" \\langle y \\rangle - \\langle x \\rangle \\hat m& - \\hat a& = 0 \n",
"\\end{aligned}$$"
]
},
{
"cell_type": "markdown",
"id": "fb25687c-4410-4281-b540-39369732fb26",
"metadata": {
"slideshow": {
"slide_type": "slide"
},
"tags": []
},
"source": [
"### Methode der kleinsten Quadrate IV \n",
"\n",
"$$\\begin{aligned}\n",
" \\hat m&=&\\frac{\\langle xy \\rangle - \\langle y \\rangle\\langle x \\rangle}{\\langle x^2 \\rangle - \\langle x \\rangle^2} = \\frac{1}{\\sum_i 1/\\sigma_i^2} \\sum_i \\frac{x_i - \\langle x \\rangle}{\\sigma_i^2(\\langle x^2 \\rangle - \\langle x \\rangle^2)}y_i\\\\\n",
" \\hat a &=& \\frac{ \\langle y \\rangle \\langle x^2 \\rangle- \\langle y \\rangle \\langle x \\rangle^2- \\langle x \\rangle \\langle xy \\rangle+ \\langle y \\rangle \\langle x \\rangle^2}{ \\langle x^2 \\rangle- \\langle x \\rangle^2}\\\\\n",
" &=& \\frac{ \\langle y \\rangle \\langle x^2 \\rangle - \\langle x \\rangle \\langle xy \\rangle}{ \\langle x^2 \\rangle - \\langle x \\rangle^2} = \\frac{1}{\\sum_i 1/\\sigma_i^2} \\sum_i \\frac{\\langle x^2 \\rangle - \\langle x \\rangle x_i}{\\sigma_i^2(\\langle x^2 \\rangle - \\langle x \\rangle^2)}y_i\n",
"\\end{aligned}$$"
]
},
{
"cell_type": "markdown",
"id": "b08ade05-e5eb-4a7e-9315-31a45c51aadb",
"metadata": {
"slideshow": {
"slide_type": ""
},
"tags": []
},
"source": [
"## Fehler\n",
"\n",
"### Fehler \n",
"\n",
"$$\\begin{aligned}\n",
"V(\\hat m) = \\sum_i \\left(\\frac{d\\hat m}{y_i}\\sigma_i\\right)^2\\text{; }\\frac{d\\hat m}{y_i} & = & \\frac{1}{\\sum_i 1/\\sigma_i^2} \\frac{x_i - \\langle x \\rangle}{\\sigma_i^2(\\langle x^2 \\rangle - \\langle x \\rangle^2)} \\\\\n",
"V(\\hat a) = \\sum_i \\left(\\frac{d\\hat a}{y_i}\\sigma_i\\right)^2\\text{; }\\frac{d\\hat a}{y_i} & = & \\frac{1}{\\sum_i 1/\\sigma_i^2} \\frac{\\langle x^2 \\rangle - \\langle x \\rangle x_i}{\\sigma_i^2(\\langle x^2 \\rangle - \\langle x \\rangle^2)}\n",
"\\end{aligned}$$ $$\\begin{aligned}\n",
"V(\\hat m) &=& \\left(\\frac{1}{\\sum_i 1/\\sigma_i^2}\\right)^2 \\sum_i \\left(\\frac{x_i - \\langle x \\rangle}{\\sigma_i^2(\\langle x^2 \\rangle - \\langle x \\rangle^2)}\\right)^2 \\sigma_i^2 \\\\\n",
"&=& \\frac{1}{\\sum_i 1/\\sigma_i^2} \\frac{\\langle x^2 \\rangle - 2\\langle x \\rangle \\langle x \\rangle + \\langle x \\rangle^2}{(\\langle x^2 \\rangle - \\langle x \\rangle^2)^2} \n",
"V(\\hat m) &=& \\frac{1}{\\sum_i 1/\\sigma_i^2} \\frac{1}{\\langle x^2 \\rangle - \\langle x \\rangle^2} \\\\\n",
"V(\\hat a) &=& \\frac{1}{\\sum_i 1/\\sigma_i^2} \\frac{\\langle x^2 \\rangle}{\\langle x^2 \\rangle - \\langle x \\rangle^2}\\\\\n",
"\\text{cov}(\\hat m, \\hat a) &=&= \\frac{1}{\\sum_i 1/\\sigma_i^2} \\frac{\\langle (x-\\langle x \\rangle)(\\langle x^2 \\rangle - \\langle x \\rangle x)\\rangle}{(\\langle x^2 \\rangle - \\langle x \\rangle^2)^2}\\\\\n",
