diff --git a/user/sumlab_auto.py b/user/sumlab_auto.py index 9919edbf1abf0a223c9a408a0e987f975ee53fcd..36666ec87c5a7eeaf60af72d7d0b0c2d94ecd15b 100644 --- a/user/sumlab_auto.py +++ b/user/sumlab_auto.py @@ -71,7 +71,7 @@ print("=======================================\033[0m") files_to_fit = sorted(files_to_fit, key=lambda x: x[0]) G = []; d_G = []; G_prefit = []; d_G_prefit = [] V_bias = [] - +t_gates=[] for i, (file, path) in enumerate(files_to_fit): V = float(file.split('deg')[1].split('V')[0].replace('_', '.')) if 'ns' in file: @@ -81,7 +81,7 @@ for i, (file, path) in enumerate(files_to_fit): #V = float(items[2].replace('V', '').replace('p', '.')) # f_tau_hmt = f_tau(V, V_bd_hmt, V_0_hmt) V_bias.append(V) - + t_gates.append(t_gate) # Load files. data = np.loadtxt(path, skiprows=0) # Create a PeakOTron Fit Object. @@ -135,6 +135,7 @@ d_G = np.array(d_G) G_prefit = np.array(G_prefit) d_G_prefit = np.array(d_G_prefit) V_bias = np.array(V_bias) +t_gates = np.array(t_gates) with h5py.File(f"{folder}/{os.path.basename(folder)}.h5", 'w') as f: f.create_dataset('G', data=G) @@ -142,5 +143,6 @@ with h5py.File(f"{folder}/{os.path.basename(folder)}.h5", 'w') as f: f.create_dataset('G_prefit', data=G_prefit) f.create_dataset('d_G_prefit', data=d_G_prefit) f.create_dataset('V_bias', data=V_bias) + f.create_dataset('integral_length', data=t_gates) print("\033[95m=======================================\033[0m")