From 4ea2369958416c4eb21b997ceb6e7052cf10075f Mon Sep 17 00:00:00 2001 From: "Antonello, Dr. Massimiliano" <massimiliano.antonello@uni-hamburg.de> Date: Wed, 23 Oct 2024 09:45:12 +0200 Subject: [PATCH] Added the prefit_only oiption in sumlab_auto --- .gitignore | 4 +++- user/sumlab_auto.py | 22 +++++++++++----------- 2 files changed, 14 insertions(+), 12 deletions(-) diff --git a/.gitignore b/.gitignore index 5ba68f2..c6ff415 100644 --- a/.gitignore +++ b/.gitignore @@ -2,4 +2,6 @@ Results data .DS_Store __pycache__ -user \ No newline at end of file +user +Icon* +peakotron_logo.icns \ No newline at end of file diff --git a/user/sumlab_auto.py b/user/sumlab_auto.py index 74ae8ee..8801a5f 100644 --- a/user/sumlab_auto.py +++ b/user/sumlab_auto.py @@ -85,12 +85,10 @@ for i, (file, path) in enumerate(files_to_fit): tau_R=f_tau_hmt*tau, bin_0=bin_0, truncate_nsigma0_up=truncate_nsigma0_up, - truncate_nsigma0_do=truncate_nsigma0_do + truncate_nsigma0_do=truncate_nsigma0_do, + prefit_only=prefit_only ) - f_data.PlotFit(plot_in_bins=True, display=False, - save_directory=f"{folder}/{file[:-4]}_fit.png") - fit_out = {} prefit_val, prefit_err = f_data.GetPrefitResults(bin_units=False) print("\033[95m"+rf"Prefit: G = {prefit_val.get('G')} d_G = {prefit_err.get('G')}"+"\033[0m") @@ -99,13 +97,15 @@ for i, (file, path) in enumerate(files_to_fit): for key, value in prefit_err.items(): fit_out["prefit_d_{:s}".format(key)] = value - #if not prefit_only: - fit_val, fit_err = f_data.GetFitResults(bin_units=False) - print("\033[95m"+rf"Fit: G = {fit_val.get('G')} d_G = {fit_err.get('G')}"+"\033[0m") - for key, value in fit_val.items(): - fit_out["{:s}".format(key)] = value - for key, value in fit_err.items(): - fit_out["d_{:s}".format(key)] = value + if not prefit_only: + fit_val, fit_err = f_data.GetFitResults(bin_units=False) + print("\033[95m"+rf"Fit: G = {fit_val.get('G')} d_G = {fit_err.get('G')}"+"\033[0m") + for key, value in fit_val.items(): + fit_out["{:s}".format(key)] = value + for key, value in fit_err.items(): + fit_out["d_{:s}".format(key)] = value + f_data.PlotFit(plot_in_bins=True, display=False, + save_directory=f"{folder}/{file[:-4]}_fit.png") df = pd.DataFrame.from_dict([fit_out]) df.to_csv("{}/fit_results_{:s}.csv".format(folder, file[:-4])) -- GitLab