Skip to content
Snippets Groups Projects
Commit 01371845 authored by daveabiy's avatar daveabiy
Browse files

contain simple data. For restriction from the DLR, some data's were removed from this git

parent 3ce6f308
Branches
No related tags found
No related merge requests found
Minimize
obj: +1 x_{1}_{0} +15 x_{1}_{15} +30 x_{1}_{30} +45 x_{1}_{45} +60 x_{1}_{60} +75 x_{1}_{75} +90 x_{1}_{90} +105 x_{1}_{105} +120 x_{1}_{120}
+0 x_{2}_{0} +15 x_{2}_{15} +30 x_{2}_{30} +45 x_{2}_{45} +60 x_{2}_{60} +75 x_{2}_{75} +90 x_{2}_{90} +105 x_{2}_{105} +120 x_{2}_{120}
+0 x_{3}_{0} +15 x_{3}_{15} +30 x_{3}_{30} +45 x_{3}_{45} +60 x_{3}_{60} +75 x_{3}_{75} +90 x_{3}_{90} +105 x_{3}_{105} +120 x_{3}_{120}
+0 x_{4}_{0} +15 x_{4}_{15} +30 x_{4}_{30} +45 x_{4}_{45} +60 x_{4}_{60} +75 x_{4}_{75} +90 x_{4}_{90} +105 x_{4}_{105} +120 x_{4}_{120}
+0 x_{5}_{0} +15 x_{5}_{15} +30 x_{5}_{30} +45 x_{5}_{45} +60 x_{5}_{60} +75 x_{5}_{75} +90 x_{5}_{90} +105 x_{5}_{105} +120 x_{5}_{120}
+0 x_{6}_{0} +15 x_{6}_{15} +30 x_{6}_{30} +45 x_{6}_{45} +60 x_{6}_{60} +75 x_{6}_{75} +90 x_{6}_{90} +105 x_{6}_{105} +120 x_{6}_{120}
Subject To
slot1: x_{1}_{0} + x_{2}_{0} <= 1
slot2: x_{1}_{15} + x_{2}_{15} <= 1
slot3: x_{1}_{30} + x_{2}_{30} <= 1
slot4: x_{1}_{45} + x_{2}_{45} <= 1
slot5: x_{1}_{60} + x_{2}_{60} <= 1
slot6: x_{1}_{75} + x_{2}_{75} <= 1
slot7: x_{1}_{90} + x_{2}_{90} <= 1
slot8: x_{1}_{105} + x_{2}_{105} <= 1
slot9: x_{1}_{120} + x_{2}_{120} <= 1
slot10: x_{2}_{0} + x_{3}_{0} + x_{4}_{0} <= 1
slot11: x_{2}_{15} + x_{3}_{15} + x_{4}_{15} <= 1
slot12: x_{2}_{30} + x_{3}_{30} + x_{4}_{30} <= 1
slot13: x_{2}_{45} + x_{3}_{45} + x_{4}_{45} <= 1
slot14: x_{2}_{60} + x_{3}_{60} + x_{4}_{60} <= 1
slot15: x_{2}_{75} + x_{3}_{75} + x_{4}_{75} <= 1
slot16: x_{2}_{90} + x_{3}_{90} + x_{4}_{90} <= 1
slot17: x_{2}_{105} + x_{3}_{105} + x_{4}_{105} <= 1
slot18: x_{2}_{120} + x_{3}_{120} + x_{4}_{120} <= 1
slot19: x_{1}_{0} + x_{3}_{0} + x_{5}_{0} <= 1
slot20: x_{1}_{15} + x_{3}_{15} + x_{5}_{15} <= 1
slot21: x_{1}_{30} + x_{3}_{30} + x_{5}_{30} <= 1
slot22: x_{1}_{45} + x_{3}_{45} + x_{5}_{45} <= 1
slot23: x_{1}_{60} + x_{3}_{60} + x_{5}_{60} <= 1
slot24: x_{1}_{75} + x_{3}_{75} + x_{5}_{75} <= 1
slot25: x_{1}_{90} + x_{3}_{90} + x_{5}_{90} <= 1
slot26: x_{1}_{105} + x_{3}_{105}+ x_{5}_{105}<= 1
slot27: x_{1}_{120} + x_{3}_{120} + x_{5}_{120} <= 1
slot28: x_{5}_{0} + x_{6}_{0} + x_{4}_{0} <= 1
slot29: x_{5}_{15} + x_{6}_{15} + x_{4}_{15} <= 1
slot30: x_{5}_{30} + x_{6}_{30} + x_{4}_{30} <= 1
slot32: x_{5}_{45} + x_{6}_{45} + x_{4}_{45} <= 1
slot33: x_{5}_{60} + x_{6}_{60} + x_{4}_{60} <= 1
slot34: x_{5}_{75} + x_{6}_{75} + x_{4}_{75} <= 1
slot35: x_{5}_{90} + x_{6}_{90} + x_{4}_{90} <= 1
slot36: x_{5}_{105} + x_{6}_{105} + x_{4}_{105}<= 1
slot37: x_{5}_{120} + x_{6}_{120} + x_{4}_{120} <= 1
F_1: x_{1}_{0} + x_{1}_{15} + x_{1}_{30} + x_{1}_{45} + x_{1}_{60} + x_{1}_{75} + x_{1}_{90} + x_{1}_{105} + x_{1}_{120} = 1
F_2: x_{2}_{0} + x_{2}_{15} + x_{2}_{30} + x_{2}_{45} + x_{2}_{60} + x_{2}_{75} + x_{2}_{90} + x_{2}_{105} + x_{2}_{120} = 1
F_3: x_{3}_{0} + x_{3}_{15} + x_{3}_{30} + x_{3}_{45} + x_{3}_{60} + x_{3}_{75} + x_{3}_{90} + x_{3}_{105} + x_{3}_{120} = 1
F_4: x_{4}_{0} + x_{4}_{15} + x_{4}_{30} + x_{4}_{45} + x_{4}_{60} + x_{4}_{75} + x_{4}_{90} + x_{4}_{105} + x_{4}_{120} = 1
F_5: x_{5}_{0} + x_{5}_{15} + x_{5}_{30} + x_{5}_{45} + x_{5}_{60} + x_{5}_{75} + x_{5}_{90} + x_{5}_{105} + x_{5}_{120} = 1
F_6: x_{6}_{0} + x_{6}_{15} + x_{6}_{30} + x_{6}_{45} + x_{6}_{60} + x_{6}_{75} + x_{6}_{90} + x_{6}_{105} + x_{6}_{120} = 1
Bounds
0 <= x_{1}_{0} <= 1
0 <= x_{1}_{15} <= 1
0 <= x_{1}_{30} <= 1
0 <= x_{1}_{45} <= 1
0 <= x_{1}_{60} <= 1
0 <= x_{1}_{75} <= 1
0 <= x_{1}_{90} <= 1
0 <= x_{1}_{105} <= 1
0 <= x_{1}_{120} <= 1
0 <= x_{2}_{0} <= 1
0 <= x_{2}_{15} <= 1
0 <= x_{2}_{30} <= 1
0 <= x_{2}_{45} <= 1
0 <= x_{2}_{60} <= 1
0 <= x_{2}_{75} <= 1
0 <= x_{2}_{90} <= 1
0 <= x_{2}_{105} <= 1
0 <= x_{2}_{120} <= 1
0 <= x_{3}_{0} <= 1
0 <= x_{3}_{15} <= 1
0 <= x_{3}_{30} <= 1
0 <= x_{3}_{45} <= 1
0 <= x_{3}_{60} <= 1
0 <= x_{3}_{75} <= 1
0 <= x_{3}_{90} <= 1
0 <= x_{3}_{105} <= 1
0 <= x_{3}_{120} <= 1
0 <= x_{4}_{0} <= 1
0 <= x_{4}_{15} <= 1
0 <= x_{4}_{30} <= 1
0 <= x_{4}_{45} <= 1
0 <= x_{4}_{60} <= 1
0 <= x_{4}_{75} <= 1
0 <= x_{4}_{90} <= 1
0 <= x_{4}_{105} <= 1
0 <= x_{4}_{120} <= 1
0 <= x_{5}_{0} <= 1
0 <= x_{5}_{15} <= 1
0 <= x_{5}_{30} <= 1
0 <= x_{5}_{45} <= 1
0 <= x_{5}_{60} <= 1
0 <= x_{5}_{75} <= 1
0 <= x_{5}_{90} <= 1
0 <= x_{5}_{105} <= 1
0 <= x_{5}_{120} <= 1
0 <= x_{6}_{0} <= 1
0 <= x_{6}_{15} <= 1
0 <= x_{6}_{30} <= 1
0 <= x_{6}_{45} <= 1
0 <= x_{6}_{60} <= 1
0 <= x_{6}_{75} <= 1
0 <= x_{6}_{90} <= 1
0 <= x_{6}_{105} <= 1
0 <= x_{6}_{120} <= 1
Binaries
x_{1}_{0} x_{1}_{15} x_{1}_{30} x_{1}_{45} x_{1}_{60} x_{1}_{75} x_{1}_{90} x_{1}_{105} x_{1}_{120}
x_{2}_{0} x_{2}_{15} x_{2}_{30} x_{2}_{45} x_{2}_{60} x_{2}_{75} x_{2}_{90} x_{2}_{105} x_{2}_{120}
x_{3}_{0} x_{3}_{15} x_{3}_{30} x_{3}_{45} x_{3}_{60} x_{3}_{75} x_{3}_{90} x_{3}_{105} x_{3}_{120}
x_{4}_{0} x_{4}_{15} x_{4}_{30} x_{4}_{45} x_{4}_{60} x_{4}_{75} x_{4}_{90} x_{4}_{105} x_{4}_{120}
x_{5}_{0} x_{5}_{15} x_{5}_{30} x_{5}_{45} x_{5}_{60} x_{5}_{75} x_{5}_{90} x_{5}_{105} x_{5}_{120}
x_{6}_{0} x_{6}_{15} x_{6}_{30} x_{6}_{45} x_{6}_{60} x_{6}_{75} x_{6}_{90} x_{6}_{105} x_{6}_{120}
End
data/Screenshot (293).png

