import sys import os sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from PeakOTron import PeakOTron import pandas as pd import numpy as np import argparse def float_or_none(value): return None if value.lower() == 'none' else float(value) parser = argparse.ArgumentParser(description='Fit SiPM data') parser.add_argument('-V_bd_hmt', type=float, default=26.1, help='V_bd_hmt value') parser.add_argument('-V_0_hmt', type=float, default=1.4, help='V_0_hmt value') parser.add_argument('-tau', type=float, default=20.0, help='SLOW COMPONENT OF SIPM PULSE') parser.add_argument('-t_0', type=float, default=100.0, help='PRE-INTEGRATION TIME') parser.add_argument('-t_gate', type=float, default=100.0, help='GATE LENGTH') parser.add_argument('-bin_0', type=float_or_none, default=-100.0, help='SELECT FIRST BIN OF SPECTRUM') parser.add_argument('-truncate_nsigma0_up', type=float_or_none, default=2.0, help='SCAN SPECTRUM FROM Q < Q_0 - 4 sigma_0') parser.add_argument('-truncate_nsigma0_do', type=float_or_none, default=2.0, help='EVALUATE SPECTRUM CHI2 IN Q_0 - x*sigma_0 < Q < Q_0 + 2*sigma_0') parser.add_argument('-prefit_only', action='store_true', help='FIT THE WHOLE SPECTRUM') parser.add_argument('-folder', type=str, default='data/sumlab', help='Directory containing the data files') args = parser.parse_args() def C_tau(V, V_bd, V_0): return (V - V_bd)/V_0 def f_tau(V, V_bd, V_0): return -1/np.log((1-np.exp(C_tau(V, V_bd, V_0) * np.exp(-1)))/(1 - np.exp(C_tau(V, V_bd, V_0)))) V_bd_hmt = args.V_bd_hmt V_0_hmt = args.V_0_hmt tau = args.tau # SLOW COMPONENT OF SIPM PULSE t_0 = args.t_0 # PRE-INTEGRATION TIME t_gate = args.t_gate # GATE LENGTH bin_0 = args.bin_0 # SELECT FIRST BIN OF SPECTRUM (CAN BE AUTOMATIC) # SCAN SPECTRUM FROM Q < Q_0 - 4 sigma_0 truncate_nsigma0_up = args.truncate_nsigma0_up # EVALUATE SPECTRUM CHI2 IN Q_0 - x*sigma_0 < Q < Q_0 + 2*sigma_0 truncate_nsigma0_do = args.truncate_nsigma0_do prefit_only = args.prefit_only # FIT THE WHOLE SPECTRUM out_dict = {} files_to_fit = [] # Find all histograms in directory folder = args.folder for root, dirs, files in os.walk(folder): for file in files: if file.endswith(".txt"): files_to_fit.append([file, os.path.join(root, file)]) print("\033[95m\n=======================================") print(" PeakOTron") print("=======================================\033[0m") # Loop thorough files for i, (file, path) in enumerate(files_to_fit): print("\033[95mFitting: {:s}\033[0m".format(file)) V = float(file.split('deg')[1].split('V')[0].replace('_', '.')) f_tau_hmt = f_tau(V, V_bd_hmt, V_0_hmt) # Load files. data = np.loadtxt(path, skiprows=0) # Create a PeakOTron Fit Object. f_data = PeakOTron(verbose=False) # Perform fit. f_data.Fit(data, tau=tau, # SLOW PULSE COMPONENT TIME CONSTANT (ns) t_gate=t_gate, # GATE LENGTH (ns) t_0=t_0, # INTEGRATION TIME BEFORE GATE (ns) tau_R=f_tau_hmt*tau, bin_0=bin_0, truncate_nsigma0_up=truncate_nsigma0_up, truncate_nsigma0_do=truncate_nsigma0_do ) f_data.PlotFit(plot_in_bins=True, display=False, save_directory=f"{folder}/{file[:-4]}_fit.png") fit_out = {} prefit_val, prefit_err = f_data.GetPrefitResults(bin_units=False) print("\033[95m"+rf"Prefit: G = {prefit_val.get('G')} d_G = {prefit_err.get('G')}"+"\033[0m") for key, value in prefit_val.items(): fit_out["prefit_{:s}".format(key)] = value for key, value in prefit_err.items(): fit_out["prefit_d_{:s}".format(key)] = value #if not prefit_only: fit_val, fit_err = f_data.GetFitResults(bin_units=False) print("\033[95m"+rf"Fit: G = {fit_val.get('G')} d_G = {fit_err.get('G')}"+"\033[0m") for key, value in fit_val.items(): fit_out["{:s}".format(key)] = value for key, value in fit_err.items(): fit_out["d_{:s}".format(key)] = value df = pd.DataFrame.from_dict([fit_out]) df.to_csv("{}/fit_results_{:s}.csv".format(folder, file[:-4])) print("\033[95m=======================================\033[0m")