"&=& \\frac{1}{\\sum_i 1/\\sigma_i^2} \\frac{\\langle x^2 \\rangle \\langle x \\rangle - \\langle x \\rangle \\langle x^2 \\rangle - \\langle x \\rangle \\langle x^2 \\rangle + \\langle x \\rangle^2\\langle x \\rangle}{(\\langle x^2 \\rangle - \\langle x \\rangle^2)^2}\\\\\n",
"&=& - \\frac{1}{\\sum_i 1/\\sigma_i^2} \\frac{\\langle x \\rangle}{\\langle x^2 \\rangle - \\langle x \\rangle^2}\n",
"\\end{aligned}$$\n",
"\n",
"### Beispiel in Jupyter "
]
},
{
"cell_type": "markdown",
"id": "424bdd1f-53bf-422b-bc4a-0702231b976d",
"metadata": {
"slideshow": {
"slide_type": ""
},
"tags": []
},
"source": [
"### Minimales $\\chi^2$ \n",
"\n",
"$$\\begin{aligned}\n",
" \\chi^2 &=& \\sum_i \\frac{(y_i - \\hat m x_i - \\hat a)^2}{\\sigma_i^2} = \\sum_i \\frac{\\left[y_i - \\frac{\\langle xy \\rangle - \\langle y \\rangle\\langle x \\rangle}{\\langle x^2 \\rangle - \\langle x \\rangle^2} x_i - \\frac{ \\langle y \\rangle \\langle x^2 \\rangle - \\langle x \\rangle \\langle xy \\rangle}{ \\langle x^2 \\rangle - \\langle x \\rangle^2} \\right]^2}{\\sigma_i^2}\\\\\n",
" & = & \\sum_i \\frac{\\left[(\\langle x^2 \\rangle - \\langle x \\rangle^2)y_i - (\\langle xy \\rangle - \\langle y \\rangle\\langle x \\rangle)x_i - \\langle y \\rangle \\langle x^2 \\rangle + \\langle x \\rangle \\langle xy \\rangle\\right]^2}{\\sigma_i^2 ( \\langle x^2 \\rangle - \\langle x \\rangle^2)^2} \\\\\n",
\hat m&=&\frac{\langle xy \rangle - \langle y \rangle\langle x \rangle}{\langle x^2 \rangle - \langle x \rangle^2} = \frac{1}{\sum_i 1/\sigma_i^2} \sum_i \frac{x_i - \langle x \rangle}{\sigma_i^2(\langle x^2 \rangle - \langle x \rangle^2)}y_i\\
\hat a &=& \frac{ \langle y \rangle \langle x^2 \rangle- \langle y \rangle \langle x \rangle^2- \langle x \rangle \langle xy \rangle+ \langle y \rangle \langle x \rangle^2}{ \langle x^2 \rangle- \langle x \rangle^2}\\
&=& \frac{ \langle y \rangle \langle x^2 \rangle - \langle x \rangle \langle xy \rangle}{ \langle x^2 \rangle - \langle x \rangle^2} = \frac{1}{\sum_i 1/\sigma_i^2} \sum_i \frac{\langle x^2 \rangle - \langle x \rangle x_i}{\sigma_i^2(\langle x^2 \rangle - \langle x \rangle^2)}y_i
V(\hat m) &=& \frac{1}{\sum_i 1/\sigma_i^2} \frac{1}{\langle x^2 \rangle - \langle x \rangle^2} \\
V(\hat a) &=& \frac{1}{\sum_i 1/\sigma_i^2} \frac{\langle x^2 \rangle}{\langle x^2 \rangle - \langle x \rangle^2}\\
\text{cov}(\hat m, \hat a) &=&= \frac{1}{\sum_i 1/\sigma_i^2} \frac{\langle (x-\langle x \rangle)(\langle x^2 \rangle - \langle x \rangle x)\rangle}{(\langle x^2 \rangle - \langle x \rangle^2)^2}\\
&=& \frac{1}{\sum_i 1/\sigma_i^2} \frac{\langle x^2 \rangle \langle x \rangle - \langle x \rangle \langle x^2 \rangle - \langle x \rangle \langle x^2 \rangle + \langle x \rangle^2\langle x \rangle}{(\langle x^2 \rangle - \langle x \rangle^2)^2}\\
&=& - \frac{1}{\sum_i 1/\sigma_i^2} \frac{\langle x \rangle}{\langle x^2 \rangle - \langle x \rangle^2}