Newer
Older
"metadata": {},
"source": [
"# Next-Token-Prediction\n",
"This is based on the following blog posts: \n",
"* Predicting Next Word — NLP & Deep Learning: https://medium.com/@vijay2340025/predicting-next-word-nlp-deep-learning-85010d966671\n",
"* How ChatGPT Works: The Model Behind The Bot: https://towardsdatascience.com/how-chatgpt-works-the-models-behind-the-bot-1ce5fca96286"
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import nltk\n",
"import pandas as pd\n",
"import torch\n",
"import numpy as np\n",
"import torch.nn as nn\n",
"import torch.nn.functional as F\n",
"import torch.optim as optim"
]
},
{
"cell_type": "code",
"execution_count": 2,
"source": [
"nltk.download('punkt')"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"dataset = \"\"\"\n",
" Is Antwerp a city?,\n",
" Is Antwerp a municipality?,\n",
" Is Antwerp in Belgium?,\n",
" What is Antwerp?,\n",
" What is the population of the city of Antwerp?,\n",
" Where is the city of Antwerp?,\n",
" Why is Antwerp important to fashion?,\n",
" Antwerp is to the east of what river?,\n",
" How many municipalities does Antwerp have?,\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"def get_all_possible_sequences(text):\n",
" seq = []\n",
" words = nltk.word_tokenize(text)\n",
" total_words = len(words)\n",
" for i in range(1, total_words):\n",
" for j in range(1, len(words)-i+1):\n",
" arr = words[j-1:j+i]\n",
" seq.append((arr[:-1], arr[-1]))\n",
" return seq\n",
"def build_vocabulary(docs):\n",
" vocabulary = []\n",
" for doc in docs:\n",
" for w in nltk.word_tokenize(doc):\n",
" if w not in vocabulary:\n",
" vocabulary.append(w)\n",
" vocabulary.append('UNK')\n",
" return vocabulary"
]
},
{
"cell_type": "code",
"execution_count": 5,
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"docs = []\n",
"for row in dataset.split(\",\"):\n",
" docs.append(row.lower())\n",
"\n",
"lst = []\n",
"for doc in docs:\n",
" tmp_lst = get_all_possible_sequences(doc)\n",
" lst = lst + tmp_lst\n",
"\n",
"vocabulary = build_vocabulary(docs)\n",
"id2word = {idx: w for (idx, w) in enumerate(vocabulary)}\n",
"word2id = {w: idx for (idx, w) in enumerate(vocabulary)}\n",
"def seq2id(arr):\n",
" return torch.tensor([word2id[i] for i in arr])\n",
"def get_max_seq():\n",
" return len(list(set([len(i[0]) for i in lst])))\n",
"MAX_SEQ_LEN = get_max_seq()\n",
"def get_padded_x(data):\n",
" new_data = F.pad(input=data.view(1,-1), pad=(0, MAX_SEQ_LEN-data.shape[0], 0, 0), mode='constant', value=word2id['UNK'])\n",
" return new_data\n",
"def get_xy_vector(arr):\n",
" x = seq2id(arr[0])\n",
" y = seq2id([arr[1]])\n",
" return x, y"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"class NextWordModel(nn.Module):\n",
" \"\"\" Prediction of Next word based on the MAX_SEQ_LEN Sequence \"\"\"\n",
" def __init__(self, embedding_dim, hidden_dim, vocab_size):\n",
" super(NextWordModel, self).__init__()\n",
" self.hidden_dim = hidden_dim\n",
" self.word_embeddings = nn.Embedding(vocab_size, embedding_dim)\n",
" self.gru = nn.GRU(embedding_dim * MAX_SEQ_LEN, hidden_dim)\n",
" self.linear = nn.Linear(hidden_dim, vocab_size)\n",
"\n",
" def forward(self, sentence):\n",
" embeds = self.word_embeddings(sentence)\n",
" lstm_out, _ = self.gru(embeds.view(1, 1, -1))\n",
" x = self.linear(lstm_out.view(1, -1))\n",
" return x"
]
},
{
"cell_type": "code",
"execution_count": 7,
"source": [
"if torch.cuda.is_available():\n",
" dev = \"cuda:0\"\n",
"else:\n",
" dev = \"cpu\"\n",
"print(f'Running on {dev}')\n",
"# set the model to be copied on GPU\n",
"device = torch.device(dev)"
]
},
{
"cell_type": "code",
"execution_count": 8,
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
"source": [
"EMBEDDING_DIM = 10\n",
"NO_OF_EPOCHS = 300\n",
"HIDDEN_DIM = len(vocabulary)\n",
"model = NextWordModel(EMBEDDING_DIM, HIDDEN_DIM, len(vocabulary))\n",
"loss_function = nn.CrossEntropyLoss()\n",
"optimizer = optim.SGD(model.parameters(), lr=0.1)\n",
"model.to(device)\n",
"for epoch in range(NO_OF_EPOCHS):\n",
" running_loss = 0.0\n",
" i = 0\n",
" for data in lst:\n",
" model.zero_grad()\n",
" x, y = get_xy_vector(data)\n",
"# convert to max seq length with padding\n",
" x = get_padded_x(x)\n",
"\n",
" x = x.to(device)\n",
" y = y.to(device)\n",
"\n",
" predicted = model(x)\n",
"\n",
" loss = loss_function(predicted, y)\n",
" loss.backward()\n",
" optimizer.step()\n",
"\n",
" running_loss += loss\n",
" i += 1\n",
" if i % 100 == 0:\n",
" #print(f'Loss at iteration {i} and epoch {epoch} is {running_loss / 100}')\n",
" running_loss = 0\n",
"print('Finished')"
]
},
{
"cell_type": "code",
"execution_count": null,
"source": [
"with torch.no_grad():\n",
" print('Type something here . . .')\n",
" while True:\n",
" inp = input(\"\")\n",
" inp = inp.strip()\n",
" if inp == \"q\":\n",
" break\n",
"\n",
" tokens = nltk.word_tokenize(inp.lower())\n",
" x = seq2id(tokens)\n",
" x = get_padded_x(x)\n",
"\n",
" x = x.to(device)\n",
" predicted = model(x).to(device)\n",
"\n",
" predicted = predicted[0].cpu().numpy()\n",
"\n",
" print(f'Answer: {inp} {id2word[np.argmax(predicted)]} ')"
]
},
{
"cell_type": "code",
"execution_count": null,
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}