Skip to content
Snippets Groups Projects
Commit 34265f8e authored by Harouna-Mayer, Sani's avatar Harouna-Mayer, Sani
Browse files

Upload New File

parent 40e8e80a
No related branches found
No related tags found
No related merge requests found
import os
from glob import glob
import numpy as np
import subprocess
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit, minimize_scalar
def find_idx(arr, a):
return (np.abs(np.array(arr) - a)).argmin()
def save_xy(fname, x, y, header=''):
np.savetxt(fname, np.vstack((x, y)).T, header=header, comments='#')
return
def load_xy(fname, skiprows=0):
data = np.loadtxt(fname, skiprows=skiprows).T
x = data[0]
y = data[1]
return x, y
def q2tt(q, energy):
""" q: array or float, [A-1]; energy: [keV] """
wl = 12.39842 / energy
tt = 2 * 180 / np.pi * np.arcsin(q * wl / 4 / np.pi)
return tt
def tt2q(tt, energy):
""" q: array or float, [A-1]; energy: [keV] """
wl = 12.39842 / energy
q = 4 * np.pi / wl * np.sin(tt / 2 * np.pi / 180)
return q
def convertpattern_q2tt(fname, energy, skiprows=0, dtype_out="xy"):
x, y = load_xy(fname, skiprows=skiprows)
x = q2tt(x, energy=energy)
dtype = fname.split(".")[-1]
fname_out = fname[:-(len(dtype) + 1)] + "_in_tt." + dtype_out
save_xy(fname_out, x, y, header="converted from q to two theta, energy = {} keV\ntwo theta intensity".format(energy))
return
def convertpattern_tt2q(fname, energy, skiprows=0, dtype_out="xy"):
x, y = load_xy(fname, skiprows=skiprows)
x = tt2q(x, energy=energy)
dtype = fname.split(".")[-1]
fname_out = fname[:-(len(dtype) + 1)] + "_in_q." + dtype_out
save_xy(fname_out, x, y, header="converted from two theta to q, energy = {} keV\ntwo theta intensity".format(energy))
return
def avg(path2data, dtype=".dat", fname_timetemp="", temp0=30, avg_num=60, overwrite=False):
fnames = glob(os.path.join(path2data, '*' + dtype))
fnames.sort()
path2avg = os.path.join(os.path.dirname(os.path.dirname(path2data)), "avg{}_iqs".format(avg_num), os.path.basename(path2data))
if not os.path.isdir(path2avg):
os.makedirs(path2avg)
timetempdir = "time_vs_temp"
if not fname_timetemp:
fname_timetemp = os.path.join(os.path.dirname(path2data), timetempdir, "timetemps_" + os.path.basename(path2data) + ".txt")
times, temps = load_xy(fname_timetemp)
idx0 = find_idx(temps, temp0)
idxend = -((len(fnames)-idx0) % avg_num)
print("average {} from file idx {} to {}".format(os.path.basename(path2avg), idx0, idxend))
temps_crop = temps[idx0:idxend:avg_num]
fnames_crop = fnames[idx0:idxend] # cut before idx0 and every pattern which doesnt have enough for time resolution
for temp, fnames_to_avg in zip(temps_crop, np.reshape(fnames_crop, (int(len(fnames_crop) / avg_num), avg_num))):
fname_avg = os.path.join(path2avg,
os.path.basename(fnames_to_avg[0][:-len(dtype)]) + "_avg_" + str(avg_num) + dtype)
if os.path.isfile(fname_avg) and not overwrite:
print("skippidiskippy")
continue
else:
y_avgs = []
for fname in fnames_to_avg:
x, y = load_xy(fname)
y_avgs.append(y)
y_avg = np.mean(y_avgs, axis=0)
header = 'averaged {} files\n'.format(avg_num)
header += 'from path: {}\nto {}\n'.format(path2data, path2avg)
header += 'temperature (°C): {}\n'.format(temp)
header += 'q (A^-1) I (a.u.)'
save_xy(fname_avg, x, y_avg, header=header)
# print(fname_avg)
return
def avg_all_in_dir(parentdir, overwrite=False):
subdirs = [os.path.join(parentdir, subdir) for subdir in os.listdir(parentdir)\
if os.path.isdir(os.path.join(parentdir, subdir))]
timetempdir = "time_vs_temp"
skipsubdirs = [os.path.join(parentdir, timetempdir)]
for skipsubdir in skipsubdirs:
subdirs.remove(skipsubdir)
for dir in subdirs:
avg(dir, overwrite=overwrite)
return
def bkg_sub(path2data, path2bkg, path2sub="", x_range=[1.05, 1.35], dtype=".dat", fancyapproach=False, bkgscale=1.0):
if not path2sub:
path2sub = os.path.join(os.path.dirname(os.path.dirname(path2data)), "bkgsub_iqs", os.path.basename(path2data))
if not os.path.isdir(path2sub):
os.makedirs(path2sub)
fnames = glob(os.path.join(path2data, '*' + dtype))
fnames.sort()
fnames_bkg = glob(os.path.join(path2bkg, '*' + dtype))
fnames_bkg.sort()
for i in range(len(fnames) - len(fnames_bkg)):
fnames_bkg.append(fnames_bkg[-1])
x0, y0 = load_xy(fnames[0])
idx_range = [find_idx(x0, xi) for xi in x_range]
scale_approach_value = 0.00001
from scipy.optimize import minimize_scalar
def initial_scale(y1, y2):
def func(s):
return np.mean(abs(y1 - s * y2))
res = minimize_scalar(func)
return res['x']
for fname, fname_bkg in zip(fnames, fnames_bkg):
x, y = load_xy(fname)
x_bkg, y_bkg = load_xy(fname_bkg)
with open(fname, 'r') as f:
temp = float(f.readlines()[3].split()[-1])
if fancyapproach:
# here fancy subtracton by finding scale so in the givin area background goes as close to zero as possible without beeing negative
s = initial_scale(y[idx_range[0]:idx_range[1]], y_bkg[idx_range[0]:idx_range[1]])
# s = round(s, len(str(scale_approach_value).split('.')[1]))
# s = round(s, abs(int(np.log10(scale_approach_value))))
y_sub = y - s * y_bkg
if np.any(y_sub[idx_range[0]:idx_range[1]] <= 0.0):
while np.any(y_sub[idx_range[0]:idx_range[1]] <= 0.0):
s -= scale_approach_value
y_sub = y - s * y_bkg
else:
while np.all(y_sub[idx_range[0]:idx_range[1]] > 0.0):
s += scale_approach_value
y_sub = y - s * y_bkg
s -= scale_approach_value
header = 'background subtraction by minimizing background subtracted file but not going below 0 between\n'
header += 'q > {} and q < {} A^-1\n'.format(*x_range)
header += 'scale: {} ±{}\n'.format(s, scale_approach_value)
header += 'temperature (°C): {}\n'.format(temp)
header += 'unsubtracted file: {}\n'.format(fname)
header += 'background file: {}\n'.format(fname_bkg)
header += 'q (A^-1) I (a.u.)'
else:
# for fixed bkg scale
s = bkgscale
y_sub = y - s * y_bkg
header = 'normal background subtraction\n'
header += '\n'.format(*x_range)
header += 'scale: {}\n'.format(s)
header += 'temperature (°C): {}\n'.format(temp)
header += 'unsubtracted file: {}\n'.format(fname)
header += 'background file: {}\n'.format(fname_bkg)
header += 'q (A^-1) I (a.u.)'
fname_sub = os.path.join(path2sub, os.path.basename(fname[:-len(dtype)]) + "_bkgsub" + dtype)
save_xy(fname_sub, x, y_sub, header=header)
return
def make_pdf(fname_iq, fname_gr, composition, qmin, qmax, qmax_inst, rpoly, rmax=30.0):
command = [
'pdfgetx3',
str(fname_iq),
'--force=True',
'--format=QA',
'--mode=xray',
'--composition=' + str(composition),
'--qmin=' + str(qmin),
'--qmax=' + str(qmax),
'--qmaxinst=' + str(qmax_inst),
'--rpoly=' + str(rpoly),
'--rmax=' + str(rmax),
'-t=gr',
'-o=' + str(fname_gr),
]
subprocess.run(command)
return
def make_pdf_all_in_dir(path2data, path2pdf="", dtype=".dat",
composition="Cu3PdN", qmin=0.7, qmax=10.3, qmax_inst=24.0, rpoly=0.9, rmax=30.0):
print(path2data)
if not path2pdf:
path2pdf = os.path.join(os.path.dirname(os.path.dirname(path2data)), "pdfs", os.path.basename(path2data))
if not os.path.isdir(path2pdf):
os.makedirs(path2pdf)
fnames = glob(os.path.join(path2data, '*' + dtype))
fnames.sort()
for fname_iq in fnames:
fname_gr = os.path.join(path2pdf, os.path.basename(fname_iq)[:-len(dtype)] + ".gr")
make_pdf(fname_iq, fname_gr, composition=composition, qmin=qmin, qmax=qmax, qmax_inst=qmax_inst, rpoly=rpoly, rmax=rmax)
# print(os.path.basename(fname_gr))
print(path2pdf)
return
def bkg_sub_n_makepdf_fitglasspeak(fname_data, fname_bkg, fname_bkgsub, fname_gr):
# fname_bkg = "/Users/admin/data/23_bt_2304_accell/avg60_iqs/bkg_bnh2_140_sdd600/bkg_bnh2_140_sdd600-01848_avg_60.dat"
# fname_data = "/Users/admin/data/23_bt_2304_accell/avg60_iqs/cupdn_140_3_sdd600/cupdn_140_3_sdd600-03734_avg_60.dat"
# fname_bkgsub = "/Users/admin/data/23_bt_2304_accell/bkgsub_iqs/cupdn_140_3_sdd600_glassfit/cupdn_140_3_sdd600-06914_avg_60.dat"
# fname_gr = "/Users/admin/data/23_bt_2304_accell/pdfs/cupdn_140_3_sdd600_glassfit/cupdn_140_3_sdd600-06914_avg_60.gr"
if not os.path.isdir(os.path.dirname(fname_bkgsub)):
os.makedirs(os.path.dirname(fname_bkgsub))
if not os.path.isdir(os.path.dirname(fname_gr)):
os.makedirs(os.path.dirname(fname_gr))
q, i_bkg = load_xy(fname_bkg)
q, i_data = load_xy(fname_data)
r_min = 1.2
r_max = 1.8
s_arr = []
a_arr = []
x0_arr = []
fwhm_arr = []
m_arr = []
y0_arr = []
def scale():
def gaussian(x, x0, a, fwhm, m, y0):
return a * np.exp(- (x - x0) ** 2 / 2 / (fwhm / 2.35482) ** 2) + m * x + y0
def func(s):
save_xy(fname_bkgsub, q, i_data - i_bkg * s)
# make_pdf(fname_bkgsub, fname_gr, "Cu3PdN", qmin=0.7, qmax=10.3, qmax_inst=24.0, rpoly=0.9)
make_pdf(fname_bkgsub, fname_gr, "Cu3PdN", qmin=0.4, qmax=10.3, qmax_inst=17.5, rpoly=0.9)
r, g = load_xy(fname_gr, skiprows=23)
idx_min = find_idx(r, r_min)
idx_max = find_idx(r, r_max)
initial_guess = [1.6, 0.1, 0.5, 0.1, -3.0]
nobound = (-np.inf, np.inf)
restraints = np.array([(1.5, 1.7), (0.0, np.inf), (0.3, 0.8), (-1, 1), nobound]).T
popt, pcov = curve_fit(gaussian, r[idx_min:idx_max + 1], g[idx_min:idx_max + 1], p0=initial_guess, bounds=restraints)
a = popt[1]
a_err = np.sqrt(pcov[1, 1])
s_arr.append(s)
x0_arr.append(popt[0])
a_arr.append(popt[1])
fwhm_arr.append(popt[2])
m_arr.append(popt[3])
y0_arr.append(popt[4])
return a
res = minimize_scalar(func)
return res['x']
s = scale()
# print(s)
with open(fname_data, 'r') as f:
temp = float(f.readlines()[3].split()[-1])
header = 'glassfit background subtraction\n'
header += 'scale: {}\n'.format(s)
header += 'temperature (°C): {}\n'.format(temp)
header += 'unsubtracted file: {}\n'.format(fname_data)
header += 'background file: {}\n'.format(fname_bkg)
header += 'q (A^-1) I (a.u.)'
save_xy(fname_bkgsub, q, i_data - i_bkg * s)
# make_pdf(fname_bkgsub, fname_gr, "Cu3PdN", qmin=0.7, qmax=10.3, qmax_inst=24.0, rpoly=0.9)
make_pdf(fname_bkgsub, fname_gr, "Cu3PdN", qmin=0.4, qmax=10.3, qmax_inst=17.5, rpoly=0.9)
# r, g = load_xy(fname_gr, skiprows=23)
#
# fit_dict = {
# "s": {"values": s_arr},
# "a": {"values": a_arr},
# "x0": {"values": x0_arr},
# "fwhm": {"values": fwhm_arr},
# "m": {"values": m_arr},
# "y0": {"values": y0_arr},
# }
#
# def key_ax(ax, key):
# ax.plot(fit_dict[key]["values"], label=key)
# ax.set_xlabel("iteration")
# ax.set_ylabel(key)
# return ax
#
# keys = ["s", "a", "x0", "fwhm", "m", "y0"]
# figsize = (6, 2 * len(keys))
# fig, axs = plt.subplots(len(keys), 1, sharex=True, sharey=False, gridspec_kw={'hspace': 0}, figsize=figsize)
# lines = []
# labels = []
# for i, keys in enumerate(keys):
# axs[i] = key_ax(axs[i], keys)
# axs[i].legend(frameon=False)
# # lines_i, labels_i = axs[i].get_legend_handles_labels()
# # [lines.append(line) for line in lines_i if line not in lines]
# # [labels.append(label) for label in labels_i if label not in labels]
# # axs[0].legend(lines, labels, loc='best', frameon=False)
# fig.align_ylabels()
# plt.show()
#
# plt.plot(r, g)
# plt.xlim(0, 7.5)
# plt.title(s)
# plt.show()
return s
def bkg_sub_n_makepdf_all_in_dir_glassfit(path2data, path2bkg, path2sub="", path2pdf="", dtype=".dat"):
if not path2sub:
path2sub = os.path.join(os.path.dirname(os.path.dirname(path2data)), "bkgsub_iqs", os.path.basename(path2data) + "_glassfit")
if not os.path.isdir(path2sub):
os.makedirs(path2sub)
if not path2pdf:
path2pdf = os.path.join(os.path.dirname(os.path.dirname(path2data)), "pdfs", os.path.basename(path2data) + "_glassfit")
if not os.path.isdir(path2pdf):
os.makedirs(path2pdf)
fnames = glob(os.path.join(path2data, '*' + dtype))
fnames.sort()
fnames_bkg = glob(os.path.join(path2bkg, '*' + dtype))
fnames_bkg.sort()
for i in range(len(fnames) - len(fnames_bkg)):
fnames_bkg.append(fnames_bkg[-1])
s_arr = []
for fname, fname_bkg in zip(fnames, fnames_bkg):
print(fname)
fname_bkgsub = os.path.join(path2sub, os.path.basename(fname[:-len(dtype)]) + "_bkgsub" + dtype)
fname_gr = os.path.join(path2pdf, os.path.basename(fname[:-len(dtype)]) + ".gr")
s = bkg_sub_n_makepdf_fitglasspeak(fname, fname_bkg, fname_bkgsub, fname_gr)
s_arr.append(s)
plt.plot(s_arr)
plt.ylabel("scale")
plt.xlabel("time (min)")
plt.show()
def bkg_sub_n_makepdf_bymaxint(fname_data, fname_bkg, fname_bkgsub, fname_gr):
if not os.path.isdir(os.path.dirname(fname_bkgsub)):
os.makedirs(os.path.dirname(fname_bkgsub))
if not os.path.isdir(os.path.dirname(fname_gr)):
os.makedirs(os.path.dirname(fname_gr))
q, i_bkg = load_xy(fname_bkg)
q, i_data = load_xy(fname_data)
r_min = 1.9
r_max = 4.0
def scale():
def func(s):
save_xy(fname_bkgsub, q, i_data - i_bkg * s)
# make_pdf(fname_bkgsub, fname_gr, "Cu3PdN", qmin=0.7, qmax=10.3, qmax_inst=24.0, rpoly=0.9)
make_pdf(fname_bkgsub, fname_gr, "Cu3PdN", qmin=0.4, qmax=10.3, qmax_inst=17.5, rpoly=0.9)
r, g = load_xy(fname_gr, skiprows=23)
idx_min = find_idx(r, r_min)
idx_max = find_idx(r, r_max)
return -np.max(g[idx_min:idx_max])
res = minimize_scalar(func)
return res['x']
s = scale()
print(s)
with open(fname_data, 'r') as f:
temp = float(f.readlines()[3].split()[-1])
header = 'max pdf intensity (between {} adn {} A^-1) background subtraction\n'.format(r_min, r_max)
header += 'scale: {}\n'.format(s)
header += 'temperature (°C): {}\n'.format(temp)
header += 'unsubtracted file: {}\n'.format(fname_data)
header += 'background file: {}\n'.format(fname_bkg)
header += 'q (A^-1) I (a.u.)'
save_xy(fname_bkgsub, q, i_data - i_bkg * s)
make_pdf(fname_bkgsub, fname_gr, "Cu3PdN", qmin=0.4, qmax=10.3, qmax_inst=17.5, rpoly=0.9)
return s
def bkg_sub_n_makepdf_all_in_dir_baymaxint(path2data, path2bkg, path2sub="", path2pdf="", dtype=".dat"):
if not path2sub:
path2sub = os.path.join(os.path.dirname(os.path.dirname(path2data)), "bkgsub_iqs", os.path.basename(path2data) + "_bymaxint")
if not os.path.isdir(path2sub):
os.makedirs(path2sub)
if not path2pdf:
path2pdf = os.path.join(os.path.dirname(os.path.dirname(path2data)), "pdfs", os.path.basename(path2data) + "_bymaxint")
if not os.path.isdir(path2pdf):
os.makedirs(path2pdf)
fnames = glob(os.path.join(path2data, '*' + dtype))
fnames.sort()
fnames_bkg = glob(os.path.join(path2bkg, '*' + dtype))
fnames_bkg.sort()
for i in range(len(fnames) - len(fnames_bkg)):
fnames_bkg.append(fnames_bkg[-1])
s_arr = []
for fname, fname_bkg in zip(fnames, fnames_bkg):
print(fname)
fname_bkgsub = os.path.join(path2sub, os.path.basename(fname[:-len(dtype)]) + "_bkgsub" + dtype)
fname_gr = os.path.join(path2pdf, os.path.basename(fname[:-len(dtype)]) + ".gr")
s = bkg_sub_n_makepdf_bymaxint(fname, fname_bkg, fname_bkgsub, fname_gr)
s_arr.append(s)
plt.plot(s_arr)
plt.ylabel("scale")
plt.xlabel("time (min)")
plt.show()
path2data = "/Users/admin/Wolke/data/23_bt_2304_accell/avg60_iqs/cupdn_140_3_sdd600"
path2bkg = "/Users/admin/Wolke/data/23_bt_2304_accell/avg60_iqs/bkg_bnh2_140_sdd600"
path2sub = "/Users/admin/Wolke/data/23_bt_2304_accell/bkgsub_iqs/cupdn_140_3_sdd600_bymaxint"
path2pdf = "/Users/admin/Wolke/data/23_bt_2304_accell/pdfs/cupdn_140_3_sdd600_bymaxint"
bkg_sub_n_makepdf_all_in_dir_baymaxint(path2data, path2bkg)
def avg_specific(path2data, dtype=".dat", avg_startnum=0, avg_endnum=120):
fnames = glob(os.path.join(path2data, '*' + dtype))
fnames.sort()
path2avg = "/Users/admin/data/23_bt_2304_accell/abcheckauis/starting_point_wobkgsub/iqs"
avg_num = avg_endnum - avg_startnum
fnames_to_avg = fnames[avg_startnum:avg_endnum]
fname_avg = os.path.join(path2avg,
os.path.basename(fnames_to_avg[0][:-len(dtype)]) + "_avg_" + str(avg_num) + dtype)
y_avgs = []
for fname in fnames_to_avg:
x, y = load_xy(fname)
y_avgs.append(y)
y_avg = np.mean(y_avgs, axis=0)
header = 'averaged {} files\n'.format(avg_num)
header += 'from path: {}\nto {}\n'.format(path2data, path2avg)
header += 'q (A^-1) I (a.u.)'
save_xy(fname_avg, x, y_avg, header=header)
# datadirdir = "/Users/admin/data/23_bt_2304_accell/raw_iqs/"
# dir = "sh_pdn_180_1"
# path2data = os.path.join(datadirdir, dir)
# avg_specific(path2data)
# path2data = "/Users/admin/data/23_bt_2304_accell/raw_iqs/bkg_bnh2_160_1"
# avg(path2data, overwrite=True)
# path2bkg = "/Users/admin/data/23_bt_2304_accell/raw_iqs/cufen_160_1"
# avg(path2bkg, overwrite=True)
# bkg_sub_n_makepdf_all_in_dir_glassfit("/Users/admin/data/23_bt_2304_accell/avg60_iqs/cufen_160_1", "/Users/admin/data/23_bt_2304_accell/avg60_iqs/bkg_bnh2_160_1")
print('kukuk')
# path2bkg = "/Users/admin/data/23_bt_2304_accell/raw_iqs/lk_bg_fe3s4_180_1"
# avg(path2bkg, overwrite=True)
# path2data = "/Users/admin/data/23_bt_2304_accell/raw_iqs/lk_fe3s4_180_1"
# avg(path2data, overwrite=True)
# bkg_sub_n_makepdf_all_in_dir_glassfit("/Users/admin/data/23_bt_2304_accell/avg60_iqs/lk_fe3s4_180_1", "/Users/admin/data/23_bt_2304_accell/avg60_iqs/lk_bg_fe3s4_180_1")
# path2bkg = "/Users/admin/data/23_bt_2304_accell/raw_iqs/lk_bg_fe3s4_100_1"
# avg(path2bkg, overwrite=True)
# path2data = "/Users/admin/data/23_bt_2304_accell/raw_iqs/lk_fe3s4_100_1"
# avg(path2data, overwrite=True)
# bkg_sub_n_makepdf_all_in_dir_glassfit("/Users/admin/data/23_bt_2304_accell/avg60_iqs/lk_fe3s4_100_1", "/Users/admin/data/23_bt_2304_accell/avg60_iqs/lk_bg_fe3s4_100_1")
# path2bkg = "/Users/admin/data/23_bt_2304_accell/avg60_iqs/bkg_bnh2_140_sdd600"
# path2data = "/Users/admin/data/23_bt_2304_accell/avg60_iqs/cupdn_140_3_sdd600"
# bkg_sub(path2data, path2bkg, fancyapproach=False, bkgscale=1.0)
# path2data = "/Users/admin/data/23_bt_2304_accell/bkgsub_iqs/cupdn_140_3_sdd600"
# make_pdf_all_in_dir(path2data, composition="Cu3PdN", qmin=0.4, qmax=10.3, qmax_inst=17.5, rpoly=0.9)
# path2data = "/Users/admin/data/23_bt_2304_accell/bkgsub_iqs/cu3n_140_1"
# make_pdf_all_in_dir(path2data, composition="Cu3N", qmin=0.7, qmax=10.3, qmax_inst=24.0, rpoly=0.9)
# path2data = "/Users/admin/data/23_bt_2304_accell/bkgsub_iqs/cu3n_140_2"
# make_pdf_all_in_dir(path2data, composition="Cu3N", qmin=0.7, qmax=10.3, qmax_inst=24.0, rpoly=0.9)
# path2data = "/Users/admin/data/23_bt_2304_accell/bkgsub_iqs/cupdn_140_1"
# make_pdf_all_in_dir(path2data, composition="Cu3PdN", qmin=0.7, qmax=10.3, qmax_inst=24.0, rpoly=0.9)
# path2data = "/Users/admin/data/23_bt_2304_accell/bkgsub_iqs/cupdn_140_2"
# make_pdf_all_in_dir(path2data, composition="Cu3PdN", qmin=0.7, qmax=10.3, qmax_inst=24.0, rpoly=0.9)
# path2data = "/Users/admin/data/23_bt_2304_accell/bkgsub_iqs/sh_pdn_140_2"
# make_pdf_all_in_dir(path2data, composition="Pd", qmin=0.7, qmax=10.3, qmax_inst=24.0, rpoly=0.9)
# make_pdf("/Users/admin/data/23_bt_2304_accell/calibauis/lab6_ac_cell_385-00067.dat",
# "/Users/admin/data/23_bt_2304_accell/calibauis/lab6_ac_cell_385-00067.dat",
# composition="LaB6", qmin=0.7, qmax=10.3, qmax_inst=24.0, rpoly=0.9)
# path2data = "/Users/admin/data/23_bt_2304_accell/bkgsub_iqs/cupdn_140_3_sdd600"
# path2pdf = "/Users/admin/data/23_bt_2304_accell/pdfs/cupdn_140_3_sdd600_qmax16p3"
# make_pdf_all_in_dir(path2data, composition="Cu3PdN", qmin=0.7, qmax=16.3, qmax_inst=18.3, rpoly=0.9)
#
# make_pdf("/Users/admin/data/23_bt_2304_accell/calibauis/lab6_ac_cell_385-00067.dat",
# "/Users/admin/data/23_bt_2304_accell/calibauis/lab6_ac_cell_385-00067_qmax16p3.gr",
# composition="LaB6", qmin=0.7, qmax=16.3, qmax_inst=18.3, rpoly=0.9)
print('hi')
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment