diff --git a/Cat_UG_00/cat_ug.pdf b/Cat_UG_00/cat_ug.pdf index e0b5abfa052065778bc25bae76ef8efa88bdc216..db104446bd4f258cd645d56e05395ec9d43e823c 100644 Binary files a/Cat_UG_00/cat_ug.pdf and b/Cat_UG_00/cat_ug.pdf differ diff --git a/Cat_UG_00/chap_evoleq.tex b/Cat_UG_00/chap_evoleq.tex index 12305becf9fc6d36d9413c2740efda781081a17d..567c07980ed8da9c118f4a3d5b96b56570cb2113 100644 --- a/Cat_UG_00/chap_evoleq.tex +++ b/Cat_UG_00/chap_evoleq.tex @@ -1,4 +1,4 @@ -% + \chapter{Evolution equations of incompressible 2D fluids} % % @@ -20,7 +20,7 @@ From homogeneity and incompressibility of the fluid we get \rho \mathbf{\nabla \cdot u} = 0, \end{equation} with $\rho$ the fluid density. Using this property we can introduce -a volume (mass) stream function measuring the volume (mass) flux +a volume (mass) streamfunction measuring the volume (mass) flux across an arbitrary line from the point $(x_{0},y_{0})$ to a point $(x,y)$ via the path integral \begin{equation} \label{eq_psizetadef} @@ -45,10 +45,10 @@ via the path integral \end{equation} The minus sign in front of the integral just changes the direction of positive massflux across the line and is chosen to make -the classical stream function of 2D fluids compatible to -the stream function (see e.g.\ \cite{danilovandgurarie2000}) +the classical streamfunction of 2D fluids compatible to +the streamfunction (see e.g.\ \cite{danilovandgurarie2000}) typically used for 2D rotating fluids in geosciences. -In terms of the stream function $\psi$ the integrated mass flux +In terms of the streamfunction $\psi$ the integrated mass flux $\mathcal{M}$ across a line joining the points $(x_{0},y_{0})$ and $(x,y)$ is given by \begin{equation} \label{eq_calM} @@ -57,109 +57,235 @@ $(x,y)$ is given by \left[\psi(x,y) - \psi(x_{0},y_{0}) \right], \end{equation} with $H_{0}$ the depth of the fluid. At the same time -the stream function $\psi$ is connected to the velocity +the streamfunction $\psi$ is connected to the velocity field $(u,v)$ and the (relative) vorticity $\zeta = v_{x} - u_{y}$ via \begin{equation} \label{eq_psiuv} (u,v) = (- \psi_{y},\psi_{x}) \ \mbox{and} \ \ \zeta = \Delta \psi. \end{equation} -Using the stream function $\psi$, the evolution equation (\ref{eq_2Dvortvel} -can be also written in the form +Using the streamfunction $\psi$, the evolution equation (\ref{eq_2Dvortvel}) +can be written in the form \begin{equation} \label{eq_2Dvortstream} - \zeta_{t} + J(\psi,\zeta) = F + D. + \zeta_{t} + J(\psi,\zeta) = F + D, \end{equation} +with $J(\psi,\zeta) = \psi_{x} \zeta_{y} - \psi_{y} \zeta_{x}$ the Jacobian. Since the velocity field is divergence free (equation \ref{eq_conti}) -we can further derive the equivalent equation in flux form +different representations of the Jacobian $J$ can be found. Using +appropriate superpositions of different representations one can derive +discrete analogs of the Jacobian $J$ which keep the symmetry +property $J(\psi,\zeta) = -J(\zeta,\psi)$ and conserve the integrated +vorticity $\zeta$, kinetic energy $\nabla \psi \cdot \nabla \psi $ and +enstrophy $\zeta^{2}$. In \cite{arakawa1966} such a discrete analog is +derived for a finite difference numerical model. Keeping the notation of +\cite{arakawa1966} the Jacobian $J$ of equation (\ref{eq_2Dvortstream}) +is denoted by $J_{1}$. Starting from $J_{1}$ we can derive a second form +of the Jacobian +\begin{equation} \label{eq_Jacobi2} + J_{2}(\psi,\zeta) + = + J_{1}(\psi,\zeta) + \psi \left( \zeta_{xy} - \zeta_{yx} \right) + = + \left(\psi \zeta_{y} \right)_{x} + - + \left(\psi \zeta_{x} \right)_{y}, +\end{equation} +which gives the evolution equation +\begin{equation} \label{eq_2DJacobi2} + \zeta_{t} + \left(\psi \zeta_{y} \right)_{x} + - \left(\psi \zeta_{x} \right)_{y} = F + D. +\end{equation} +Further we can derive a third form of Jacobian $J_{3}$ as follows +\begin{equation} \label{eq_Jacobi3} + J_{3}(\psi,\zeta) + = + J_{1}(\psi,\zeta) + \zeta \left( \psi_{xy} - \psi_{yx} \right) + = + \left(\zeta \psi_{x} \right)_{y} + - + \left(\zeta \psi_{y} \right)_{x}, +\end{equation} +which inserted in the evolution equation yields the 2D fluid equations +in flux form \begin{equation} \label{eq_2Dflux} - \zeta_{t} + \nabla \cdot \left(\mathbf{u} \zeta \right) = F + D. + \zeta_{t} + + \left(\zeta \psi_{x} \right)_{y} + - + \left(\zeta \psi_{y} \right)_{x}, + = + \zeta_{t} + \nabla \cdot \left(\mathbf{u} \zeta \right) + = F + D. \end{equation} -Starting from the flux form one can after repeated application of the -continuity equation (\ref{eq_conti}) finally derive an equation where -the Jacobian only depends on the two velocity fields $(u,v)$ -\begin{equation} \label{eq_2Duv} - \zeta_{t} - + \partial_{x} \partial_{y} \left( v^{2} - u^{2} \right) - + \left(\partial^{2}_{x} - \partial^{2}_{y} \right) uv +It is possible to derive a fourth form of the Jacobian $J_{4}$ +which is a funciton of the field $v^{2} - u^{2})$ and +$uv$. We start again from the first Jacobian $J_{1}$ +\begin{equation} \label{eq_Jacobi4} + J_{4}(\psi,\zeta) + = + J_{1}(\psi,\zeta) + + \left(2 \zeta - \psi_{x} \right) \ \left( \psi_{xy} - \psi_{yx} \right) + = + \left(v^{2} - u^{2} \right)_{xy} + + + \left(uv \right)_{xx-yy}, +\end{equation} +which leads to the evolution equation +\begin{equation} \label{eq_2DJacobi4} + \zeta_{t}+ \left( v^{2} - u^{2} \right)_{xy} + \left( uv \right)_{xx - yy} = F + D. \end{equation} -This form allows in the pseudo-spectral method (see \ref{sec_evolfourier}) -to reduce the number of Fourier transforms per time-step from -$3$, i.e.\ ($u,v,\zeta$) to $2$, i.e.\ ($u,v$). - +All four forms given above are equivalent so that mathemtically one form is +sufficient to catch all properties of the equations. Of course also other +forms can be derived and it is also possible to superpose serveral forms. +The different forms get important if one tries to find discrete +representations of the Jacobian in the numerical scheme. Each form leads +to a discrete representation with different conservation and symmetry +properties. For more details see the chapters on the conservation +properties (\ref{sec_conprops}) and on the pseudo-spectral method +(\ref{sec_evolfourier}). % \section{Quasi-two-dimensional rotating case} \label{sec_quasi2Dcase} % Starting from the shallow water equation on the $\beta$-plane one can derive (see e.g. \cite{danilovandgurarie2000}) an equation describing a rotating barotropic quasi-two-dimensional fluid which is a -generalization of the 2D-equation (\ref{eq_2Dvortvel}). For small Rossby -numbers $\mathrm{Ro} = U/Lf$, with $U$ a typical horizontal fluid velocity -at the length scale $L$ considered and $f$ the local coriolis paramter -we get the potential vorticity (PV) $q$ in quasi-geostrophic (QG) approximation +generalization of the 2D-equation (\ref{eq_2Dvortvel}). The shallow +water potential vorticity is defined by +\begin{equation} \label{eq_qshallow} + q_{s} = \frac{\zeta + f}{H}, +\end{equation} +where $H(x,y,t)$ is the fluid depth and $f$ the planetary vorticity. +Decomposing the fluid depth into a mean depth $H_{0}$, a constant +bottom topography B(x,y) and a time-dependent +depth deviation $h(x,y,t)$ we can write $H(x,y,t) = H_{0} + h(x,y,t) - B(x,y)$. +Inserting the decomposition of the fluid depth into the equation +(\ref{eq_qshallow}) we can expand the potential vorticity +\begin{equation} \label{eq_qshallowdecomp} + q_{s} + = + \frac{\zeta + f}{H_{0} + h - B} + = + \frac{1}{H_{0}} \ \frac{\zeta + f}{1 + \Delta H / H_{0}} + = + \frac{1}{H_{0}} \ + \left( \zeta + f \right) \left(1 - \frac{\Delta H}{H_{0}} + \dots \right), +\end{equation} +with $\Delta H = h - B$. Keeping only linear terms we finally get the barotopic +vorticity +\begin{equation} \label{eq_qbaro} + q = H_{0} q_{s} = \zeta - \frac{f}{H_{0}} \left(h - B\right) + f. +\end{equation} +Here we assume that the depth deviations $\Delta H = h - B$ are much smaller +than the mean depth $H_{0}$. For small Rossby numbers $\mathrm{Ro} = U/Lf$, +with $U$ a typical horizontal velocity scale, $L$ a typical horizontal +length scale of the fluid motion and $f$ the local coriolis parameter +we can (see again e.g.\ \cite{danilovandgurarie2000}) introduce +the streamfunction +\begin{equation} \label{eq_psibaro} + \psi(x,y,t) = \frac{g}{f} \ h(x,y,t), +\end{equation} +with $g$ the gravity. Using this streamfunction and expanding the +coriolis parameter linarly we can write the barotropic +quasi-geostrophic (QG) potential vorticity (PV) +on the $\beta$-plane (\ref{eq_qbaro}) as \begin{equation} \label{eq_qdef} - q = \left( \nabla^{2}- \alpha^{2} \right) \psi + f, + q = \left( \nabla^{2}- \alpha^{2} \right) \psi + + f_{0} + \beta y + \frac{f_{0}}{H_{0}} \ B. +\end{equation} +The linear expansion of the Coriolis parameter +$f(\varphi) = 2 \Omega \sin \varphi$ which is defined on a sphere +with radius $a$ and rotation rate $\Omega$ leads to +\begin{equation} \label{eq_fbeta} + f(\varphi_{0} + \Delta \varphi) + = + f(\varphi_{0}) + f^{\prime}(\varphi_{0}) \Delta \ \varphi + = + f_{0} + \beta y, +\end{equation} +with $\varphi_{0}$ the central latitude and the meridional +coordinate $y = a \Delta \varphi$ which is the linearization of +the projection $y = a \sin(\Delta \varphi)$. The $\beta$-parameter +is defined by $\beta = 2 \Omega \cos(\varphi_{0})/a$. The modification +parameter $\alpha = 1/L_{\mathrm{R}}$ is connected to the Rossby-Obukhov +radius of deformation $L_{\mathrm{R}} = \sqrt{g H_{0}}/f$. +As in the $2$-dimensional case the streamfunction $\psi$ +(remind the different definition) is related to the velocity field +$(u,v)$ again (see also equation \ref{eq_psiuv}) via +\begin{equation} \label{eq_upsibaro} + u = -\psi_{y} \ \ \ \mbox{and} \ \ \ v = \psi_{x}. \end{equation} -where we have the modification parameter $\alpha = 1/L^{2}_{\mathrm{R}}$ -with the Rossby-Obukhov radius of deformation -$L_{\mathrm{R}} = \sqrt{g H_{0}}/f$ and the stream function -$\psi = gh/f$. Here $g$ is the gravitational acceleration and $h(x,y)$ -the deviation of the mean fluid depth $H_{0}$ of the original -shallow water layer. As in the $2$-dimensional case the stream function $\psi$ -(remind the different definition) is related to the velocity fields $(u,v)$ -as defined in equation (\ref{eq_psiuv}). In an unforced non-dissipative fluid -the QG PV is materially conserved +In an unforced and non-dissipative fluid the QG PV is materially conserved \begin{equation} q_{t} + J(\psi,q) = 0. \end{equation} -Using the linear approximation of the coriolis parameter $f = f_{0} + \beta y$ +Using the linear approximation of the coriolis parameter (\ref{eq_fbeta}) and introducing again forcing and dissipation we can write the evolution -equation in the form +equation for a barotropic fluid on the $\beta$-plane in the form \begin{equation} \label{eq_quasi2Dbaro} - q_{t} + J(\psi,q) + \beta \psi_{x} = F + D, + q_{t} + J(\psi,q + \frac{f_{0}}{H_{0}} \ B) + \beta \psi_{x} = F + D, \end{equation} -with the vorticity $q$ given by +with the vorticity $q$ again given by \begin{equation} \label{eq_vortquasi2Dbaro} q = \left(\nabla^2 -\alpha^{2} \right) \psi = \zeta - \alpha^{2} \psi. \end{equation} -Further one can introduce a variable mean fluid depth $H(x,y)$, -which in the simple case of a linear slope in $y$-direction leads -to a topographic $\beta$-effect (see e.g.\ \cite{vanheist1994}). +Here we used the property of the Jacobian $J(f,f) = 0$ for all fields +$f(x,y)$ on the fluid domain. +Idealizing the bottom topography to a linear slope in y-direction +$B(x,y) = B_{y} y$ the fluid experiences in addition to the ambient +planetary $\beta$-effect a so called topographic $\beta$-effect +(see e.g.\ \cite{vanheist1994}) and the evolution equation simplifies to +\begin{equation} \label{eq_qbarotopobeta} + q_{t} + J(\psi,q) + \left(\beta + \frac{f_{0}}{H_{0}} B_{y} \right) \psi_{x} + = F + D. +\end{equation} In the form (\ref{eq_quasi2Dbaro}) and (\ref{eq_vortquasi2Dbaro}) -one can simulate incompressible 2D fluids and rotating quasi-2D fluids -with the same set of equations using different parameters. +one can simulate incompressible 2D fluids and rotating barotropic +quasi-2D fluids with the same set of equations using different parameters. In this more general frame the simplest case of a non-rotating 2D incompressible fluid is characterized by a vanishing ambient vorticity gradient, i.e.\ $\beta = 0$, and the limit of an infinite Rossby radius $L_{\mathrm{R}} \longrightarrow \infty$ or a vanishing modification parameter $\alpha \longrightarrow 0$. +One has to keep in mind that the streamfunctions are different in +the two cases (see e.g.\ \cite{johnstonandliu2004}) and that there +are more subtle differences between 2D and QG Turbulence +(see e.g.\ \cite{tungandorlando2003}). +% +\section{Multi-layer quasi-geostrophic case} \label{sec_multilayerqg} +% +% +\section{The surface geostrophic case} \label{sec_sqg} +% +% +\section{Conservation properties} \label{sec_conprops} +% +The properties of the Jacobian and the conditions at the fluid boundaries +are at the base of the conservation properties of the fluid motions. +Given two functions $g(x,y)$ and $h(x,y)$ defined on the fluid domains +then the following integrals +\begin{equation} \label{eq_intjacobian01} + \int_{x=0}^{X} \int_{x=0}^{Y} J(A,B) \ dxdy + , \ + \int_{x=0}^{X} \int_{x=0}^{Y} A J(A,B) \ dxdy + \ \ \mbox{and} \ \ + \int_{x=0}^{X} \int_{x=0}^{Y} B J(A,B) \ dxdy +\end{equation} +can be transformed through partial integration. -One has to keep in mind that the stream functions are different in -the two cases. In the non-rotating case $\psi$ is defined by -equation (\ref{eq_calM}). In the rotating case we get -\begin{equation} \label{eq_hquasi2Dbaropsi} - h(x,y) = \frac{f}{g} \ \psi(x,y), -\end{equation} -so that $\psi$ is proportional to pressure deviations, which is not -the case in the non-rotating 2D case where the relation is more -complex, see e.g.\ \cite{johnstonandliu2004}. -Using the property of the Jacobian $J(f,f) = 0$ for all fields -$f(x,y)$ on the fluid domain, equation (\ref{eq_quasi2Dbaro}) -is equivalent to -\begin{equation} \label{eq_quasi2Dbarozeta} - q_{t} + J(\psi,\zeta) + \beta \psi_{x} = F + D, -\end{equation} -where the vorticity $q$ is still defined by equation -(\ref{eq_vortquasi2Dbaro}). From this from it directly follows that -that the form of the 2D Jacobian in equations -(\ref{eq_2Dflux}) and (\ref{eq_2Duv}) can be also applied in the -quasi-two-dimensional rotating case. -\section{Non-adiabatic terms} +Above results can be generalized to more general fluid domains +(see e.g.\ \cite{salmonandtalley1989}). + + + + +% +\section{Non-adiabatic terms} +% \subsection{Laplacian based Viscosity and friction} Internal viscosity and external friction of the fluid are described by diff --git a/Cat_UG_00/chap_pseudospec.tex b/Cat_UG_00/chap_pseudospec.tex index 330129dda1bf7a71169f35d37839aab187847f09..259dee39b709dc4c017d21b0fd71f616c99b1898 100644 --- a/Cat_UG_00/chap_pseudospec.tex +++ b/Cat_UG_00/chap_pseudospec.tex @@ -1079,11 +1079,11 @@ purely spectral and is called pseudo-spectral method, see e.g.\ the higher wave numbers have to be filtered out. In CAT trunction is used, see above. -We present three different forms of the Jacobian $J$ in physical space, -see equations (\ref{eq_2Dvortstream}), (\ref{eq_2Dflux}) -and (\ref{eq_2Duv}). Using the pseudo-spectral method for each -form we get a different representation of the Jacobian $\hat{J}$ -in spectral space. +We present four different forms of the Jacobian $J$ in physical space, +see equations (\ref{eq_2Dvortstream}), (\ref{eq_2Dflux}), +(\ref{eq_2DJacobi2}) and (\ref{eq_2DJacobi4}). Using the pseudo-spectral +method for each form we get a different representation of the +Jacobian $\hat{J}$ in spectral space. For the Jacobian (\ref{eq_2Dvortstream}) of the first form \begin{equation} \label{eq_jacobian01} @@ -1091,18 +1091,18 @@ For the Jacobian (\ref{eq_2Dvortstream}) of the first form = J(\psi,q) = - \partial_{x} \psi \ \partial_{y} q + \psi_{x} \ q_{y} - - \partial_{x} q \ \partial_{y} \psi + q_{x} \ \psi_{y} = - \left[ v \ \partial_{y} q + u \ \partial_{x} q \right], + v \ q_{y} + u \ q_{x}, \end{equation} one proceeds as follows. First the individual differential terms are determined in spectral space using the fourier transform of vorticity, and the spectral representation of the differential -operators. We get +operators. The basic operators are given by \begin{eqnarray} \label{eq_jacobian01_termsa} - \mathcal{F}(\partial_{x} \psi) + \mathcal{F}(\psi_{x}) &=& i k_{x} \ \mathcal{F}(\psi) = @@ -1111,11 +1111,11 @@ operators. We get - \ i \ \frac{k_{x}}{k^{2}_{x} + k^{2}_{y} + \alpha} \ \mathcal{F}(q), \ \ - \mathcal{F}(\partial_{y} q) + \mathcal{F}(q_{y}) = i k_{y} \ \mathcal{F}(q) \ \ \ \\ \label{eq_jacobian01_termsb} - \mathcal{F}(\partial_{y} \psi) + \mathcal{F}(\psi_{y}) &=& i k_{y} \ \mathcal{F}(\psi) = @@ -1124,7 +1124,7 @@ operators. We get - \ i \ \frac{k_{y}}{k^{2}_{x} + k^{2}_{y} + \alpha} \ \mathcal{F}(q), \ \ - \mathcal{F}(\partial_{x} q) + \mathcal{F}(q_{x}) = i k_{x} \ \mathcal{F}(q). \ \ \ \end{eqnarray} @@ -1137,43 +1137,41 @@ $\hat{J}$ is given by \begin{equation} \label{eq_jacobian01_J} \hat{J} = - \mathcal{F}(v \partial_{y} q) - - - \mathcal{F}(u \partial_{x} q). + \mathcal{F}(v q_{y}) + + + \mathcal{F}(u q_{x}) + = + \mathcal{F}(v q_{y} + u q_{x}). \end{equation} Combining all necessary steps we can write -\begin{eqnarray} \nonumber +\begin{equation} \label{eq_jacobian01_Jall} \hat{J} - &=& + = \mathcal{F} - \left( + \left[ \mathcal{F}^{-1} \left( - \ - \ i \frac{k_{x}}{k^{2}_{x}+k^{2}_{y}+\alpha} \ + - i \frac{k_{x}}{k^{2}_{x}+k^{2}_{y}+\alpha} \ \hat{q} \right) \mathcal{F}^{-1} \left( ik_{y} \ \hat{q} \right) - \right) - \\ \label{eq_jacobian01_Jall} - &-& - \mathcal{F} - \left( + + \mathcal{F}^{-1} \left( - \ i \frac{k_{y}}{k^{2}_{x}+k^{2}_{y}+\alpha} \ + i \frac{k_{y}}{k^{2}_{x}+k^{2}_{y}+\alpha} \ \hat{q} \right) \mathcal{F}^{-1} \left( ik_{x} \ \hat{q} \right) - \right), -\end{eqnarray} + \right], +\end{equation} where $\hat{q}$ is the vorticity in spectral space, the starting point -for a new time step. As can be seen one needs $6$ $2$-FFT operations +for a new time step. As can be seen one needs $5$ $2D$-FFT operations to determine the Jacobian. The components of the Jacobian $\hat{J}_{k}$ are then used to determine the time evolution of the different wave number components of the vorticity @@ -1182,11 +1180,7 @@ $\hat{q}_{\mathbf{k}}$, see equation (\ref{eq_evolqhat}). In the flux form of the evolution equation ({\ref{eq_2Dflux}}) the second form of the Jacobian arises \begin{equation} \label{eq_jacobian02} - J(\psi,q) - = - \partial_{x} (u \ q) - + - \partial_{x} (v \ q). + J(\psi,q) = (u \ q)_{x} + (v \ q)_{y}. \end{equation} Following again equations (\ref{eq_jacobian01_termsa}) and (\ref{eq_jacobian01_termsb}) we determine $\mathcal{F}(u)$ and @@ -1235,14 +1229,47 @@ Combining again all necessary steps we can write As we can see the Jacobian in spectral space $\hat{J}$ can now be determined by $5$ FFT operations. -The third form of the Jacobian used in equation (\ref{eq_2Duv}) is -given by +The third form of the Jacobian in equation (\ref{eq_2DJacobi2}) +is given by \begin{equation} \label{eq_jacobian03} + J(\psi,q) = (\psi \ q_{y})_{x} - (\psi \ q_{x})_{y}. +\end{equation} +In spectral space we get +\begin{equation} \label{eq_jacobian03_J} + \hat{J} = -ik_{x} \ \mathcal{F}(\psi \ q_{y}) + +ik_{y} \ \mathcal{F}(\psi \ q_{x}). +\end{equation} +Combining all necessary steps the Jacobian is determined by +\begin{eqnarray} + \hat{J} + &=& + -ik_{x} \ + \mathcal{F}\left( + \mathcal{F}^{-1} + \left(-\frac{1}{k_{x}^{2} + k_{y}^{2} + \alpha} \ \hat{q} \right) \ + \mathcal{F}^{-1} + \left( + -ik_{y} \ \hat{q} + \right) + \right) + \\ \label{eq_jacobian03_Jall} + &+& + ik_{y} \ + \mathcal{F}\left( + \mathcal{F}^{-1} + \left(-\frac{1}{k_{x}^{2} + k_{y}^{2} + \alpha} \ \hat{q} \right) \ + \mathcal{F}^{-1} + \left( + -ik_{x} \ \hat{q} + \right) + \right). +\end{eqnarray} +The fourth form of the Jacobian used in equation (\ref{eq_2DJacobi4}) is \begin{equation} \label{eq_jacobian04} J(\psi,q) = \partial_{x}\partial_{y} \left(v^{2} - u^{2} \right) + - \partial^{2}_{x} \partial^{2}_{y} uv. + \left( \partial^{2}_{x} - \partial^{2}_{y} \right) uv. \end{equation} In this representation it is possible to reduce the number of FFT operations from $5$ to $4$. We first have to determine $\hat{u}$ @@ -1252,12 +1279,12 @@ space where the products $v^{2} - u^{2}$ and $uv$ are formed. Finally we have to transform them back to spectral space where they are differentiated. The Jacobian in spectral space $\hat{J}$ is given by -\begin{equation} \label{eq_jacobian03_J} +\begin{equation} \label{eq_jacobian04_J} \hat{J} = -k_{x}k_{y} \ \mathcal{F}(v^{2} - u^{2}) + - k^{2}_{x}k^{2}_{y} \mathcal{F}(uv) + \left( k^{2}_{x} - k^{2}_{y} \right) \mathcal{F}(uv) \end{equation} or by combining all necessary steps \begin{eqnarray} \nonumber @@ -1284,7 +1311,7 @@ or by combining all necessary steps \right) \\ \label{eq_jacobian02_Jall} &+& - k^{2}_{x} k^{2}_{y} \ + \left( k^{2}_{x} - k^{2}_{y} \right) \ \mathcal{F} \left( \mathcal{F}^{-1} diff --git a/Cat_UG_00/ref.bib b/Cat_UG_00/ref.bib index 70185125b8b52045eff83b04b67552699d99f27d..76438b226f19a8e0c9d24c4bfa328debe57925b9 100644 --- a/Cat_UG_00/ref.bib +++ b/Cat_UG_00/ref.bib @@ -65,6 +65,14 @@ @string{ pss = {\it Planet.\ Space Sci.}} %========================================================================== +@article{arakawa1966, + author = {A. Arakawa}, + title = {{C}omputational {D}esign for {L}ong-{T}erm {N}umerical {I}ntegration of the {E}quations of {F}luid {M}otion: {T}wo-{D}imensional {I}ncompressible {F}low. {P}art {I}}, + journal = {J. Comput. Phys.}, + pages = {119--143 he}, + year = {1966}, + volume = {1} +} @book{batchelor1967, author = {G. K. Batchelor}, @@ -160,3 +168,20 @@ pages = {253--259} } +@article{salmonandtalley1989, + author = {R. Salmon and D. Talley}, + title = {Generalizations of Arakawa's Jacobian}, + journal = {\it Journal of Computational Physics}, + year = {1989}, + volume = {83} + pages = {247--259} +} + +@article{tungandorlando2003, + author = {K. K. Tung and W. W. Orlando}, + title = {{O}n the Differences between 2D and QG Turbulence}, + journal = {\it Discrete and Continuous Dynamical Systems-Series B}, + year = {2003}, + volume = {3}, + pages = {145--162} +} diff --git a/cat/src/cat.f90 b/cat/src/cat.f90 index 4545867e3b91fbe6ccfe131c5e90bee9591c99f5..a429db51b775cf006f7dfc3723be81ef6b3f0be6 100644 --- a/cat/src/cat.f90 +++ b/cat/src/cat.f90 @@ -1480,7 +1480,9 @@ implicit none ggui(:,:) = gq(:,:) ! double precision -> single call guiput("GQ" // char(0), ggui, ngx, ngy, 1) -c4(:,:) = cq(:,:) +! double -> single and center about ky = 0 +c4(:,0:nky-1) = cq(:,nky+1:nfy) +c4(:,nky:nfy) = cq(:,0:nky) call guiput("C4" // char(0), c4, nkx+1, nfy+1, 2) ! fc if (npost > 0) then