128 KiB

//1. get the variables, their name, thier location, and their number, and their value.
//2. get the rows of the capacity constraint, A.
//3. get the rows of the departure constraint.
//4. initialize the lagrangian multiplier, lambda, array.
//5. reformulate the objective function
// 5.1. subtract the AX by the unit vector 1.
// 5.2. Multiply each row by the respective lambda entry and sum it all up
/*Things i need for optimizing using the Lagrangian Relaxation.
6. there are different kinds of Subgradient search methods.
6.1. Classic Subgradient search
6.2. Volume Algorithm
6.3. Static Converging Series,
6.4. Dynamic Converging Series,
6.5. Bundle dynamic Convergent series
create an iteration of the lambda using the formula, {lambda}^k={lambda}^(k-1)+S^k*g^k/||g^k||
where
{lambda}^k, k from 0 to N is the sequence of the lagrangian multiplier of the function
{lambda}^0 is the starting multiplier
7. create a maximization problem for the problem at 5, with respect to lambda.
8. Optimize.
9. Display the stat and analyze the LB, and the time it requires
9.1. Comparing it with the LP relaxation results.
9.2. comparing the values among the different methods.
*/
/*
\ No newline at end of file
data/reformulation.png

397 KiB

data/reformulaton 2.png

175 KiB

Minimize
obj: +2 x_1 +8 x_2 + 4 x_3
Subject To
c1: x_1 + x_2 <= 1
c2: x_3 + x_2 <= 1
c3: x_1 + x_3 <= 1
F1: x_1 + x_2 + x_3 = 1
Bounds
0 <= x_1 <= 1
0 <= x_2 <= 1
0 <= x_3 <= 1
Binaries
x_1
x_2
x_3
End
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment