mr3lx%GnaOW)2ms9(Z|sNrsh-#L8vaN(O9 zh71lRB_@0_77Po12!C+vm8z_{x5RU@LFOfu2pzFMZ}aPm|JY<+QrYwK+3bjYHI`gl zTwf|UmmNU3>ioL9E9%26&u`EDn#CE~yDW1@T!CQwx;*zwH~S}4lyzSI@$Qh+oYOx! z&8h>p)=!uG?EVT=lf$!xb35PBUTJd%hVA#NwE1MMSQs*{t`fbrCX#u<js@XQggaEd zrzz;`pD(wLb}oRnkWQ}oslDOt>SN2FuX}F1Qj@FxE$fZyOktt(dXATFR!lF7t9oOx zT_*g~`Dwe)&fZ@N8X^c=8<lu%O{9i~M!}QwcfUSu75MP^^W}$AgMCx3eeJ)p0Nh49 zzMOS${r`V`|8La(`f{*czK(-I!n#c7-JZ{Wd;a};{o=wx=Blr+o}RwDAPAlnuKmfJ zRWHlB?Y&m)x$Za1Q{L|~Y5i97X5R*>&Zi>9&jtItcfL%``~K|lx9xd%y9ys4bL42e zxjEfh^ow|0#lep|CVhOneNURr&$h_x_Cd{%qUi3vM|Dq52rgN+jESMBs0cK8vnBVo z7&9A>L)EU|_WukG4R@5R{9$nrH1KicNJYI&h~b=;U%{!3YQ;vy|4e+H7v|Qpp8m;p zV@vU-@<^%OX~(~dUk~3jNB`&3$=~`5_8$1EvR2hbw)_5Kcm9(1_wKG-;6LB)?sWah zCpu?dw>Pqb$4>FHGley}f3K_zo@)0j|KudqzU=w>k(-vBfz~`?8Ai)zO)$6jJ?*;i zFUO}G>AN!d^H^s8H8DA>R&Bm?*NoY5FO%Ya1%Hv(%l)z=*PnH7{{4L~?(8(?w(<-X zo?MoxSZ}IXKP#<0b~oehGS;%UQYO0Y-}EGp&GU{AdwKcuCFSKBm)~yl=Bf$|6zuBi zD){@WwC3B*bPgV#Be(PSzYPJmp(<idZn&BC&3@j5_g9vD?eB4iG+z9<f4$v)zwi6~ zdij?xUv7xd`SI`f`@&aOG`BBaq!+WJ;qUM7$@lB`)%rDS!As6F@~Pr!VXJ3Muj#7O zDc*kj?fsfbJ0=;XoS48hS7lxF_Pk&F6ho2={vx#r&d;}(Z)|Mb5VcmW{b*9-)hyle z=#?v1X58Ji^|9qrch`CKo9E1t$+@wCF?gBJ!3IX=3mX!hkN=ODVNsYQ8dtw|HE6Wx z%nZYfdwVRKnwtfMg`02Oh|r1Hu;5Vqcl)w8632QZo3E{n26dGeE(8xQ{QCO39W?NJ z>Gu&>PJGs1ch2rnYtufK-TG_FcK@9;`N+~GOB7U9S*^?89hqZUEFdb{`tWeOwdj`} zJ1mYr_Bu9E*}bIBy?({A2ftu-{l}l4kMi#9X#D&8`{AUG39qlMy|KG|{q4YclY~#z z{(igN!`s`rs%qEe6>E+haq0g*>wRz2yjiolZf(uB-X<w0$5&rpfBZbZ{htkwe^mLW zot@RXV1dH%Vkajj0YSlsKP<JhR$cmi6yf4a`ERuAzfZ~%mE3I<w&U);<;fS)&&*&{ zWO;UO?&;(Uo?PqTwe#I`kK%r{<cA8%$@L{4@2kwM7ZMf*1y$VMs>C-pHvV`r**{=? zob7s%FK5p99Nz{S?VB=1gu%hlk?~&b_gEGd76*<-L1nj!JI8M4@8?xy(GlZz>y>(1 z|Aq7L*6iyau7<}yd^$aT-Isl^8ldy%;$ZV{;lF=;KC;>SgYPk~?YF;&TrkhM!Jx?U z@7wnM8y8F#iTMw!;dhCCxxCyTG&j&Uzx@5Z-W@wE&dj&p?{xnC_4V?gF`un}3(JFM zfr{9r3;N~l?|tn2esZ#UZ2i0X&u7gQTN>uim+zCaeO2_o-~QhVjgQ68&aAw)?@kY_ zN<Sk%_w>(`+VO?{J9k`r`^{GLOXlTejvS3AC#!EpcgT$!5j9^fx-&HN^zgX2xIFmx z`@Q?yTU!k)KRqd$U;pxw>Ys1h_a9y2IeA0Y)q1Tpk(-ZYRy1$tsyg}cjdMF+X?1;A znAoAihZS26v~UW?ysQ6oQeCm-K<)Rt;cNdEv?E+3dZTFXC(-Z0=HGUM>&KHPPkQ+I z9lIW1-#gPdUCGEuNH==hkyW9qWmx~VipLe$toyR!ocWs$n}_fecd>r$0(W<J>wU{? z)6dD+d^o_&(BM1UY+>Q!V^8hs&(1RK=;<l3bc_l07kb`j&h=}evb)Ujj`cAw|GjQt z`0!$JzY|BJ-&`xpyYuGGef#4}&AmO9q4)UxEuh_?BYy-LWcEx7SvzT7$v0(@8=vmv z{eHH2$M4_27Z*N01{(IQulx7&dC~btdMyr7QM2~tb6n*>iPQ}n435h`u&e#`VD0vM zObm0ZO1TamJowaZf8b&_3DYc*bMx)rZ?65~<`};<YwF|r0vW546OSJs>yzbHWKmL9 zo||`nTkh<~Kim1`k8R7nePMTb{*`sH(vFUfph3cUmCx!WWh@F7c>O-^xxzjaRM9`{ zXHYQy?__$a(uObYZrsxQr_qKH>h9NmPrS3E@W#Gc>!#*r+4MYrKR>r-Hr`XUbrlsB zee(A2E`uC2-@1I=;)Lm<UqIE3-1MnapYEu=x2Lji@?qbZMyz7ptWF#)t*!Nz`^5BH z91;=~9zA}ny|*4#k0kx$U@-ALJTd!z$je{PcN>K%+@BVU>6m#lW^}xGkrA;rY<cqL z|3A;yCmm>Dd}{aqeEmOTF`bA9r(?f(Io3b!HJ4G{wPMAI$B*rPJYYWl_}pCU=R5x1 z|Nn1${o)1OiWipoN`t05`hM^K{myzz_VsfgO%F{nK2kkt{`~&e*VkJgn`xY`&~o7E z>FI$H5hoTNK5_D-qmvU;QBl#7_uTGhrO(K_pFE*|;&{Kf(8jl4CUNy1x%}})-Lv4B z(>o)c-aq-L@Py16`Svplz5eON?>p0!XRu4OWWkR!FT>Z@$Cd8V)z#${*Nf5kzH|Nl ze^#K5_44_3QpRa#4$QGEp3`P7v2elky1IaX3AeNN{QvX$JO?jts{qsAUthJ0>+|f) zHl*kv&$^*bx|Qg@aCLRPv8U4b+1c6c(&l*#4Cm(AzWySb@BePcW4`|S#Y*ZkS92)W z9NqinGdsWBn~y&axAT|Re7$>D^|99n;gX-uQ|ld{8az+<XK|<Z&L5dM=WIHjZ07Wv zKdZj>S+dN&IX!3Qc*p&;1^MqF$fK*C^v_=)-Ji#5Yild38@0tDBSYiQpFahUj&L$K z#Kg$VtA1y>w`{SGn}z3{=kx39-&OpR&foL!<Inv4f44m@6#dEO#3`4)X#XK6(>_O~ z;-r5oY|75|IaS-`%zB<*8!GzQ-N+D8E^}4wuls9I@gYG(L`1>H=1$;+$&)4(JfB<s zYO8dr(V^69eX`ciD*nyR-}mz4Pvf*R1vc*<9qksqXAf=TPd1Mha=Xh__4d|Q+3Sw_ zu#uxh*Yl>FlxCG>kTT2RP-K}``Al;A_w@91>vJdU5)ZLV|2^9zGw5CTopxU7XFpi( z<!ukIxIa0sT*lMT(9ojdg95|zrhUoB`L3*u4qty)WAb*cUq3!RR%~&|$XN0C*88Qt zbFD<3IDY*6`S8WX#d_cOf4i04H~GlU>bjSckJ$cvG8r=SE?Iw<>(_xs=8tbSpJ&q0 zd!g<>&m}BOtm@mFPDSUo7h9$M*2V4Z@}90|dF<`>`+SNl$NFSnm;64fzEQh2t)!gQ z%Gg-=>#M8H0!(Y8wmM~HX)!EVuz&$HoXo_`tk?n?s=o6sysT{7V|i}SFx-<TDaUIy zH8uNAuW4;*nNm52X}9%c$0C`e&FSYCRepY!adVUEpTB=Et_)TO6(Z$#OT(A?6+QD+ zRo$`Y<Cn|+*0$^SH1RR4T)A>Z?Cx!k3k3xQIXE~9{`~oHm|xl6{{G{AvUW8Ryiz6w zHg+~PcRp_YF=_twwb9`(ub%-8qvkDsoqDaPxOij1L#G}oQ!Zt<o&!y++!JQcj(+$& zes>w~Y_r@$mzH`9%FDkuS#@YSt1QF0`S$%67rQTx+?>Y2$LCg3Vv>}cyfNWm6PK*{ zyqPmQIfd08yxaZWt)jvLG_iF(w*28y@%WPJ+Am!XCI?nZ%5Gf{e*D(fY(YUm#?@E5 zR;<u)ad)?N^YQ6<b2pd`G+`j&&;4tbX||Tlsmp63jgK5Xs;I7heERO3s>y<pQj)qa z#JZ1WMyw6nzCCj7wW95!Qc|xhK3j*%PF5_J(vL5^zo*jJs^mpOueAB2UteGED16Lj zmUpKk{_m^sAFo!gKUMp$fsuJb(ortiZ&&Vs(vJpcY`IU?IwtS_zFO<3Eg6CDKHLBK z;0zl47FPEIRc2a$MJu(ybF~VKqaFGA_>O^U?4sZMYJUsJ$i%$+oc}ND&)N9N%ex+e zyePkRLHWx|thUwPj_fRcF0(x~CFQ|Ec6pcU>tes&>XquBoER&qwY{nC%?-mXnU~oZ z85uKfZPA=%mfO|Pz_2CnuGH~9+0|FJefspNX3O+v-~|#Ei(i*sF!epW%y%|up61Lv zTj}`Puc9Wtt1lGinn}l1zcszGK3=}AuCC8`SHHZyoP6Dnh5F^ULqNm-3c4?@8diQv zG0D8da(bGsvxi5=;sxs?HZsk%DxI{a{1rG}Ot*rTay;C4T+aFOGT*}IbITX`&$qj= zueQ2%-t8@!!8tcKu`&qA$-UEf0a{8>QnKazx0^Yj05tTTuGhMMzdakD%!?mgzYjDr z3knD{^xOa2apyTZJG-*2t!zWFqkY8(g+qr9)$Do?nX%Gd9POBYaS?0Uxj8S3e&5dD zAG`4Ng8S9)_eSh0(PVhuWS4nK<;byPRpsfvJ)i(H+1?~4A@Sl{&fDXCvd#ek0Xxsf z?=I6_v}n<XYti|NCMF`6m-`?8@bIvpgha>seZNkL@6Pc8WhK33zO$3=?Wxq;etxz& zfBC)2^ww<~3m?0cyuBrwn3%}H$?5p~+}w?sm(}v$uUZM7T+;fnX92&gm56!XodeJb zb({ZxKL2>JxPL>*%OIQYcZxZ<xQe3hoHPf`VHnrMU055YtrxR{f#JuaZv6{8i_@>H z3gzCKb=B$lxw#W3ObA%{R#Zgf!I_!H7NxJITwVZ9ClU%DD;>8-==3$k$=d(@BAk?* zoVYb=ZX38q@%7NWYdoNNMp=<B-QxOT)z<tr9~gF(z3t+aHha)6Uw7c%-s-t*lNo19 zN%ZTn+FDsj85$a<_I(1)?S6Q8c;CI)%b+Pl$)yX<&opNDo~EN&Jmq=#{$HYHZ*Dw% zeb>|$G|?mLEZ<!B_gCq0(2VuF{r~G!)YL#T!+zfl14O|IPjK<;$UEArpRg2|&ll)Z z?_6yK(pT?X-!yN^l#qvrPNDkc=l<FZIpGYqD-V=$Zg_s;p0d`_FF%!?lMzE=`Y%#+ zV66?K)PE*xcT9P{oWXK+;~f1t?)R=cTs+^9Hhu4M(|MYo-A^IL3{HuBaqSjMe0plC z-uCq|J2yG0*Uwy>1UD%5-xel?{NMVicYH0&rKA~dUoA2RO`32h$|ze{NUV+8dT34L z<^`Ej({v)46j|ziy;NWReDC*r)dEfrriRBA?y}X^=B}%&t9ZNh`kr5xLQ{7AnHYo^ zzA|Fn3!2j3mOK0OTTf5VjC*@_w$$4O3B$(oe5Ts#%AdF!(wOwmbtTh$h8ud*cHZn1 zR##F{VSzS}udR(X%)4X3q4?pP_4@}uK0X$3O8EHbsNZ?e>`2Fj3jrmsubqAQ?d)uG zXO70T(c7zj@&@#;{N#QLF`Rfx<jaBu3gG1>^QKL!Z+q|{;cvM|AUqI!|CvZn*u7Th z>7FkU%s28Y?tD4YDJ&=^_N=J7U(WWzVt0N9hrLx_4QhTAEdTv}$78-88A~BWMMb~& z@0WN^e(?T%|C={C`g<!%XR6gNQF#WR81r%5|M%PNjcI44rr#D861uR!k(sl4Nxd4h zF1MViR`2>URO8uFJJ0j?-xgk;$5nNIU#+0DG&e)VpO42ua~a2L)6dUq6<~7jlW|N) zP$+x<@BTOWsuzkSZ*E-d){l!_c2Zum6L}Q!c%N*yTd!2&?QOXmZsu&bnFC6lQl?og z)8p$RzrE9Jo?H)|JX&@#{@t}KkuULHyQV!ayR6E(cf|@0S69~^b$_kwe!nqhVPi}B z_U0x-!%XA!LrEJSoSLf5&~?5(Xn$QTgTr#axdz40d>9(;=DEALu*6lpRF%Ca^4Qq- zpNHoe*!a8qOz`5SMrQUyNgEXu6c`v889#ik|9tquLg&DM00q#5B&;1D{N#Mu)>%*g zOb@KM@%CB1ooCER38NGa6JKVAH~02RJ8`Uu-p<GH;gYxh!%p>i3=BPz#%%k4-+j-( zQ2qT~s{qsLu(g*S_8Qs+Kk1)x6f(|x_dvxI%@?YDa<*MlwZoI{?ke^0_n*GE-ul!- z70Be)WX(_E6-&B~&)dE8&n#(G^-gb3Pe(5=@WKVl;%A`MM)f~W$9I)4+#s-U;X(=X zJQ;=s$;bOZYy21zuC5AQ5x!oo;s4y5w#v%R?dHdR_)N495`)hL1g={U{1rY5C-PJK z#{0QV^Xh+3y?wUYimmookEDRpg9DAs3=Qw@?p8K46SK6m1hqh9%In_UvE)!J`17NX zN6Li5cedHryVVONQ2oXed%?Y5?yUv)yB8N1pGF?ja{b4}SFv(Ie&Oy)f7aT=ZM*_b z4=(%Lvoid79sl2{zM#OsEce!vqG#W%-|b-j`0-=Ll@)^X>VCcC+HZ1p8n^Cyo-K18 zUnuf-)ZP=c^ZT&}sGc$`aeRMoul2gv-Oqmfx9y#D`a!@?SpPAl>yPNaCv%f8d@kE@ zchB-ByWCqQ9EuxKy$d($YrffA{oU>Qy4d=;a@H9a6l}iTNEUEPIM~FRx=+UU@`9)H zTgyJ~zi{b(+cdkom2>`bL|v=PC~N&c`|lx<pUSC-Hng*N$tOE_7E-GJrlUVs<z36| zv(sgo=gpbZ^W;fN&EK!rXIK`iDJd&oTotN)yn6b~nVjIIgiZB->L1Jd-LCk4w>)uU zghI;!&<e|aA|QW1z8rt*2ha7QxL@Bczjruo9sBNf@n_F>S=ZO~o||i({P)*azy9ni zD<(cRtgEZbxU_`Rtw*BKd%E7#-`1;6p}JA*3u1O**~$2OeOYy9Yk3#!tmn_utKaeO z-#<`y)~!#blUrQR!ggEk?QH^132$$0_1pgb=H}ypectE()ES?h#{Bj<|7ne9@49~7 zzEIRR{pYnifB1Rk*Z;G$Dtp7R`f69~?lMcc>nj44Z9X0m28|_rdwbh3_m&B$9&2Qm zYq*=Y{zQGN7izAoKYoF=_CN!ps2tKTsPDh7bD@jptY_n@o3QKmthDB`yiC<ol`jp2 zqYhT~-!A(u`nUM`xr0d?EzUXdi->;-T)Zp$M+<CH*Ui%Q-PY@I%>qoCnws}&5AHWW zDF;9no|vErwXhyC@ap@|g!jb%ZCOukzI!{Ip1%9{&Gyv+XS{1C)jcfkzx}O*r}ply z(vK&U`z`9q!Y^E3AJ4DI61Fbp<zDgVuFOyFUWjSVHoX^5YT<=>=s%O&`thafT`bSv zWVn%k;$Crvq<r|t%b$Z5gT_Yhiq?NwvqtB~@88y<Mdhr2@0Q<h6=1S1fA{5IciTyn zYD4FRDG$7&nr?rV@5y`J=M`V#-<`hAccVD<z2TOo?yK6*ROc^>|9k80H^ivxuP>RP zY`Zn<>LGvozfUS+7Q6Kt6g}|}5fxQ5H?J4(?Ce|-zuykD;AGDpoB4aboqFcK`F7&z zQ%$zkw;yl(<06{6>udj%MPA^Q5Hp+ZL6^Ozmb|#Y2x`jw`}5pB`S!NlP34zA!1La% zKbb#|PLDtR_tMvt0@iBA-G$dI-d3#==lWHWk^cB@-v4Kl?@XPubZ`Bd%{!*|^vPO3 zYL~Amuc>qWwESky3BP}Al8^s)ZmH{6T$}&?k>LV;y+6NspS-($eABzeyJ^nXUUKi) z^xnd#e~#O~(4Y6kKDITTzFzQd@>h@gbjeHi;(9L2uQ{^y?$q;*nb+-unjj<dsa(J8 z|9#|ladlNRGZRZb)^qU1#l`g(mwJnXg!J_I_-(%ktO?T=5)w*zziJ_DDDmW%pO;M> zw3)W-d9-<p^oA3e*UNV8zgL-heCE%*?eRro-=|Cwd2?^C^yz83hjX{zZHwBP_3+Nl z;=bdiSywoi+4)?&ytux-yW6cDzV64Lt<$IPe<ORl@Yl<OM_c#Q&;MUP_4A~Ur*qTi zRf|=!f1CdMx7WXoi@c}n<-OOg)o2i4y1d+f{jcuH8sGnjzNt-?w9EWZt+VM%iIlXw zTz7DG`N6!+C-0s0+P&|&0N?*yt+Fj|n`PI^A3nGHchd8_f4l1Qu1ah6+jVa~eQlA3 z^>U}%#(#ggw=IK3rCrUB`hq>*Ze{Cj_n&FRdbpjRodLAE3N$=@Z}&10Sh;3c|0(nO zzK?#6|0^4Bzuj%kW@~CH8n#;Wy#4<@kIl-DFZdl5`SY~Tk3(B0R7?GpbH3HE@5H^( zZyP@?-S4}h^mW+u-y!-h%4YNKj{nCm#%|Mcv~F+Ash>*T{yN|4>jk=XY(KutWiG5c z-v2bO_~xe67dJL4D=903rqaZ8qY`dxNc5X7@#flE>8kJV-hTU;dN(|9*4@6z#$t)? ztMA>oxlO-p%d59_TlD1a+ggb1d}%*@=h;dB@4fpJK2vAK3}GX-(0~6nNlWw_vDz9L z3BlK?b@cSGFv!%~)kr*i_^|5zEcmq0kv}Jw-~DmWI==Ayj~j2l+0H%sx4-_6a#K^& zgozUw4@9uqX1|`+HU0CYWQX`CZ@<S_dEe`f|Nrayi(6Y)-~R2jB5cnaSF;?+4_ac8 zvEDmxKfKQE%_M(p<<{Lcd7tn9|7Wfv#toVk(BJ<@NZPDE=fIZC%LV6czgx)udT_dF zU8Yo@Z{77`&2sZw-yA>vt#^30vRDqZ%4O5aPv56QS`nqMuesLjdHu2c<HwIHqPOcY zJa}-h88mEw9%-(TSM8gtf0blh55AjsKiJW}=n2P~FzsW#((DH;Sntl8++6=fU2c7p z<NNOt=Xm6~&gPZ>{_S<Id(!FSs%mPx?u0vSeYExS&Y2M@rT<s%Jf8TrRrTQhgGcYS z-_6@x_xG0sc)!A%rT3EK#l95JU$Z{OQa|)ku$&xQb>r`?y{vOnf}g(E-`)68BlyB{ zpP5Y)CJ5~L@u(ZrFPx?u-6kGiBUrz1;lhf)U#~MV7^j~*(#&tCQR&~?3m>MQZ<rx2 zv?}say3^*}_Lp}pZ{icF?~;?0>^yVE=dj3^*Z*U~w-&`^J$d)@-rM)uf8$Et+z`CG ztF*XUenHsBU0?oQJSF=1Qheq2YJt~QJO96zlalHRkE>jI=l=WEP3vyv{Mc51`@t&F zFY(7(OFQ$npKbC(3T20ng+X(zN}YUsc#@KmF02ezule)w|GrPtXU~4U+56}WR#<U7 z!#?@KC%@45LfO;zP5CRd>dCV|nX}rA&;MUq#k#j%e$ITOn{VH1$L_hdHkw_LWzwWc zG4GhKXvJB#`5%8&-_X7)=8|}1)uU7Q9_!tHdub_m*40(5tlVN2e60n`qqpb%c$;7U zddHObmlwBYU)K`<ayokQ>d<rLTV6Kr_3ta({dUs-d!S0VsJM9Ux1U$T<4aE-0_~&N zXE(LT>DZ!E_v6c$9|ta4ATBDJcxj2JMeVOGZ(;-GU~aDmIo^c#)>7V3?dR$Ln9okr z{jC~u^6XD-o8o1+=Fgj6b2YYj^2^!Y743Yopw7qk?<<4$d|IEH==mXkRp>c!cAJ*i z^JhzLe*5?LH)yQE%5Tl}9firDc=qu2F0P8%o_9A!?_zjW$kqk#<?Zejwtaim^Ja0T z-tDsTp9e41KYpe&#Wdsur)0lYef>?|9{0{BK8D1^M7?^06`x?$$&o*j?aOX1h>eKd zSycDSHluZV>iepxcjxTi)6Bjn_`>gRZEtUdPQPDX%<1pp(ICKddwYKPwgt=8->eC< z)R#Q{`tP~7-?+KBHq`yCI&$>r!r0wq0!|7_N{61Rco%NmxY5JYvrtmjs$@lx<Ns}+ z7i3NU{Am5o{NkHsC!eyXpPAA4<Vni%+PZHy(_=RYh>Jh}_I2eXVIw(sv9dRQe_h0$ zij9*Gc8JtlFPJ+kw9L?dKA&zf>y|~*o62`a<(-Rv*Z+G@*oAJr_@bY+@A{7CUtcF% z_4U=#97p?I1<m1HRW&E_wZ8l|%e%v2Z*R{dVQ`>u_WC}@`&a86zH(Q+zGt!h&wjnz z&kSFv%!UTj%qF}1dp1{Ahx6<2|6?>wKfcd2`<exB{VEAWseNq8&Cd((-e7+Fy!G7E zKUZWj!nbMtU0IoF{(QZ{+a=ezcG=$lI>-1O*Dvw-8b(DH(ERw<rgf=l2kLUvbJ+Jc z{Vh;>v;3RG=F0MQFJmt>K5}M`+LH0`$IWn7+ntx?_k7~~^;6$$cg}32j9wpnL07E% zc;eQm)c5m@km7ItvYQKT7A?Ga_WS)4PgM$ATP;j~tjv<HuPZB=bNl}Dbqlg*we5bt z@Alim<Dr^yv+nX$M`?9k+uL`jvc5pJyZzv{-@+N@G4>DFbH&#k{rl(VXT9xDpFMjt zEjrKf`@6fc+kdWFP=7yPrM_%S-I`mhf1^I}>)lRsRKFSW^Y`hz1e;SLC7<{ZA)_*R z_n+9<Z6cX}e}}AIlAe3})wl1JyPn)x6}oy)(1opcd_>m$N-q?g|9{HwrnsW}f7BDL ze}wM5tz$Vea=Kou&Axe)CLft<S2%P2h6U?54mLkBJ0lt^<GQDhqux!uaP?`=M@deH zKx1cf=ExlXmcR3<7-$UuBO~LDU8UM~f4>Bmyt^YQ*3G&)e0`bCxp3CM&-;Z|#a<{c z|1E4X`|RWD<4t~>RzQn;ofmtiL|uioMnK)`J5SfYxTLz|YxSB_Pi_9LY}_C&^5S3A zmODNob${xwZ|dGTJMp*T!ZUBD+1>teZEbYyJ8o|7;+QmFj>fo0W`DfzbQdnN{ndT! zgRs~Z!L2f>f9eXgv$_+OH~q`M$mzt<($b<}Xn1ks-|zRT`7d6)$ic${S~mRZ`ucu% zxk{GX+brjooDFB)`=Uy$Y}@Pj-qUMr+b(|&uc(QSyx^%;56=~M(>6ccdOgnh@2{^9 zpFeLGR`+9IIMy%U&u{-H;M2X8&G0f_{^S$Q`fxG*HARm5HwOOCK9pS+{Zak-RGsIl zhwC0i_utmj?B4(H>-vjZv%|N4kNx#;#be<wjgS16f4UocrCor@*fm{e)0ZRjkHiW% zJ*a;hUl;f0yFy&nE$*|kOb<8n+jU%zufMzTZ&MQ!3oGlx`TzecKYwrcCz;t_^vbrZ zJhb#$lzrRW?_Zn`s$Spxb2?%^J#g6q|9Li&pnYkZQcr^x#A>|I4qF2nY*2YW*9wue zC;H6$wEX7V9R^?5dQGqYyxQA-(kH7onVO+m&-y-|^uAzn_U$%ruOGj@zE*50_|>xe zi~3&c|DU$qZu+NwQO1b_6d|tD=2iIKVOM0CC%$&$iCe<nP4&(8Uw_-S@klm-hT$)| z%a`WVUtbq1;FR$9*H^pR|EGec%x!-EyMNW6uNR`fA6x2cefo~sb^A&6(8Zrdta~#r zFT1fRm74)Fv%@cM2ij{h6Qx<F5*+#Sa*kO{<d?+4pL(xne5vbK%yo#5iPwJLrR(~7 zS;)`J#mASwNax>mx9p|Ry^YE4pz*D@wcnJY3mvyxh<~}?<+g#NF;YpaTgP@|z!!%V z^&gHmPrJQA<wN3}sNLM45j%GI8qg5Fl9ko1kNvEdm-#jyO*(jW^*sC5Yt9FkuD<d4 z2e;^NmA$_5Z!#{ki(lJe&+nLtn8iIM^5wyUgeA+DGZ*N+VCR=Bsdkbm>PJdDArt?I z&O3kL>W`xqU#~b!uP>^rIx)ZS?dGW)Vs|fl9A|ym$avNFmp}E@d$n(wTz>n_d-{jc z*Vi058ka0lnf|-s(c^{xZ>2KWeR<zndF@?==bhewhy8Jnw*8+gaPGh37SXL2RTS8s zm;dQl9ljnk?sTA$`NWwsEmyOS{`>ozk>T&}@9wkBa%=wZh4tvF^Jf~@i$9+2$1Hn% zy0z%%c)P^^g*WyW{H^}}|3;xPVnIYI*RQ?b?{zQrp3YRD_hPb|uTxIWnlrJ%@Rfx# z>?f@>`ng$LMB)Dn!6!BIyYATDSN{LQaC`dmYqS3@m%Xb0;`6_TLqGQKxcl#{>K^BI zz84o4x8MHlHNXDo-V_tzzzBt1)?B}iwI6?!-~6A+-rhbXH8t_?udf}QorN`7_m=re zgSLS%GF(|3Ee>kMufMlTYooZxqeHuLZ~T9=`p3Te9!qR~>D2u=oH1w4H^rjM=fkq1 zQDS9l_H`vKEw22%U&Wl9oegV$mGH>h$u!nCHvV|E`jdXL(^2Fcl6GQ#?teFtbJd%E zvHm@5zZ2wa8%0G%Cyt!^`|jpC_IGzXdwFq9nl#BE=f;Ldx93&zUFVzc^l$2;{h*;* z0jGr1({wAIP7R;aXZ`<l{J*Ay&Fqht&#!9|IP~#hyW~v8`Xzecg-`XMlAhtljzVS7 z2>XT&2A~~4#m~>(*pfN<&D|j65I)KCbF=)dS9AR@i1U{2t}VZw2d$Mu7oKkX`uaM5 zV`C$zx%7D3ojWlsEG!A1o}7GfZLRb&pP7$#fYwuihE2ru<9HNVE?v5`=YyW)WXVtU z?ysO55kef7zj_QE+7tflZZuP|{@a(3_aa~X-FM&Jx4Y@zQSo?@_|JR7*B5bvmPRCO zjr#bgTi@y~XpO)^_kKAJUf$AO>ncyGKL?FfHM8-q`u$B}mgFb64L*+YMkyTIa&A8Q zXru}qKB;e1D+Ucl7(emX)^d2bXyH|z7ygI7{T0vK{vKAxN;`EFaa%F)NSSafT)1#Y z&CgAbw;3iMJCL;T!2SF3H*enb>j&*iOV}7;Q1IZut39S|>1}@|?t(0&)(F1v`^(Gb z1q&2F(^Q~d^gP?@l=qV+L89Bu7rgy5?c{vj%E+&Jo6Y`fX6&4qxBcz91<VIlg|60$ zxzI0T2}+SZb1W_v-hMv6o==g*s^rCkPe1n6{syhAE`A>Na5C2<srqYcrPqXMM{UdL zG{0A|*z36e(<e_74!7}wc5|`uNHnzZN?V=li2B7JQ#!}KUM~4qkK^ZOX9Z<sdS=X! zfNm-b{iSw5x!>l|jpLWDd#**=Qlc_B^3(Fz{Q+NvkDjgPa-IGBL>;H;q{vV1S+Mx4 zchrA-W~T8Bvs|gDEg6jV_WQl;?F|htzJ2PoC-g#aaB$%6vfSflhYufq`2PL-A3q`6 zCF@$ZhZh-%i<Nv`0ol8vGI{2w^xuWfQ%_YsyfpDb(UaKYd)17C|9RL#mP$|2dC}V1 z8nL&^wC?-v`-&D85?^0mU;o8SsGht<QXv`Dl9G}got=&)B_>hZa!xj_lYlNxNimB4 zm$P!UR{S~R^C$1Ul{%gCQ+ewO@JjK(RSWWOZ{t1O&hPHy!=t3EY?xAiLLlef9?7!Z zdoSJIgt{4Cz)3+xg+<+eUdhh?XU*@o2rz**#Z-OC*m+ypAc3JpAYwxT<F3-z$B^w# z{`cm1*}@Nx#s7sLitYM2xo`c}&y$OHo|$1E)D9b=scL591uglk`}-@g{^_ZyCr+RK z{OkRPFh_mMd9^PBzF)UFd+L-^MTJF+zzl;#r<u2-HYT+$o{&B3SkpQMxG%H+nfNyU zJ=3po%YwP}<M~Ae2NOi}WSS27KT7!hk6Wy`*&zF$2QM`EHD7#we*XB?)#0_jtoH<h zQs*NJznZ6~rpn66e}^wps;oH!TEMbBFP4Rs)zU6Aee(Y)5_*Bl7Q8+v&ARu=CJiSJ zwADklc4-$DI0`sD_<B9Q{LZnab#jv(OGWDsH^p_CbN#xrvsjjO@0tbY=h@!=xMR&4 zo$0@?uZ!hYWVy8^^RdZB?dS`iKYuO+P3Tz^KjUc;*irM-h>M%svP8nt($d4j!@<w5 z?@R5&6_w3DA5XBHVb3=c%m_Jo|LN)Jkr#N|SoezLi+nM^S8+ISPj^?BjorIue!Bvj z`geCMpBwK<OG{hi*vz&eYORN#U)iqpn^<cf9qG)|SKVIovq(inr2ql0T-aFivq-F@ zInh!7s0M58jSYzcP7l`C|6P6h^AFBlRfr`nDSYtl^P!)P`(Nm7XWc8JTywPc^Ru%8 zP7k)-&O6-eENvb$?|AZstHBW~jv0ES_(8YMz^7@zdgiFS>$84WP{V4gt$jN6$gyKi z9E~?_L>$k3x9;UT&^}rT5q|C}O}8CqX6=4_^tANq@b&9HfVYoJsZM{?+r-DfD{a;y zz;xc`bI<MHn>TM3L>#Cf&%NvCipd|NMAgK;1nmjEaJ*lhUy;Sh*?Ho$Y0rxOUs)Lp zU(gq|GWWB@<hbb)Zc?!q)?-~Ra$Qru_N7rds}14hB3gSVKb$V5Z@O#2^qQo&dlkQ4 zE}uIuJkF85;mVbeE9+u!f85d0!NJ19Vo_K3<6%2!&*RJ5w8{UcNU47hbYyP;Ej9h} z;$p_NHIksErn0iVkfo*!WxMx!{XPRtU~IvQxvPASOjejF&3Jh7`kB&9*9|5MMoO}P z29PHUMo6&mb64?BmY*pzXr${wPJ<0d%&?!-`BPca#Mim;t<t8Veq}{P#+#KdH)QYJ zRNkE>5qizOjQMe*<N8EMeFLd(&d9$!x$dd*?gDweCv`o=mY)lr{i;z>QF(CY>rad6 z#`58xw=Xy_jnVgV%6qM=46D|Fb_yPDiaQLM4yy<4+f$x7!~T+Y-bKzirz0DREkDZ~ z-nroX;hl3H{javnmwglExbt?*wj4>TvNs(kPI$PuxGZq(7Lzc`kpP_=^6evND}Vq~ zXJ=<zUFi}foUT+{{$fI~;rEye&n>%t9layEA^WG?_WGai>;FrOb+dwM)9LYboxIX! z3AeUn?sz`0`om#<`yDp_K0G`u;N-y3`0#N1?@v!BDTPG-zrown&bqe^HhTzaVi?vx z$^N;`IPY}jP1e0Tmc*Zne*E$EyRWaWAHT5B`R={+?YCp|r0wf${`~oKVRg8^i@W>c z1q=T8*S|P<2e*OZ#rCU{9QEaXZo8bfT^c%ocIfxTC7!}IUoJRD?60$J5s27ZwRL-( zlBU<xul;uqR3LBvF|1b+{_MUlBw_c1jTPZ*7Mwpmbq{ae_Pa~H#X(CexW#np9o*d9 zX8xWyXAX}di<oXy%c4a}S5^kI``dhM(T_9Ibirw8iEjPu$4Bx*|FZmzIcFnsGk-@; z_5Xi=cYHo)Eqi>bdEOlf{e3@_E?v45Blr9I{(qv5j*chJoMB-AO_?7&c<|5tDAPGw zuj@e@#5OFrZUCFM0X3kW_1C<td3PzRt|`u@sJpIc_ur-_rZw^V<q8W6Gp?_bZ4v0` z=qRxAoO3qK88kQa<8i-r-tDc~;w=IZdnz`rzt3c3fGZjN401c?v|i-Pn?rv^f7MFY zo9DI6pD)kGBk^Fz+td2{OQw9xzP`@#7-%+uUB2c*xc*#`1*d+2Hql|`l=xF8BA+a6 zs@rgA|7PcQzKn~DS|2|@*vxLdkFEamhN!hq<@WnMTZ&Wnt_i<8>%+OK;x2kl&z)~y zfA1-%wR@-NwC;<0d#xE1)YaJ^K79D%{(gHQVd1&QPEFNTY&ozda&yf;y9tIXH~rfv zEdeS|z+2fMD_~QS{+*bfC$c2uw@RU;rTn3FJD+`?7M*v{_`FTCsCHPw?{9B^e7Wp@ zac6OQgpSy8)hl-OKc5Kysjn`V6L<alpYhM(ji;GTE6OPpRXhr;3{Ml8wtZ%LWoZ1q zth)V~i^>u*)!HhfXDysMWrpUgaJi*v)7)n*>u8%H(<P?%v~!n|!iQgfALc(ly<zu; z80+0{UjM8(v$*V;@#f8ktL@HZr<b{LG|sR4b@Ih8+dm%;zqqk6d23!h^QO3Mm;M_{ zN6534SRbBy;Zx4i=4G=wzq)%R{S7SD(zp_8w4lE2&7Nkr>3d6F27P&Tm77<}q#<f; z+y4FbRbOAJazC#9{mnHXK%lFut4B{+O^wZoW682*VW*#~zfRNsE5Et%Yofz;<2#(X z=fkWrR?Up4U!rnNK6HC_dHGD9m-Wx)IG)$vv+j%g0;yABzwFbPUmtGBOWz?JHE(Un zg%IP7|2#a`*ssd_&XuqD`kdEd#l349>a^dlxU|~ebjI2*^=H_wwKLv5SD?PdCi>-q zm1#+TCr*l}PvQL88a}a9{hY#*>0%c)7uTCrW?BV?ZkYP7|K@>T1`BRWzH6D5t}SbF zwcclqeUQ-Wex0Xr4|QYq?)LqayED<@|C|5$T;lAp|1{f*SC!!mpNUKFYVT>BUD-aN zRDE59L;umKyYDMJkF$$9RR)`owd(5PniA)_Nf?JA^&kg-`c$+r^|aWNr%yHaYNfR2 zEd8Hsw!x0)MOmBm!lyUA*nLffU-wTr@=IA26dc=vaQGS&u9_#qUZMLD>P4^tH@*I% z#C1J9vO(dtL?wD9jwk>H(v%eKug7x|Y9%hb<tcYMy?H9%tSq%_@|uv;GI3JQ(tk5} z*YGp%n)}c%qjK9N$KbOtN3XFDnzZ%`mc#%~4PX;CP5nhTZ^M0EKS16F$5rQ7_j<1Z z@iyGo_1H5Ua%{gbTX278F}royn*(QN8XFcoaA09&b>v`FWLdOm(W)o5|Ni~X2W>Os z;N)y{TkN<tYAa~#;*A>-BBG)*=jhwo%F5S#VEpy%ZTEr&3M;N=?bx|<VdUmC&?W>S zp?V>$J$`6q19EC8lfLl%-Cb?gPm`QOS-!Niuv}Re8y&SQY<27A&6~gMa_^TrarUg~ zjQ0-?HnY8c{O}>;)+pV*WhEs?cE8^jz3}TJ-05)R>xQ`1VfDJ86_gVvPK?-Hru*m5 zpH(Ug($mwuPiI|R#M&oo&Bk!z^l4`wAD$2`(G~#->#{W$zZMl09RjVsO+3sNv$sl= zAs`^2VX=F^l8H$O*Q@#U|0;K0@5P;OkLNL0IXX5T-0|SS11-)M^`JpP0j729)}1(U z!eEA7^|u@j#RpHGv|PCoa&ya>Gd@d}E}a=u78fTMwLOnlk!2QW`FQDLJl?w9kmnQ1 zTJrb(P4_;T%#vSkZ*O0CHA}JOz?YYoPw)Nn^Ye4>^o#4`_s6ZP+$kJYk6g?m$GXIY z?v-5)^CnGFYJL9o_4U~~*LRoab0}U|8N9q`|M5wx-b=pkD0=F(^Vw6}Zb@{|U#7+M z>sYV!(hq-rzu!MQM_f{pQ<25S*7o#Yxn?%rCV_gUudlD`f6e=F46O(UXApQ{CLS!x zxcA4+x0kqTKR!AdwEOn<{Mmc|#Mk{~?d$6ka0+?h_YO}Y;(2j2#MNQGY4$XcJ@4=C zPTzF*)6>&S%ckqa8r5gtoUR`~?b^o3&1q?@zwg|MxwEG-Sjx!QSh3~6)z#q>=g&WX zkm>MT>+%h$r^W8<EO!4``Y@rM`E`HuBm~jC_R9UMtHUKPtmR>@GQ1{pA^-lqUcb3k zp66ZdD?crXd@U?0n))U3{l||VLBrDQd@>dVp!H_#eDyMKN;>-c(;c=O@w_-1@mlqr z)m%P*yPqm80vEEj{`mQP{@FPBd5+<A8>Z$5SYA2P`1QEsNd$2)>{WmIg|+-3TPr48 z%=K&Eu)%;s@xi-yeSd#{53jh(@b8=p=g*(pK1!>=s$S&m#Z&*{XvFR0YhCTd=H}*a zZf{?I==IX$sI35aSphC8;(S6`N*Fk}xS9l*7Q6KtS;a2D?6~@>6G!9A%gblyEZ)E7 z?%lh4y$)F(m>a-}vkK5(wu<T3mdwjb>Nnqeety3B4A6ugJmELLR6Sgos-LajhbJGc zWB&E^_4UH1r$jS3cz9X_m?ln~xap&6{-dxz=UyCRswgWn`}60ILW{%du(cB=Oke=z z<ind%PcH~t4LOC3_u1a!=k<KMN?t166?k``kva6&%$=z14&)5+#%jUq^E0NKwzRjO zex|LxfZ4&xi7D&)I^C_GKYVELS~@B2`-_XrJ9qA6`&|3;>GUA!UN`3W`1?Wa&h30t zUmF*rwoqWnyB<<mhX*^bH|+oaPkQ~{Z&I^Nv)OvxnDg`VTiV)`%*@1ETU*_pcXoFh zXV3j|_}<>?(_aZV^tLjreS@#=2UUXg;D#P*6k{~Mkb{A|x<BaTFYQxj9seDCdm`3W zzC3yP<GedQPx4~A>YG0AU%X<4$HuQIh$hcRhDLB>1=QLBH5~T+EBb%V<z1WVg}oQq zcXh10;QOZV|9;_J-v8^<&q+M_zlqtkl~pX>ADlqJu9xE%@bHAR?7$|ye69cct>XpX zH+A+?W=pA+H0v$Wey3M2?pj~DbE%%WmKN8$ckj}CwSQKm#mC3<$XE!ZpPMuBmI0z! zT+!g*1!}87ny;EK^QtcWZTJ^8|I*=|IxEWE&u!Ws7?SYIr>c^<%Eg6+Pu{KvR64!B zw$}OdG+jXv5tg}r><u>$NEt#JpU0V5z@b_XZ6Im7T3V&}*Z!+>n1AK;p9Z;$qPsfs zPW(1I_hi#)=?mgI5enIx>;KnrC~m0#U&nBU?OF%4)hnkkVG`6$pk~-f`vUtJ;W`V- zTlF^0Kk0o}Tl#{qu&`pwfqAyo3<lB>%FtFm%scf^y$e^Y;3!XPQ?3qr-^Ko=W8De+ zPkS#ueeL{XZ}oScw(|S6*A*6kb{>3xch|YD&hFei+wOaNs}JA5FK=mS$uNU=jUcqu zXXBs%Zlyv4KVU+k)UJ+oQ>~lr7D^Y1^_lPbvtort^X&bi@?N_==YY!pS62^DRCZrt zhSZct^VEs|rR7hVt6aig+>=Tu`571(SWsGebYt>yo;JheV-hT1I)&A}E`zq<eR+AA z-OkR=qV$yrLmG4T5lB}8JvBU$zrhsivi%hMm+SRalCgEE_098U&+fJ=ef41H^Lfk% zauRx>$^0=R6S%m9#ypGn9LM!O4(tt}*<jtMEe!aS{$bl|#Q68!-Q6o<cbhpmJ2PSl z{)l==`}bf_d7*jwECD7#K|za}9|oZGlY4vH!tnKR0!|5EUtPr$#7VyA9rf)hs;eJ^ z&P+4EU!%M=5occV3hd*%89aY|g2Vf^J^7Dy>bI@K9qzkk&nvNCu>aa}nf<o!`{tzP zFJ7_WK+@}zh%NwH_^8zWP2F$Hv8(g$={=frAbITilcjI3w!*tz|AocH+4c3;XT|gJ z3wU_eL(>T;8@zn2|NXtsle`}iyUge9ls~5aZNj-}um9VpzpI~6U!mT`rCa_i22x($ zmQ*c2^x;Fnm-qMM&GHVn@fH*o9^6y;S!bV}DCdiV2M<PU$(WcE<LAfs@8@&*$)6)W zGdcwZ3NBi-C}4kGZH9?dOKYp5rRB~u^*=#_E)ymQWSB^S=D98{@!V1UeVs||w>LLI zYw@;3>At$Qw)@}T-^!}0uG@N6tk5vYzbBKIm-pe@H@EBSVhf*~n5gx?=i9kiuluv? zpq(MD$a>eEmM83Y$nISI{Bd56$h%{E`|tRA2Npc+S@im3LmsFL)nm%~<wpIDh!t0} zjvPA{Rxz`(vXbpF7Z+DRL`1~1J)xo(PA8pZ=O})DuC=|L9dy)S@N&Pz7Z(<SmaOL8 z-IZE2@9OIC!$*&@W?x%#@aN~}AOC*8zqs!2uNfwpldddFKR>UdyW6>_$jEP=O=tSN zN;XGF#|tk@f@Yg$Ujy&G*;)L2Lj9aMJr@_dAHIB9c)EW4x@+fi^4IMAx8hkcxE~Gf z53-ejyX0$B!3BVxp5Bceg^SmmJ=QA?TGGAZY8DGSd-B6Wt(#sRJa`ba*!$4o!w+A+ z?5zL$IzH&aJ<xWvZ8@Ck>gp*eDGK`f{1Ycm{P6vI`|R1$a+Oc&1>fA=9Uc{SvZ3zV zo5(M(uk(X89`4?4ZB_QBL%!~Z<19Hbv9u36xROsZHl&`O2HId9urdTR5Ul1mN8|N^ zR)LP*-lGkS%nx3@>H=+&dVOu})Y}K1hJ=K$*xTEmnQI*`HGTGMZhd|InqM!Mt39v& zdNmxh>G1Tiz5jl_uIJ$8HMKnd^z?MamIMF({`TE=@%poQw$-OTYOc`PR@C4C?|OrJ z&I_VJqa?|^jDOc|zt<GDdTMJtgNKJl!{Wutixw}QIBQndjvW>|cI{Hq)AP#`mXYD{ z_xIO{*ue1e<x3BLfA^RenGh{etMYd}&h31Ps;aD3bL;t(-Fh6JpPO6w-~i(s+iEdx zF`b6)ZthE$E-^^3y`HS@|LC&6y=zdA(4|Y4KpSry7GHeOZ~u>hA!c_OFC!ykM_->? zSeV$RO`Cf3(my{t8?Z7YVpoY~P;jte{l6LuE32gM@9qXkE3z;#F$u`a_ka0P0$S!8 zwN~u<x>)0#^?(2UzW@Kw-Mf3QIPPEf%%c3AOpAbrkI$4|(Ek5_U)R^qoRk0d*47W7 zJ{?-W|DTrba@TIL8OG^-Co3;qzO2}CU}f;~9>4RaPake#<$mz=X{&blx*2~ZSLEOb zyTv6A;j6C-I6XKnUvDzQE~)+qN6Gtpv1WQkMnY?&woZy;XJ=17(7?FKtgx_9!0Ex0 zlanv)*qna;(7}U@^?$!kUz2-%U94g1DUr;5oAe6vudWic`}ZUH=I`lyj_iF>1PWTi z<YOM|KY#uV8f5$O?ryY{dJAZo>5}VKbNTrA_-^bhUVgIl=kxjXOY~KJc<VvE%dekB z%3oYi<WS_<c5#MbGU$+<py#ohQaD4jMCZ(%3u!L;ZqwD$I<)z`UG^8A-{0Qee)#Sk zA3HnykKex^zqq(KZN2@><6(RPE1)A#$T?>U-wRpmGMB?`ydQr&?w9^^ZfET7vKfZS zZ8>+Q)$2wt2wEBN;s5z&9zMQfzu)iI&jyu{TcdgxEmF$7170~}U~%}(n>Rg*&TSr_ zMftB;&E=aoaUy6_?Vde*9=v<U=kD(A;^yX+dxrA`XsP?DsoG1g|NQw=!nVpp$}~%* zR~Wo<X4BJ(s;Wn)_4n(fa);e{b#-;>?S}{I8<~R~_Lsbzv<5W#+B46#dREM}dwZ)N zzJA?(<3@yvs%qlrXJ<j{ph`-%T>SR<Sg&(Ifq{{+G4HaMC00w8FMs^u;bBl$Udk*d z;uY`r6@PM`GBm<Rg+PNF4%<OPS#B>I?(MG!9h)o<T03A>{!WMcW$x|zZAYu$?^U1u ze0KgmLyi}ztSJl;+w)}S%$YM`(xjw<X*aJdeVKf`&-L-K-i?)?(^OPd6>V*0b8l@q zc%)N!so68OFOM9p?d|0kyY)IfKGwUm(1`=IA%D};ipt89de8M&8cpAEe^;sZHr}G5 zBCVRv>WmDHdo`bZZ|+#X?-$p)b@l7m%%6ki1(=waCQO`|SX6n`H20Rs=JfMst95b4 z=o-ZZ%noU3YO~C8yFlH%*GaF0zO&0!I8^24Ir#hfwhAz@^T`<Ov{QXv{ox>cYI<Y- z{e8Up`udR$`PbIWJlOmC%-$n={pZ_Vs^8JY@@3V&BeC_9cRcFfar*RW?ayk3Z*Olu z{^aE3)W?q=KVEn-V~KuHS6A1ESF6__x_>|Z*V+A+pdAY<R%mR#9efi<cpr;mvSNtY zQz3YEmg(We{dQe%-sH&G*Ts}g-Z51>Txzf997{%7hPe8QhpeDI!n4hCo!s2mKwGqS z7C(Qq`~5y+tNWlcU$*5&&#@?EQum*CWb=7DZhn6LNQd|L_FDh?`ntVaT;I#wSbL|; z-^l;|c0XA%GczywKI*zJvR;XCuhp5k*5Yw-aiAjv{N`GL&Tx^oNqf6=dfcJg`TKSE z_H}hNwYS%^Ut1U3-P6MZ+D70z%Vc7m6~mqVQU_0;=KlTd?c}@_)2B{toij&<;k$nB ze4|t@P{W8@T<^h;kB>pgJ0>RPOckH?%=0+1-WtsX%m<cwPrtCIve@R&hr>GxAGdv( zVLH_dbi#{H#0H1@Yx`^%ZSC#lFE96ZKitN<Flgn2=g-?4nc0;zHBY{%d47KW@nC;j z*6{Ff7B)5|H8r-x#KcVvpu=QAdz|(3^rqIGnPtlIWzixf7gyJV=g;%&>FHH`I;qb4 zZi}3lSlfpW1uwtut^RJ1e2fRQby=#Ht+BBYw1F+}&JM+`^_o8|to|<eUsL}6-q8b% z%n#qc=ieFyI)`>~{QkN<o-w8yrZTg@yY8R?5yrbHBiMv`cwa#y`8Ydx_0T?+(Chvw z)EeErdGn@#lY+6auzCKyCkc%YUtL|@(cceRW*{0b&iBoH!#@iRODIuqp<#K$>u+jW zniEIkn>RU2lezxdvz1sczRzh19U=jbl{j|%R)2rO%3#6mnTHNJrKF`PSzAYc%zyJH z^+LVoq19p*8ir64VP=C&O;1-gHWqGeZS^`X@~fWbh0E19&wT%FYoBr$I+nhs9z6Q5 z)x|h>#jK6ZYRFxeBfl1RB{`_CN_(@w6S*(B@!yI?5*IpGMdsz{En2i_!tB|rzpR=d z3+*DPK$?J}M;rWHz#xTH;zDN!7_4Dnwh{z`iJ}P(>PkvVO7%)go0xcBfK|G<gf%eE zT_KcrZ%-#E6K*^%=RDV{bV1naiwhi?OI}`L4GatfrQnM{@r}7g{s^A1RxAIntE;Oc zN8qyw^X9F)pstji=J)nRyI$<B88Ljn?N@c2x+eeIew9}J?(+A?KA*P-UF5K1#}0?Z z7Z-pIh%roJ`S$j9_^Ul{{-2QHdEp}Z<+8v1!Ryz<f4Seic~kP<y?dMLU--|lNHmCt zje=av+FDRnHVrfi(%k=Kfl=s^e_z;FXieqXw{M?X`{(E9wLdRBv1)3V@xFcgK79N* zF-zab=+cXNqZ|JNT|>A1yYW9TRa8{;A?SqiH}@lZ-I&9}!*A}m9#?(##h*9-PsD&+ zQSjk`<4Wgu*Van&$=P%qI^@LQ;OEB&I$rmj^?L<nWoNT^_^?m6m~O!v&_Qu=adJsX zNehBjDzqH9u`yZq-^>$bAzMI>OH53x=UQWWwS-$-ZwjADa8MA>vd#Y&zX}QayYc_x zQ=s)VA<5@$zsp>@bZJSZrl#hL`}_BsfR=P@s=WC>u+m_G@YKt5t;;X$C`{&1G^qHH zpeZpk`PP<90jC33uU=KKVLb5W=4Qo~hRKtKgMx!s7j0eHw!-J{M~11Zf=^G=1s&^A zpRwZN%Qyd5SWOMBfAfFErd=g3nG{(-^-A^kcalEm&!3<EuU5`1XGV_HZ+k6%wvt6f zzrI}dU+VYm)Ku-Kv&=O#IGi|oWGpYe_;P!DzB6nfF8t`LAl~4azaBGcg-&;F=krYO z3tJbHxrO(){VKg@S3ps}=GocV-tqN)vyCz?C~zoV*q$GMv*KHQh#b!gm#0^D7N;-1 z-#1NFRn^t1A!2{s-jii}tG~AiFwM0pUG-*F5O2uEU(6K^URTqvtOyivI&k^2aQVAC zhBMCn>t7Wd`IUXc|HY>+fA@bj$8o-4a+}G#zw%SXnXLjXpFDf!v^LC{qY+eJJU=(L z{_u*x#i0GzE3Rh!`1Na1{QkNd8<X1)?vXann_~6ie*OQuPpUzU8+Iv|qoK?GHT;)d zaBXEUJ81Kri4^ahyLSbJgqo(u*GYDEc8dLT2@w{t|NQxs_Iioj!~gnMbz4H5a(i3u z>^J5wj=ujff6}BTMrJk#jz%@#Sr4AopPhZl<Xe469LU!Jf1)pd4xWDZ?wx>>!`d+E zJC3`bG#;9y>b)fMsP(%^V)}79TX)y~E-S59*`zpirM<(y8H(=i?mvF~IPp&5^@9fu z<@YMx8~xq3>6n>?ty<X9!m>E`#{a-l!{z@NzSW1Ais?qF)CR8mzjNllWoz%<yC-2? zU#7DzcDLH>c31$(*wsXQ<KMG=yE&+0{PU-V;lTX*f1Qbk+dOkY_Mf%RzNVA8XQTJx zFVpnn^|tOVc^R~|UTu@?)Rp!O5qqmlK_~TJxe}5&Z_gf^n*V>lzqqil+2sDAR&L#Y zH&2w={(7-kz-fW+Y%{gn8~!hTRiEVdm+{U26|ZW3zumqfeEqyP-i5Uh^&gLl^X4%f z|JQ%2n{n<6nXdaCZXAuJudhjN(bUm#*<JQ_iTBGda}BLCR;@X8B|h@qy}jM-@^unU zck0cu%gV|^*V|onIC=79kZs+ckH^(+Z~VXbRYKn1sjYwIXM)a9k}yi)Xb}MQuj|X+ z-|Jl+zW&jvsoFR8R-0Ruz0vr48+4L}=jV<87k^4}P}gc-vP5O&XC59Nlbd;8UtJB_ zt?b^%@Icisq;l#?`(n@`F_&s)o8_+R3SB0ZcWH^IfD@>b^y}+uxWzM@|H@BIy|beb zvUtzZ(vt0RaZ!<gkWf97;*<X0$^YG-9&PXo;k&*rcCyv^cXxNs&ME)%qj2Tj>+$ux z4d$E+Pp$U(JJWgjWzWyL5gQh0h0V;`uxF1AXr+b|$DR*|xR-8A{qG*S*5+$E-?#dZ zS<&0`JiqHiY)a`oS$6dB5BvXrm>d4ePn8E{0n>~N3{D(hUR*q!GP|X|g=MAjHT$6E z{+kO{1zh}P%+4RM(&pOwc>SxV@9nMj&OQCFe^pfFtMf8%{;x1O`akyXyWQ`7w%y)Y zy!@bO&YS-$_DEdlJeB$6#KcRg$6Q@q-EP->y&4{rUi0RLVP;K0fIy3YglX24i$6=O z=6=~R<K^Y$;irF1&Ry;EcWUbSdA678YoyKd)~pI$Cbi1FUrylBKjTK<t4W1#{;$xQ zy8Yj&L;w1{CeN6marOA7)YCrOqIVW8z4GqM%gdMGB}K`D1B@#_$L=m$d+^I6^Oso{ z7BF&gb1%(=%xmT4<yqAK+jDTw=Vxb|1(^K&{5*Vp*PiQlG+VXkYxp(Bocg@HbtUF0 z<>lpfb`&m-x;8(n&HmpHX7H>|!nZd!)6Rmju~+5m{=f2}VW5S77F)l)y)C`>X0)Rt zqgDAk9z_<=rm?0brc77~$yM=g=W~T4f79dEMQ=a%Bzaxfx){yb`qtLcb#--+i$*RP zM}PkGX+zG<dZU*&XC)u++xjD2>2~16U$?jC%Y#-=gL(%uXU@Fz<IkU(H#axC?`qyC z!1Vdq+07tzi|Utc*}Qr4&2s6q|L&nn_k2D6uYZ-3i%Uz0`rfLqPC-FJT-@A&5fL5t z>wf$0TII~q`2AkBznMO?1n0W&vINvZT-tZzX#G*vtyxzm#Z52k41(39DDw%?8;nlE z78C5;DfZ7L#ak<=zWV#SslMf<rLJ?WN>jEzfAOMYW$<#XFDp-kiHM0QSy)IoaeR4w zeSOU5P5&34TIB(%&Q?vBJh?e;Z`H}HlShxT>gnliDm>iIUq5}W?e*mU?$1Ciodt&u zIUPB6?9oZ}`7QnZ{2^MRQYIM<iHF-BURdb7^xW_7_v;^Ty&mVhIqmF%iy05zzU{qm zA>hcdW2f{w)s2?!`C9(<RVe84jb?U!HxCbvnwpviZ{C2$KtKlsJwD#=9uzc*X?{!2 z+3)x3^<@L{Zf{##f9Lb&|BFwpfH*NIB&3B`+H67n|9>1D9H2!e-QC<w%*=)r9}++X z)Y5b3|Mj0aNL<qjqh$qdgLRzXGFTuCZiER&GP2c|fLdWnN=n)XaG5%B?(b)_^Ffzt zfJRdu9qII1@7KC?$&v%tuZwTbyBky$dIscf!{lQN!q!F!I6XMhDeSd=QY;5I_vV*Y z+sm5S`H!*7*DUywB_McHhpj|ONn1otuJ7O9-_cL@*1x*Cx_$e-DsIr=hU?+C_x4sR zwjAh{HeZ!e2@1xNk}Wwu|Ni>gJb%9YojZ3x2hOdD+q>(`Qx3%sXU*@2oV1#ncDzqE zU}cC!$qRu^n>H1^zqdE5-d`0o*p+d2m+755cR<53+j4Iwy}PsXQi=C9tAH|x|39D4 z2Mv(?sQ>W;)aI-F{Orev!~DFra_{UA)Q#TO61CRt^fcX#m7kvl-T(gX?rsi#{^QO3 zb{y*J>Wk<9ytLF?!mb8%G}eO$4-&44bAq~u8xju-2naCrx;2A#E`NM<l<n=LNs~Y~ zKshbG2wGhax;vw*t82+iP-k;{-ra!ZezNry6%`ADm;2q=nms*7^5n^r5+)e}P0h`U zEe964cJthOzWsh(bALa7-n~7M&vpq5PE-U3V9Lr1MZdr0awvYd>~A0XyLxKKR7P84 zV_~hST%cULBXV<E;;k*2pfCYVRrK5a;^^z^yRj`ddgbX&ArAk4Jnk115ea$wzJBqN z^Y;Hi<GDZnd_F&M-n_miPf|eFq1@V%86=&}{i3t8v!lP?y{O0tbY>W+SjfxE`|)P; z`6Xui|9s+}GiQ!L^|zckmc?wF)6chU-fY|_W0_R6(`qi?`aPexKzkGC*;Y&aJp<}U zwr~o6csf0PQSR++X{=xL_x)fJtQQo#u{~e@++6E+klE|jt^4ugasN^?^Za`)>(}eI z@k+OWMtv_Y^ZoGQ!+}Gs+)K?s$9e6k{9N$mMc|U9OA}8`(F|A_0vfWrC1YD9lE3e# z+O>7D-1heNiy37ZZf(!+Pdz<t>dtpAE-4+1b30COP36%|OiYxpud`9}n^Vt`pPvuf zNjbmvn`DWV?7zS7>z!9$1zpVsYKNKh+cDJte!Cr%l44?FKAceQSJ2e-G~4@QL;3qS z28Wm!875}thp%3BF*36yJUrC;;nOFhoplHPGXL4I!Qf?SUY?$kl2X9-yx1K(c0Bla zT>kjQ#qNxE_?1-eTie*k9Qa%Bz5n^y+3jw<QjUu+E+~C{?Z$>g=asi#H}l&$9Pg7o zeP<o$NaGU|mA!L=Z5F(~{`vL#{caf<8YWV_pb_FLS3*FZmbEHr*uC2tbim!|>H5++ z^CgYbKo={3!mR$^XZa^jpL$;IuK)JnK>~wALBR&c7nzrr@h)1lD5d_jxU_UPBQx89 zt5-#RXPX_pwl+HTbI#peAWo~>V#n!vu^Wn>dNu1i^T}GZsL!illImpxjk|VqH25u_ zybLs6d2LN3=t#~jQMydb%&Cf3W&ZyDetiG`zxk6dFJ83B=Nf1f^WvIF;~l$pEec%h z2HI8e>GS8*&)YID*R!n-TkBL%U|?fwYgqCk;AW_T)m%RPy<ddx+`aqo`SbQxZt<`e zLf;#i*&iJhkDn3;x?pZ^)z?W|U*6oT-o`7PcJ0%dpFxX^ra$VJHs|xV{W|4K)y++* zA3l9@%FA14l6P*7<%jRzr_XiOUm3bO40L{ZkDqba>MGDFk;48q^??gZ)s;4tgSwz$ zCn6lafA|1e<uh^Gv^LObLl-X!g6_!q^z<}HWMlGi&?Q+ril6f}{Ac|zO*a}exa{HO z<#c~v?Zpj=&QG2{SJv0(U%7InfK$TdWxgj)opOqclk1bQWMXG$KQq&qedWrPpaaMr zynP${uE8$xP(90!-@lWO_sN2;hdXrmaNz1N-I(2FysWIOH@0L7w+MLn`nrO~w>NKQ zWC&jF=h`i%yCM6!-W=<4zQV#n(6rCK+TT8T>p_=vObw6IEZ%MR@5kec$GzrWxyd>U zUSEIy{eHdsa=*D3_SIH{`q1qBaxO_pO0&#zwW|MrsQ*xqu{DZE)=K2$$&)|6-Odl( zo)_yg*GiOO!rZyNFJ5G@u&^j-YkPBjf5!Hup@HGZ@#CPQ;DptD8p2i|-I{%UNom;1 zkc!V|%_mNp)U-AGI%sRbriOV_rm(CH>vruHQ`FVvZReA9+FkZGCDF>lLc-3@4m3c2 z>GEa6^m8)x7FJe|&dfAU%}d|=|KIoh85b9^>c#9x0I%Cwx?%Rzsj62M7|zVG6mI8} zJ@oVQ^NqQ;&3^p)m2_`U<)uA=fq@sYwt|XG&<GndJKurx=lyRTV=yRt6T!m5a^h9| z>Z{YVf2gUc9lCy9eB;KAmv$UD;Lv>f9_VPm&Fec>ysK~ccZgd*;lqQ2mtIegtK$6o z>+9sLo<2S;0!)&Ul5U`5OFIr6aJV`1$0IN97uIEO8oIl?-*7W3DH-uITM14SH4?kv z?CiYsIx8z{L3#OcZ~eV0y{Au|Y7$^-=a*;uu)kqn-d(GeXSZfw2Tjnd-~UgFq2Tc` z-kXu$3=(!VJL(VKJh;%geVX=y*CkdfLO_T5y3Lw5e?EVGef^pF_VL^5j-G$@s>CY8 zMC#9{)B2lI`{it<4!850@7#N9OQ!PgzdH@3&2k!|*18oH6|H>R!}{gC{r{L*`^w%% zaVUOx+;8vo_}Q76&7i*SdeCmA$B&h3BbgZH*L>pK5~a(<UC+(P&@HAr>D-*xGo>$d z$1AP7{PMwr2Mu$r%b7qI3+dYYc+k8lb<gK>)|+zwf)2g1|Npap&Drzz|9RZq-S6zJ z4v(7tD80A4s|$3DbIqrd>c`Ax2Ts?Ebz1H>SE0qh!-M0{;lm%lUXS;_&0z3f==;yl z&lfwl^IdwqVui+zo%K6Uo}1zB=Jx2KyF6=w{h!rWvlf5N_xq50VFBZnEK?a-S>CMG zDY?uCW|?L$2wQzRMlWD5<KOA=b&Xz2552p)duid_-Q~w;7$&E@{rBs&K8GUDH`Bd8 zKR-Ww{5bpnKcD+AzFf-s<$m37UMG&p@n-}CCuYKOy1aSboHf4n0Ra<4${K$&dT}Vm zzFWh8p#IOt_MCm7=EAWaNroQwFWYi&OT}E<Rq^pr5o<{>`wM0^o(Xz}=3*E6<!reW zS?=7uo7(KP^pJADO;S;HYfH<CZLXf6lfZWGw%+&WllSD@FFmX!f0zDb09DnF9E!V_ z)E?~;T@ku^+7~MuoBEitPQ!x#X>muld!{n|`t|j7YOal~?b7pMHPWwh@9qlSwl;ce z7VFk1-P_0V^6~_n9(=!FKmFR$CuX^KcWpiCJ<q%N)fLSnM~);M=@7h-Ve;bM-rXXX zd|R)A4jBA+T)ut%dVNqy`sh*9uF}_Dpz`>_s!;8lHu7~p6s1hF>RBGt-@YC3ceZei zv60b)DN|aWo}La0ypJD0UNV{LrCQC)usVEwTX(nj%+su^^cR2{KzVm}&9E$9mQ(Zn z-Cf>&6Lwa7T=a%}@1sYLA3uEdtWCb|$H6DnQ^i1c38idxadCN;?4Yi+$>|tV)yd}4 zWcCwB52t1_#>#K%Vf|uOpL=VH<OTOWnaqNdZ*~+uUeb`KCG++Deb9u)q_y!M8$bu@ zb0}`ezi+o>`SR0k_W%D}{&9@y!p`D!pP5ESUu>!U{mpUp)meXkXC^c5{h@rJXKi^* z%$$Sb63du&)y<aRe$gvsYP6$dSLo_6HpabAeBbQZvqwN&oZVqx@7HZPH|v$6pM&mp zQc^mUAiaF~a_{LgW`9m~bp7+^^Z8BE!cyF;+xg|&CQlZ=SO33O#=49rGc&WJuWwpz z^56Um-P-$n{pVN&u55_Ab7rQoppcN#-fhRc@A%KR>#h3w>ZIPs>)Pj4-@U%Jwt4kx z?R|g0-443HeoMo;`~B-<b|!uMB`kQcz80JwS7<Ts`d3uO06OyS&Ye4__8i$;{{G&k zr+m_8K4N`p{_}d;<?AA@Eh~P0Zj<+&t65tQs=niuGC9!1%FS?RzvoN=rttM~Q*Yhb zRm!cWrx&p`EA*xGik9&B+N&84F3z{?@9Z?JjtmvOP+L<oVe(|<-rrv?`=8!(<nP3K zcR9zDlqFw&Jv%$QptMvs+@b#U+U*}MIP;%e=0DraciTD8X|k97?PFh+tytGk_x6@4 zhvJ6X-(?I3Kr@Bg^W!6Dw{nYv+Dn@X7rXcCg*)u8{cRSaHTB{z{d|Z1zP@RH*S7IU zCT-~d^6IMh#@R<y)zufr?XB8$OEd50rqucm-@Z-TSHsw_v-r8x9Th!0J2|P|V{4X6 zOcA?a|Nl=h3k%DPt?yi1RE{_JxumqNGFo8&;Q;fE&FTE062I>6FGURv532xku?zh2 zc08a;cD6aF{spxndGmy}XJ6N|u&{Ulx+*g&N@|(^d_I4F|C_##)codf)YsR)slT%` zxNP!{*VorG@2Kxw+uY0?wl1dg^mP5l-`?J4c=tbUSJ~TJ5j%@iLCxqRM_fQT?dhqh zYTK`G%e@UM@kB&KJRX00cbD7T+}vlTk?StT$gr?!CB~+~tF#tmZ;b-&j9%_P|5%@_ z^@G>1ySLx3i_S{cSpYhZ@x$lOhwB@e*$ZA>(d3aZV2E0~Er!unS(#aDD%WInf48hG zt$qJ~WwU^ez*oH6@gCF_SiKr_f)D6K1qEGQ-stUlM}K^Lyfih;)uI0B)Nlb=+1_S$ z{zr#exk0OFK&LN*PE!7rly+@RBnKCllb09Qx|p3!fBw{fPJ%sm?p%Gu?y|LCI&9?S z=NGY-{Qb?&%6jtE{x!3Y96fR*;r6y%(9Ho+QBq-RA{hPs{Xx}0&}`>+zJn)Eauz>7 zcXXz4x<UE7nC9baYX5vZ&KBP^$F5dN-EYo;&FAg9^<sB{`huHoF)8%EzOaxPbV{AD zy59rP_{o>Ev&~PxD_>B*e+}q}`3YAmKh94`Nl!m~{kr(!cK+ilgO_ip{G3)%Rdq^k zvzWX*e|mblPVBCbZ8EiI864u`=5471?QH_xpeU^Fr(kOv`%UuD;lsS^9w{g(eFpV# zBNwjXd2xGt{&8l08-}e>z3uXK66*f*rreU|esSP$x;8rt%Ymy`>qXDo{a$l0`5HsQ zuP-k@eEr%weY$vD^;^>(dHXoA3-9mk?e6H{xUw?%_yfc2s*4vde)#;kxw*OdjbXNY z?H9pW=J|Y6y;^sbzFw4me%_7!_4`l04GjorVB?iaxV|oSQ*Oj3!8j+5n^sc6p^TtA zN@m#AT4h~d$GbMH8*~n4S$%kRGUMN8XJ><k1Z`|>LFe9r<|qI1R%J5E{<xofEhZ)g zbOR=+W)*PqFmGUf_y6Ah>hJF^WNj@dFL!@^ZLMMUHJ!{|mW;MKIzGR4OKvWF?Dpm5 zW%jSHueU?Csj%_O>Da#FXV8n^r?b}mV^mL1&y;O<FD!K4m{EUmQ4u?6==||f@%Wb6 zv!!clYYprF{V_W4qaV461vJbI>OsGJ*;)4XR^rV~shgy4Gk&jEUcde#sF!<rneV2T zfq{W;?+p{ysC65g?fp^o=+UE;&l1%ku_r4VewV+if7Ge|;L#({w(m1D44uoq+34t; zc~R8$zqZ#_Ze#ruyVCFPVk@eur2ghw3kpu{Wt`iwqRmK5MSE2W!&W!%>3XjHa<)_A zcp0AEpLr+fUj6^SSv#LtSXe}SJIWB~<HNJ7{QWxk(840AQ}>vD?XCX);otA~r{#7p z6<Nys>(Wy1!Y?lZK~3h>VQZVFPoMrq=<TY4XJ;gBe$+o`W=o%Ta$oJYo9P~&o`F@S z9UVDh%vOSdys7z&cV}tHUQqX))$;4>YtTZYv$IS=7ZJU?yL<VKUjl-H6D#q|ZT+f0 z_U?|qi%W_osE7|q?Xtgh=H^Ywudl8;Z_m5?0o0rMomQXp?ZfW!zqL#)0tE#H4a=9S z-`bYjed2^i%&rp8YuBzk-qK|+{QJ(%VhOXH8DD;XX5*Dw5Wm09!`FAJ-1*R33+j(V zrlqNcXid$zx$NHl9|iyZR5l-<|FXo&XP%8@uas$1cQ-faVEhdm407)8+goLx$0{l! zqM)t4I%xk*{eR{4qD}{nA7}Ts{VKvIXQPpw{wA=HolmA=`gC#7fh~&`Deb<&-_h}+ z9^}y#r&`+E7l*HpJ8|mNp`+d6g@1k&o|$FJ9ko_$Z}oS*@E04~6Bh9otz5Yh)bYv6 z(z>=Tw!7@@t%JvpyMNpBVZ{m!n-2$=Pn<e6i8p**3?svnr%&q_7Ct`q;_`BS*u?gO zgUvInO0_@}@pI<L+^p%h{U&j&M^agO`t<4S3^Oc?)#551va+zTc`f|(?d|PN+dzHM zzP@R_+8P=L9CJZ?{+yhgKHM$8|M1Vx&mJBg2PUa{gL<&sd6}oRewO=sc^#Ud=nNVY zs{i-Xy*?|vD7yCd+wBFVrANQKyu7sV+Xi_7!HfSvMM&UO!_x1c<m>+kI&mC1cFYTW z2?D4=Tu@x>?BKv~tWUQ4_V#>c0~=<|7Ke}!k%r%nCPqd=|Ni|eC@ww>y6ST7Pu73p z8D(#8wTkIR9k_c}*0%baiG}jo@Q8>GHeRU*^^^VWCidFb{jq2f04+XZ04;8E*kAYe z!Mk^S{QUgj6RUr}-@o+RuMJzXu4=KcvxC;EIk)rae%+YA?A@06lP7~(_m4jwmp6~t zr>X8Yr$K;8TrbAp=CU0dHW+|TT1cn~3>1_y&+CcZUG{M8_Irm;OjPbYCodz@<Jw&> zCfTFEb6#9r+*H2Dm6eqhU$2HgeEytWTwENqtnJ&Io0q;^`e%0Y=FNhV5*H_@rY}E1 z!_9rN)?S~FA3uKh{CWO{kB}A*Xg%!RyRu(jT|L~bzfYsqFsWzb{_LP2p%#G~+j3`{ ztoyMoYI7Rzl`K=cUoVtzZUUvKH}%}0DdEtWm*n)XE%TKIEm*4Bn{iR;&zH;oCr+F= z&~N{*<JsBS$!~6KWO&EE>1en3;menUt*lq`zsJ3B><+())>N*$yGjplOg>)l=SSg| zoSQ<*ZaoG&@8$3L$mZni%zMoC+l^#~ckT6{`d!h)M1+%*)1v4J$F1%8{TntItgH<Q z5!n)@%f>6!61?2+;ekeGP;Gr>Ww7tQ{LKDC(OWVETLdmiUf;y@>u9(5!xt|)K&_w! z3l5}M+XgfKJuY7l+SbX%#Wi8h9G>#>^2PB+Go&xfHqY-<bZ!fI_45npKE{Lug?c_2 ziw4kwj_331-D+xV7(V|qdwYBP@k6cLj0~WA3)V($T@bdq@bfcYh6A9X98g!iArZ7> zNeGm$HG`Ld4kY*R@p1Y7?(WAc!TvL2?oX<}Ze9NF0puW5>+*LdH^K}J4FgtR{qbt` zdY);Zsri(6Q1GufRX;`SLOY*q*EHSeS#!$&{`$HicK5a~w;~KItH0^U$jE%S9$$a* zSozyqqQT32CO#8(dhq7v=1X6edQU%e{rdGM)#_?$hYlWewEDfqe)YbRmq82%-re2( z@X3=F`~QD}XFdP&^0I)_gBKSUGrVipH8(ep6zJ{gIkLFlF6&dRH}?zc^7?lz0!;h= z{aU@H#@*e0$L`&y+b%A4_x^n3$dLnQ&+^L2$$@T#6_AzHjb#j&w6ei2=?I6<EECVF zyUTo~Z%*Z}ddBwU@9*!*3JMHbQ@LcV%Z@DZoXk_#9XqX~gTv<Um&+PjT1GR{&fS0Z z^?JPf{e88J4Bg`T$BNI}wtstj`|<Aj_xqR`T3T8>!ULx8ym-Iww_eqk7mC&A&z$jj zDO8sHr9S-c{SyZdGCFa9jy(PO^XI1ArQi(|;_)?!C6S<#{aY*J+>VY_KADWQCnhLn zTwOKw%dh40>zuad-F@)>J^$J;?p`-$MV1mPS%$|4Q~v(?y6M4U`8jjv8m62O$gH<B zH#fgoGuu4Bt-0BG<?DN!QoYa2G<J_NpX#L=d+g6eclm{hhuhdbgVr~n*5A)kV4oxU zzlPz%!*+SlSen}X&088kH)b^JGk{J@`SPXYX22h#YK9%9uf?|I-R)W#y!_F^cDW|E z#RuQr-OW2KUuVJn9fizNy>7c?WOmfoe~YSDbu4_wR>E-N{Q2XJ%<Kl~=VVIW-;?Fz z<Ll__Gus*KWmWgbqNb+i!kS29(5*zj-|wHkZ06_fH@D?V@7c2_AR?jzv|LC{jcxt@ ze^#Kr%9=Gg9Eu-)zu(Vn!1JQ^*Ox}GrA8|(6<NyO+(;~`{aSzh$Pt$%%a(x-!mj7w z<2$x8csb9u(8tGmL09RS<lnpV;=BPUdA@-a4ottC`E6T3Yj_z79v))NFp=_^Wx@%% z!2r}o{_%)AGQw2M=i1t6c6D|2B}<k_uv}fUMrZQp+Rtar1r~j&{{-s2fp)AjG=N%N zR*$*v*uT!w$*8WZuS~qUDwLsz{W55*%EIEtlj><=7wmsLVCGOP`1vVy@@akVz(B!W z<?s8{=hs|Hn6<G1l+3|fbyRr4({vBMyu7?=+f&XLs%Pg|3TsXE+NC+y610Y;^z}8+ z)l_ZMr;D@k%kdo8v%mLW`3um+2Xn1TC(N1Cvo?BrJ!s&=wWh}A)z#JNXTyyae1CP7 zyP1vGXvOv~UrJt{UNWiYZ*2Iwn9gOsvz5%v!=;wr54*lT-u-x=te}ukQb8#PXcVe8 z(Lr5lkyh|E-$$U9I`|BvIdkWx_Q%b(EMBH_WliK}wy3pX+vZ%k62hTa@ZbRB<ktZg z8|F=%SkI`)A|xaPn#<aneckJ_*Y2KQH#R0StTJ2hI$tQ<CL&yA0rPi#{`VIaHXp1= zX53r*`&-51UUN{N<>rSg!Tt|>&F@Xvy4J_x{+3K(85x-+_Zy~PUl+Suq2<8V?CWQK z-F{&oT~T2HT138Rky6b5I@zqPQlLKN=kxaZTea&YFD&<)+x6`1?CGyLS&sc%*V@_& zS|4fm=Yw-*%*WiRbLaND%h!s4R`DI}7GG+HlH>X#U*F!ozT~sfU)kg0`f)wQ&(DFP zGvmU7Mx84%RwW!x9B*!JW)EK%b8xP8IRgXeE@UaQoDSdFW{S$n%<lbi^+)gQEM9tF zINW3bGiVv|#bv(I8C#>CJbB{r_^Y{6^`lPpf<HeB|NMHr9<-3)pzk9ssS98GAA5Ow zPnO#pw!19%W@L77f8^!(M|F>maDI7xonP84=fKO$%RzG~psAI2@7}rTtLsZ%_*y^N zIQ^W&me_qYmand@)&Bi=%TC66TOA#q`E|cEg@lAajklWbcgr*G?XjF!_bYSq?WIfj z?f(d5Utb66Xib<ktLx%ocTknv+S;1-H@D&Ue&_O{qC>^!ZPk0TZ*S9`GiT0{YF>sm z#=q<L|8oMJOmL_8{KM<<^+$IWKmYLe`~Bo6Cnl=pA4`ALJzdp%+Jd;fRrNu-)9-|t z=ifV$+;7_kN@T{y!VI7^wHK16gyrP)Y{kyryeSDfd3Jl=UC^y7H*Xd_sC%(0e!pEz zZ0yC&>Hce?ww_YBvggw&ZBYI3#xVQm&!3>K4(Jx3sa~w0b1h{o0;<v~Qki!B6M7F? z8qaq5OzoMddQj1$$RZ;n^WfpbMzh>o3PwgjyHfW5_~dO@<;TG&E-ub+V5)YwLE<46 zP|NE=)>hD@2B<h_<rbI9sXkz^0CX$c1M@Fc)Ai#)BQ<8Zw^VwK%|XZONP}9BH8nL0 zE@oWVQJ4%`_zfB-IU9VdENWkk<*jYG_1xv<<rP&`i?Xk;1I-~VoBnk>W5e6q+nqTY zXUveuymO>eSh2;SsA!YPxf{vXE?v50Q1HN^qPqI<)vKbqQCkiy@toXqZwsG+?1fS* zSy0oc^7AvvyI}|ZR&#)EY0tQ{g!A8@&;FoUJL|*XDb_A7et!3giXE3$JG!{kFR=hg zDFuZbZsSeeuc)r1v?&~v#=$G%K<nYK&Dx?)+NP+2t~1(I`ufqIpPy5=)jsYu7Z4N- z{HyKi;^HC(wlqccUd3bH9x2mPYqtIW^O=83l&+DH5zn&R`a3%W6B83ZeEHI{d$+Y* z)eFTv-|toLD0@5WikiMY|L13ConK#D3!31%wKaQj@$+*L8<SW+eg53LFa6{5ZQP2W zkX;q3UGwc`Izz*Y7a2c({yce)oxyLO4d+y^R^8}rGj?lsbacEC0yXm{ik>)mvT^%% z^SYl;#Wz2fG|3RCSM#5zBW+&#D#XIl^5I$Y`$rZ!w}UbQXgzE*8}Fe<N4pvC@IQ~; zRRZ2wEiBv&8bY|Uvp8aN8t<*G*`T2iiCX(w(6VFDM2V4+(T9uf@&_+o6s-RC<{+pm z_~9^r@{J9NmuwhjuD{2?z{u(8;u!Mt=g*AW+jQ&a7yG%mq_BY_L3=~yWwk3SgWb*a zEG;EL6<2#Z`<5tOCuirvZ*L+qf1R4DEhr(OvG?EC>+y;$6PhYK&GYUsFr1lf&fnM9 z=i%dHk}-MyeEzw9=_Pfw4%hYF*B3rMHp9N&jset219dUlc%>N_0s{j%xVR31hCu3X zvADRnl=Xv}5GS~N=2!@VCb#0^_f!bl+1Y_+Hu_|(+pb&*Srf65NmElZX!ia3|FTXT zF*^zv89<pLV{6pp=__7u&ATgQTlGcbyVW!v@Wo|2i`7H4M8CbiufG-4SOv8eV|SN1 rt_^#9T)tlCd$pjT;LXMVnME%3-aOUy>v}%}0|SGntDnm{r-UW|nT$n* diff --git a/wcorr/__init__.py b/wcorr/__init__.py new file mode 100644 index 0000000..f1ff733 --- /dev/null +++ b/wcorr/__init__.py @@ -0,0 +1 @@ +from .wcorr import WeightedCorr \ No newline at end of file diff --git a/wcorr/wcorr.py b/wcorr/wcorr.py new file mode 100644 index 0000000..3e6cb6f --- /dev/null +++ b/wcorr/wcorr.py @@ -0,0 +1,69 @@ +import numpy as np +import pandas as pd +from scipy.stats import rankdata + +class WeightedCorr: + def __init__(self, xyw=None, x=None, y=None, w=None, df=None, wcol=None): + ''' Weighted Correlation class. Either supply xyw, (x, y, w), or (df, wcol). Call the class to get the result, i.e.: + WeightedCorr(xyw=mydata[[x, y, w]])(method='pearson') + :param xyw: pd.DataFrame with shape(n, 3) containing x, y, and w columns (column names irrelevant) + :param x: pd.Series (n, ) containing values for x + :param y: pd.Series (n, ) containing values for y + :param w: pd.Series (n, ) containing weights + :param df: pd.Dataframe (n, m+1) containing m phenotypes and a weight column + :param wcol: str column of the weight column in the dataframe passed to the df argument. + ''' + if (df is None) and (wcol is None): + if np.all([i is None for i in [xyw, x, y, w]]): + raise ValueError('No data supplied') + if not ((isinstance(xyw, pd.DataFrame)) != (np.all([isinstance(i, pd.Series) for i in [x, y, w]]))): + raise TypeError('xyw should be a pd.DataFrame, or x, y, w should be pd.Series') + xyw = pd.concat([x, y, w], axis=1).dropna() if xyw is None else xyw.dropna() + self.x, self.y, self.w = (pd.to_numeric(xyw[i], errors='coerce').values for i in xyw.columns) + self.df = None + elif (wcol is not None) and (df is not None): + if (not isinstance(df, pd.DataFrame)) or (not isinstance(wcol, str)): + raise ValueError('df should be a pd.DataFrame and wcol should be a string') + if wcol not in df.columns: + raise KeyError('wcol not found in column names of df') + self.df = df.loc[:, [x for x in df.columns if x != wcol]] + self.w = pd.to_numeric(df.loc[:, wcol], errors='coerce') + else: + raise ValueError('Incorrect arguments specified, please specify xyw, or (x, y, w) or (df, wcol)') + + def _wcov(self, x, y, ms): + return np.sum(self.w * (x - ms[0]) * (y - ms[1])) + + def _pearson(self, x=None, y=None): + x, y = (self.x, self.y) if ((x is None) and (y is None)) else (x, y) + mx, my = (np.sum(i * self.w) / np.sum(self.w) for i in [x, y]) + return self._wcov(x, y, [mx, my]) / np.sqrt(self._wcov(x, x, [mx, mx]) * self._wcov(y, y, [my, my])) + + def _wrank(self, x): + (unique, arr_inv, counts) = np.unique(rankdata(x), return_counts=True, return_inverse=True) + a = np.bincount(arr_inv, self.w) + return (np.cumsum(a) - a)[arr_inv]+((counts + 1)/2 * (a/counts))[arr_inv] + + def _spearman(self, x=None, y=None): + x, y = (self.x, self.y) if ((x is None) and (y is None)) else (x, y) + return self._pearson(self._wrank(x), self._wrank(y)) + + def __call__(self, method='pearson'): + ''' + :param method: Correlation method to be used: 'pearson' for pearson r, 'spearman' for spearman rank-order correlation. + :return: if xyw, or (x, y, w) were passed to __init__ returns the correlation value (float). + if (df, wcol) were passed to __init__ returns a pd.DataFrame (m, m), the correlation matrix. + ''' + if method not in ['pearson', 'spearman']: + raise ValueError('method should be one of [\'pearson\', \'spearman\']') + cor = {'pearson': self._pearson, 'spearman': self._spearman}[method] + if self.df is None: + return cor() + else: + out = pd.DataFrame(np.nan, index=self.df.columns, columns=self.df.columns) + for i, x in enumerate(self.df.columns): + for j, y in enumerate(self.df.columns): + if i >= j: + out.loc[x, y] = cor(x=pd.to_numeric(self.df[x], errors='coerce'), y=pd.to_numeric(self.df[y], errors='coerce')) + out.loc[y, x] = out.loc[x, y] + return out -- GitLab