import numpy as np from scipy.interpolate import interp1d from iminuit.util import describe from Model import epsilon from HelperFunctions import FakeFuncCode import matplotlib.pyplot as plt class BinnedLH: def __init__(self, f, bcs, counts, bw): self.f = f self.x = bcs self.dx = bw self.counts = counts self.N = np.sum(counts) self.last_arg = None self.func_code = FakeFuncCode(f, dock=True) self.n_calls=0 self.eps = epsilon() def __call__(self, *arg): self.last_arg = arg y_hat = self.f(self.x, *arg) y_hat = np.nan_to_num(y_hat, nan=self.eps, posinf=self.eps, neginf=self.eps) y_hat = np.where(y_hat<self.eps, self.eps, y_hat) E = y_hat*self.N*self.dx h = self.counts mask = (h>0) E = E[mask] h = h[mask] nlogL = -np.sum(h*(np.log(E) - np.log(h)) + (h-E)) self.n_calls+=1 return nlogL class Chi2Regression: def __init__(self, f, x, y, y_err, epsilon=1.35): self.f = f self.x = x self.y = y self.y_err = y_err self.eps = np.finfo(np.float64).eps * 10 self.y_err[self.y_err<self.eps] = self.eps self.last_arg = None self.func_code = FakeFuncCode(f, dock=True) self.ndof = len(self.y) - (self.func_code.co_argcount - 1) def __call__(self, *arg): self.last_arg = arg loss = ((self.f(self.x, *arg) - self.y)/(self.y_err))**2 return np.sum(loss) class HuberRegression: def __init__(self, f, x, y, y_err, delta=1.345): self.f = f self.x = x self.y = y self.y_err = y_err self.delta = delta self.eps = np.finfo(np.float64).eps * 10 self.y_err[self.y_err<self.eps] = self.eps self.last_arg = None self.func_code = FakeFuncCode(f, dock=True) self.ndof = len(self.y) - (self.func_code.co_argcount - 1) def __call__(self, *arg): self.last_arg = arg a = abs((self.y - self.f(self.x, *arg))/self.y_err) cond_flag = (a>self.delta) loss = np.sum((~cond_flag) * (0.5 * a ** 2) - (cond_flag) * self.delta * (0.5 * self.delta - a), -1) return np.sum(loss)