Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
DeepInverse
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Hailu, Dawit
DeepInverse
Commits
3ecdbd1a
Commit
3ecdbd1a
authored
3 years ago
by
Dawit Hailu
Browse files
Options
Downloads
Patches
Plain Diff
our model definition, including for Primal Dual
parent
b1e8ddfa
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
models.py
+486
-0
486 additions, 0 deletions
models.py
with
486 additions
and
0 deletions
models.py
0 → 100644
+
486
−
0
View file @
3ecdbd1a
import
torch
import
torch.nn
as
nn
import
torch.nn.functional
as
F
import
sys
as
sys
from
skimage.transform
import
resize
class
Linear_Net
(
nn
.
Module
):
"""
Defines a NN with 4 hidden layers with 200 nodes each. All layers are fully connected.
Uses ReLu activation function after each layer.
"""
def
__init__
(
self
):
super
(
Linear_Net
,
self
).
__init__
()
#define each layer:
self
.
inputlayer
=
nn
.
Linear
(
1000
*
513
,
200
,
True
)
self
.
layer2
=
nn
.
Linear
(
200
,
200
,
True
)
self
.
layer3
=
nn
.
Linear
(
200
,
200
,
True
)
self
.
layer4
=
nn
.
Linear
(
200
,
200
,
True
)
self
.
layer5
=
nn
.
Linear
(
200
,
362
*
362
,
True
)
def
forward
(
self
,
inp
):
"""
Computes the output of the NN for the input inp.
Applies Layers and the activation function.
"""
x
=
self
.
inputlayer
(
inp
)
x
=
F
.
relu
(
x
)
x
=
self
.
layer2
(
x
)
x
=
F
.
relu
(
x
)
x
=
self
.
layer3
(
x
)
x
=
F
.
relu
(
x
)
x
=
self
.
layer4
(
x
)
x
=
F
.
relu
(
x
)
x
=
self
.
layer5
(
x
)
x
=
F
.
relu
(
x
)
return
x
class
Conv_Net
(
nn
.
Module
):
def
__init__
(
self
):
super
(
Conv_Net
,
self
).
__init__
()
self
.
CL1
=
nn
.
Conv2d
(
1
,
64
,
3
)
self
.
PL1
=
nn
.
MaxPool2d
(
2
)
#output ~ 250 x 500 x X
self
.
CL2
=
nn
.
Conv2d
(
64
,
64
,
3
)
self
.
PL2
=
nn
.
MaxPool2d
(
2
)
#output ~ 120 x 250 x X
self
.
CL3
=
nn
.
Conv2d
(
64
,
128
,
3
)
self
.
PL3
=
nn
.
MaxPool2d
(
2
)
#output ~ 60 x 120 x X
self
.
CL4
=
nn
.
Conv2d
(
128
,
128
,
3
)
self
.
PL4
=
nn
.
MaxPool2d
(
2
)
#output torch.Size([1, X, 61, 31])
self
.
CL5
=
nn
.
Conv2d
(
128
,
256
,
3
)
self
.
PL5
=
nn
.
MaxPool2d
(
2
)
#torch.Size([1, X, 30, 15])
self
.
CL6
=
nn
.
Conv2d
(
256
,
256
,
3
)
self
.
PL6
=
nn
.
MaxPool2d
(
2
)
#torch.Size([1, 16, 14, 7])
#self.CL7 = nn.Conv2d(256, 256, 2)
#self.PL7 = nn.MaxPool2d(2) #torch.Size([1, X, 6, 3])
self
.
Layer8
=
nn
.
Linear
(
256
*
13
*
6
,
362
*
362
)
def
forward
(
self
,
inp
):
#inp is a vector of inputsize
x
=
inp
.
reshape
(
1
,
1
,
1000
,
513
)
x
=
F
.
relu
(
self
.
CL1
(
x
))
x
=
self
.
PL1
(
x
)
x
=
F
.
relu
(
self
.
CL2
(
x
))
x
=
self
.
PL2
(
x
)
x
=
F
.
relu
(
self
.
CL3
(
x
))
x
=
self
.
PL3
(
x
)
x
=
F
.
relu
(
self
.
CL4
(
x
))
x
=
self
.
PL4
(
x
)
#torch.Size([1, 128, 61, 31])
x
=
F
.
relu
(
self
.
CL5
(
x
))
x
=
self
.
PL5
(
x
)
x
=
F
.
relu
(
self
.
CL6
(
x
))
x
=
self
.
PL6
(
x
)
#x = F.relu(self.CL7(x))
#x = self.PL7(x)
x
=
x
.
reshape
(
256
*
13
*
6
)
x
=
self
.
Layer8
(
x
)
x
=
nn
.
Sigmoid
()(
x
)
return
x
class
UNet_4Layer_without_normalizing
(
nn
.
Module
):
def
__init__
(
self
):
super
(
UNet_4Layer_without_normalizing
,
self
).
__init__
()
#U-net from https://arxiv.org/pdf/1505.04597v1.pdf, 1 down less
self
.
conv1
=
nn
.
Conv2d
(
1
,
64
,
3
)
self
.
conv2
=
nn
.
Conv2d
(
64
,
64
,
3
)
self
.
down1
=
nn
.
MaxPool2d
(
2
)
self
.
conv3
=
nn
.
Conv2d
(
64
,
128
,
3
)
self
.
conv4
=
nn
.
Conv2d
(
128
,
128
,
3
)
self
.
down2
=
nn
.
MaxPool2d
(
2
)
self
.
conv5
=
nn
.
Conv2d
(
128
,
256
,
3
)
self
.
conv6
=
nn
.
Conv2d
(
256
,
256
,
3
)
self
.
down3
=
nn
.
MaxPool2d
(
2
)
self
.
conv7
=
nn
.
Conv2d
(
256
,
512
,
3
)
self
.
conv8
=
nn
.
Conv2d
(
512
,
512
,
3
)
self
.
up1
=
nn
.
ConvTranspose2d
(
512
,
256
,
3
,
stride
=
2
)
self
.
conv9
=
nn
.
Conv2d
(
512
,
256
,
3
)
self
.
conv10
=
nn
.
Conv2d
(
256
,
256
,
3
)
self
.
up2
=
nn
.
ConvTranspose2d
(
256
,
128
,
3
,
stride
=
2
)
self
.
conv11
=
nn
.
Conv2d
(
256
,
128
,
3
)
self
.
conv12
=
nn
.
Conv2d
(
128
,
128
,
3
)
self
.
up3
=
nn
.
ConvTranspose2d
(
128
,
64
,
3
,
stride
=
2
)
self
.
conv13
=
nn
.
Conv2d
(
128
,
64
,
3
)
self
.
conv14
=
nn
.
Conv2d
(
64
,
64
,
3
)
self
.
conv15
=
nn
.
Conv2d
(
64
,
1
,
1
)
self
.
down4
=
nn
.
MaxPool2d
(
2
)
#self.lin = nn.Linear(457*213,362**2)
self
.
skip1
=
nn
.
Conv2d
(
256
,
256
,
1
)
self
.
skip2
=
nn
.
Conv2d
(
128
,
128
,
1
)
self
.
skip3
=
nn
.
Conv2d
(
64
,
64
,
1
)
def
forward
(
self
,
inp
):
x
=
inp
.
reshape
(
1
,
1
,
362
,
362
).
float
()
x
=
F
.
relu
(
self
.
conv1
(
x
))
# 1 x 64 x 998 x 511
x
=
F
.
relu
(
self
.
conv2
(
x
))
# 1 x 64 x 996 x 509
y
=
self
.
down1
(
x
)
# 1 x 64 x 498 x 254
y
=
F
.
relu
(
self
.
conv3
(
y
))
# 1 x 128 x 496 x 252
y
=
F
.
relu
(
self
.
conv4
(
y
))
# 1 x 128 x 494 x 250
z
=
self
.
down1
(
y
)
# 1 x 128 x 247 x 125
z
=
F
.
relu
(
self
.
conv5
(
z
))
# 1 x 256 x 245 x 123
z
=
F
.
relu
(
self
.
conv6
(
z
))
# 1 x 256 x 243 x 121
a
=
self
.
down1
(
z
)
# 1 x 256 x 121 x 60
a
=
F
.
relu
(
self
.
conv7
(
a
))
# 1 x 512 x 119 x 58
a
=
F
.
relu
(
self
.
conv8
(
a
))
# 1 x 512 x 117 x 56
a
=
self
.
up1
(
a
)
# 1 x 256 x 235 x 113
z
=
torch
.
cat
(
(
a
,
self
.
skip1
(
z
[:,:,
4
:
-
4
,
4
:
-
4
]))
,
1
)
# 1 x 512 x 235 x113
z
=
F
.
relu
(
self
.
conv9
(
z
))
# 1 x 256 x 233 x 111
z
=
F
.
relu
(
self
.
conv10
(
z
))
# 1 x 256 x 231 x 109
z
=
self
.
up2
(
z
)
# 1 x 128 x 463 x 219
y
=
torch
.
cat
(
(
z
,
self
.
skip2
(
y
[:,:,
15
:
-
16
,
15
:
-
16
]))
,
1
)
# !!!!!!
y
=
F
.
relu
(
self
.
conv11
(
y
))
# 1 x 128 x 461 x 217
y
=
F
.
relu
(
self
.
conv12
(
y
))
# 1 x 128 x 459 x 215
y
=
self
.
up3
(
y
)
# 1 x 64 x 919 x 431
x
=
torch
.
cat
(
(
y
,
self
.
skip3
(
x
[:,:,
38
:
-
39
,
39
:
-
39
])),
1
)
x
=
F
.
relu
(
self
.
conv13
(
x
))
# 1 x 64 x 917 x 429
x
=
F
.
relu
(
self
.
conv14
(
x
))
# 1 x 64 x 915 x 427
x
=
F
.
relu
(
self
.
conv15
(
x
))
# 1 x 1 x 915 x 427
#x = self.down4(x) #1 x 1x 457 x 213
#out = torch.sigmoid(self.lin(x.reshape(457*213)))
out
=
F
.
interpolate
(
x
,
[
362
,
362
])
return
out
.
reshape
(
362
,
362
)
class
UNet_4Layer
(
nn
.
Module
):
def
__init__
(
self
,
m
=
128
,
n
=
256
,
o
=
512
,
p
=
512
):
super
(
UNet_4Layer
,
self
).
__init__
()
#U-net from https://arxiv.org/pdf/1505.04597v1.pdf, 1 down less
self
.
conv1
=
nn
.
Conv2d
(
1
,
m
,
3
)
self
.
norm1
=
torch
.
nn
.
BatchNorm2d
(
m
)
self
.
conv2
=
nn
.
Conv2d
(
m
,
m
,
3
)
self
.
norm2
=
torch
.
nn
.
BatchNorm2d
(
m
)
self
.
down1
=
nn
.
MaxPool2d
(
2
)
self
.
norm3
=
torch
.
nn
.
BatchNorm2d
(
m
)
self
.
conv3
=
nn
.
Conv2d
(
m
,
n
,
3
)
self
.
norm4
=
torch
.
nn
.
BatchNorm2d
(
n
)
self
.
conv4
=
nn
.
Conv2d
(
n
,
n
,
3
)
self
.
norm5
=
torch
.
nn
.
BatchNorm2d
(
n
)
self
.
down2
=
nn
.
MaxPool2d
(
2
)
self
.
norm6
=
torch
.
nn
.
BatchNorm2d
(
n
)
self
.
conv5
=
nn
.
Conv2d
(
n
,
o
,
3
)
self
.
norm7
=
torch
.
nn
.
BatchNorm2d
(
o
)
self
.
conv6
=
nn
.
Conv2d
(
o
,
o
,
3
)
self
.
norm8
=
torch
.
nn
.
BatchNorm2d
(
o
)
self
.
down3
=
nn
.
MaxPool2d
(
2
)
self
.
norm9
=
torch
.
nn
.
BatchNorm2d
(
o
)
self
.
conv7
=
nn
.
Conv2d
(
o
,
p
,
3
)
self
.
norm10
=
torch
.
nn
.
BatchNorm2d
(
p
)
self
.
conv8
=
nn
.
Conv2d
(
p
,
p
,
3
)
self
.
norm11
=
torch
.
nn
.
BatchNorm2d
(
p
)
self
.
up1
=
nn
.
Upsample
(
scale_factor
=
2
)
#nn.Upsample([74, 74])
self
.
norm12
=
torch
.
nn
.
BatchNorm2d
(
o
+
p
)
self
.
conv9
=
nn
.
Conv2d
(
o
+
p
,
o
,
3
)
self
.
norm13
=
torch
.
nn
.
BatchNorm2d
(
o
)
self
.
conv10
=
nn
.
Conv2d
(
o
,
o
,
3
)
self
.
norm14
=
torch
.
nn
.
BatchNorm2d
(
o
)
self
.
up2
=
nn
.
Upsample
(
scale_factor
=
2
)
self
.
norm15
=
torch
.
nn
.
BatchNorm2d
(
o
+
n
)
self
.
conv11
=
nn
.
Conv2d
(
o
+
n
,
n
,
3
)
self
.
norm16
=
torch
.
nn
.
BatchNorm2d
(
n
)
self
.
conv12
=
nn
.
Conv2d
(
n
,
n
,
3
)
self
.
norm17
=
torch
.
nn
.
BatchNorm2d
(
n
)
self
.
up3
=
nn
.
Upsample
(
scale_factor
=
2
)
self
.
norm18
=
torch
.
nn
.
BatchNorm2d
(
n
+
m
)
self
.
conv13
=
nn
.
Conv2d
(
n
+
m
,
m
,
3
)
self
.
norm19
=
torch
.
nn
.
BatchNorm2d
(
m
)
self
.
conv14
=
nn
.
Conv2d
(
m
,
m
,
3
)
self
.
norm20
=
torch
.
nn
.
BatchNorm2d
(
m
)
self
.
conv15
=
nn
.
Conv2d
(
m
,
1
,
1
)
#self.down4 = nn.MaxPool2d(2)
#self.lin = nn.Linear(457*213,362**2)
self
.
skip1
=
nn
.
Conv2d
(
o
,
o
,
1
)
self
.
skip2
=
nn
.
Conv2d
(
n
,
n
,
1
)
self
.
skip3
=
nn
.
Conv2d
(
m
,
m
,
1
)
def
forward
(
self
,
inp
):
x
=
inp
.
reshape
(
1
,
1
,
362
,
362
).
float
()
x
=
F
.
leaky_relu
(
self
.
norm1
(
self
.
conv1
(
x
)))
# 1 x 64 x 998 x 511
x
=
F
.
leaky_relu
(
self
.
norm2
(
self
.
conv2
(
x
)))
# 1 x 64 x 996 x 509
y
=
self
.
norm3
(
self
.
down1
(
x
))
# 1 x 64 x 498 x 254
y
=
F
.
leaky_relu
(
self
.
norm4
(
self
.
conv3
(
y
)))
# 1 x 128 x 496 x 252
y
=
F
.
leaky_relu
(
self
.
norm5
(
self
.
conv4
(
y
)))
# 1 x 128 x 494 x 250
z
=
self
.
norm6
(
self
.
down1
(
y
))
# 1 x 128 x 247 x 125
z
=
F
.
leaky_relu
(
self
.
norm7
(
self
.
conv5
(
z
)))
# 1 x 256 x 245 x 123
z
=
F
.
leaky_relu
(
self
.
norm8
(
self
.
conv6
(
z
)))
# 1 x 256 x 243 x 121
a
=
self
.
norm9
(
self
.
down1
(
z
))
# 1 x 256 x 121 x 60
a
=
F
.
leaky_relu
(
self
.
norm10
(
self
.
conv7
(
a
)))
# 1 x 512 x 119 x 58
a
=
F
.
leaky_relu
(
self
.
norm11
(
self
.
conv8
(
a
)))
# 1 x 512 x 117 x 56
a
=
self
.
up1
(
a
)
# 1 x 256 x 235 x 113
z
=
self
.
norm12
(
torch
.
cat
(
(
a
,
self
.
skip1
(
z
[:,:,
4
:
-
5
,
4
:
-
5
]))
,
1
))
# 1 x 512 x 235 x113
z
=
F
.
leaky_relu
(
self
.
norm13
(
self
.
conv9
(
z
)))
# 1 x 256 x 233 x 111
z
=
F
.
leaky_relu
(
self
.
norm14
(
self
.
conv10
(
z
)))
# 1 x 256 x 231 x 109
z
=
self
.
up2
(
z
)
# 1 x 128 x 463 x 219
y
=
self
.
norm15
(
torch
.
cat
(
(
z
,
self
.
skip2
(
y
[:,:,
17
:
-
18
,
17
:
-
18
]))
,
1
))
# !!!!!!
y
=
F
.
leaky_relu
(
self
.
norm16
(
self
.
conv11
(
y
)))
# 1 x 128 x 461 x 217
y
=
F
.
leaky_relu
(
self
.
norm17
(
self
.
conv12
(
y
)))
# 1 x 128 x 459 x 215
y
=
self
.
up3
(
y
)
# 1 x 64 x 919 x 431
x
=
self
.
norm18
(
torch
.
cat
(
(
y
,
self
.
skip3
(
x
[:,:,
43
:
-
43
,
43
:
-
43
])),
1
))
x
=
F
.
leaky_relu
(
self
.
norm19
(
self
.
conv13
(
x
)))
# 1 x 64 x 917 x 429
x
=
F
.
leaky_relu
(
self
.
norm20
(
self
.
conv14
(
x
)))
# 1 x 64 x 915 x 427
x
=
torch
.
sigmoid
(
self
.
conv15
(
x
))
# 1 x 1 x 915 x 427
#x = self.down4(x) #1 x 1x 457 x 213
#out = torch.sigmoid(self.lin(x.reshape(457*213)))
out
=
F
.
interpolate
(
x
,
[
362
,
362
])
return
out
.
reshape
(
362
,
362
)
class
UNet_5x5conv
(
nn
.
Module
):
#same as above, 5x5 conv and 1 padding
def
__init__
(
self
):
super
(
UNet_5x5conv
,
self
).
__init__
()
#U-net from https://arxiv.org/pdf/1505.04597v1.pdf, 1 down less
m
=
128
n
=
256
o
=
512
p
=
512
self
.
conv1
=
nn
.
Conv2d
(
1
,
m
,
5
,
padding
=
1
)
self
.
norm1
=
torch
.
nn
.
BatchNorm2d
(
m
)
self
.
conv2
=
nn
.
Conv2d
(
m
,
m
,
5
,
padding
=
1
)
self
.
norm2
=
torch
.
nn
.
BatchNorm2d
(
m
)
self
.
down1
=
nn
.
MaxPool2d
(
2
)
self
.
norm3
=
torch
.
nn
.
BatchNorm2d
(
m
)
self
.
conv3
=
nn
.
Conv2d
(
m
,
n
,
5
,
padding
=
1
)
self
.
norm4
=
torch
.
nn
.
BatchNorm2d
(
n
)
self
.
conv4
=
nn
.
Conv2d
(
n
,
n
,
5
,
padding
=
1
)
self
.
norm5
=
torch
.
nn
.
BatchNorm2d
(
n
)
self
.
down2
=
nn
.
MaxPool2d
(
2
)
self
.
norm6
=
torch
.
nn
.
BatchNorm2d
(
n
)
self
.
conv5
=
nn
.
Conv2d
(
n
,
o
,
5
,
padding
=
1
)
self
.
norm7
=
torch
.
nn
.
BatchNorm2d
(
o
)
self
.
conv6
=
nn
.
Conv2d
(
o
,
o
,
5
,
padding
=
1
)
self
.
norm8
=
torch
.
nn
.
BatchNorm2d
(
o
)
self
.
down3
=
nn
.
MaxPool2d
(
2
)
self
.
norm9
=
torch
.
nn
.
BatchNorm2d
(
o
)
self
.
conv7
=
nn
.
Conv2d
(
o
,
p
,
5
,
padding
=
1
)
self
.
norm10
=
torch
.
nn
.
BatchNorm2d
(
p
)
self
.
conv8
=
nn
.
Conv2d
(
p
,
p
,
5
,
padding
=
1
)
self
.
norm11
=
torch
.
nn
.
BatchNorm2d
(
p
)
self
.
up1
=
nn
.
Upsample
(
scale_factor
=
2
)
#nn.Upsample([74, 74])
self
.
norm12
=
torch
.
nn
.
BatchNorm2d
(
o
+
p
)
self
.
conv9
=
nn
.
Conv2d
(
o
+
p
,
o
,
5
,
padding
=
1
)
self
.
norm13
=
torch
.
nn
.
BatchNorm2d
(
o
)
self
.
conv10
=
nn
.
Conv2d
(
o
,
o
,
5
,
padding
=
1
)
self
.
norm14
=
torch
.
nn
.
BatchNorm2d
(
o
)
self
.
up2
=
nn
.
Upsample
(
scale_factor
=
2
)
self
.
norm15
=
torch
.
nn
.
BatchNorm2d
(
o
+
n
)
self
.
conv11
=
nn
.
Conv2d
(
o
+
n
,
n
,
5
,
padding
=
1
)
self
.
norm16
=
torch
.
nn
.
BatchNorm2d
(
n
)
self
.
conv12
=
nn
.
Conv2d
(
n
,
n
,
5
,
padding
=
1
)
self
.
norm17
=
torch
.
nn
.
BatchNorm2d
(
n
)
self
.
up3
=
nn
.
Upsample
(
scale_factor
=
2
)
self
.
norm18
=
torch
.
nn
.
BatchNorm2d
(
n
+
m
)
self
.
conv13
=
nn
.
Conv2d
(
n
+
m
,
m
,
5
,
padding
=
1
)
self
.
norm19
=
torch
.
nn
.
BatchNorm2d
(
m
)
self
.
conv14
=
nn
.
Conv2d
(
m
,
m
,
5
,
padding
=
1
)
self
.
norm20
=
torch
.
nn
.
BatchNorm2d
(
m
)
self
.
conv15
=
nn
.
Conv2d
(
m
,
1
,
1
)
#self.down4 = nn.MaxPool2d(2)
#self.lin = nn.Linear(457*213,362**2)
self
.
skip1
=
nn
.
Conv2d
(
o
,
o
,
1
)
self
.
skip2
=
nn
.
Conv2d
(
n
,
n
,
1
)
self
.
skip3
=
nn
.
Conv2d
(
m
,
m
,
1
)
def
forward
(
self
,
inp
):
x
=
inp
.
reshape
(
1
,
1
,
362
,
362
).
float
()
x
=
F
.
leaky_relu
(
self
.
norm1
(
self
.
conv1
(
x
)))
# 1 x 64 x 998 x 511
x
=
F
.
leaky_relu
(
self
.
norm2
(
self
.
conv2
(
x
)))
# 1 x 64 x 996 x 509
y
=
self
.
norm3
(
self
.
down1
(
x
))
# 1 x 64 x 498 x 254
y
=
F
.
leaky_relu
(
self
.
norm4
(
self
.
conv3
(
y
)))
# 1 x 128 x 496 x 252
y
=
F
.
leaky_relu
(
self
.
norm5
(
self
.
conv4
(
y
)))
# 1 x 128 x 494 x 250
z
=
self
.
norm6
(
self
.
down1
(
y
))
# 1 x 128 x 247 x 125
z
=
F
.
leaky_relu
(
self
.
norm7
(
self
.
conv5
(
z
)))
# 1 x 256 x 245 x 123
z
=
F
.
leaky_relu
(
self
.
norm8
(
self
.
conv6
(
z
)))
# 1 x 256 x 243 x 121
a
=
self
.
norm9
(
self
.
down1
(
z
))
# 1 x 256 x 121 x 60
a
=
F
.
leaky_relu
(
self
.
norm10
(
self
.
conv7
(
a
)))
# 1 x 512 x 119 x 58
a
=
F
.
leaky_relu
(
self
.
norm11
(
self
.
conv8
(
a
)))
# 1 x 512 x 117 x 56
a
=
self
.
up1
(
a
)
# 1 x 256 x 235 x 113
z
=
self
.
norm12
(
torch
.
cat
(
(
a
,
self
.
skip1
(
z
[:,:,
4
:
-
5
,
4
:
-
5
]))
,
1
))
# 1 x 512 x 235 x113
z
=
F
.
leaky_relu
(
self
.
norm13
(
self
.
conv9
(
z
)))
# 1 x 256 x 233 x 111
z
=
F
.
leaky_relu
(
self
.
norm14
(
self
.
conv10
(
z
)))
# 1 x 256 x 231 x 109
z
=
self
.
up2
(
z
)
# 1 x 128 x 463 x 219
y
=
self
.
norm15
(
torch
.
cat
(
(
z
,
self
.
skip2
(
y
[:,:,
17
:
-
18
,
17
:
-
18
]))
,
1
))
# !!!!!!
y
=
F
.
leaky_relu
(
self
.
norm16
(
self
.
conv11
(
y
)))
# 1 x 128 x 461 x 217
y
=
F
.
leaky_relu
(
self
.
norm17
(
self
.
conv12
(
y
)))
# 1 x 128 x 459 x 215
y
=
self
.
up3
(
y
)
# 1 x 64 x 919 x 431
x
=
self
.
norm18
(
torch
.
cat
(
(
y
,
self
.
skip3
(
x
[:,:,
43
:
-
43
,
43
:
-
43
])),
1
))
x
=
F
.
leaky_relu
(
self
.
norm19
(
self
.
conv13
(
x
)))
# 1 x 64 x 917 x 429
x
=
F
.
leaky_relu
(
self
.
norm20
(
self
.
conv14
(
x
)))
# 1 x 64 x 915 x 427
x
=
torch
.
sigmoid
(
self
.
conv15
(
x
))
# 1 x 1 x 915 x 427
#x = self.down4(x) #1 x 1x 457 x 213
#out = torch.sigmoid(self.lin(x.reshape(457*213)))
out
=
F
.
interpolate
(
x
,
[
362
,
362
])
return
out
.
reshape
(
362
,
362
)
class
UNet_5Layer
(
nn
.
Module
):
#exactly the same as in the paper
def
__init__
(
self
,
m
=
16
,
n
=
32
,
o
=
64
,
p
=
64
,
q
=
128
):
super
(
UNet_5Layer
,
self
).
__init__
()
#U-net from https://arxiv.org/pdf/1910.01113v2.pdf
self
.
conv1
=
nn
.
Conv2d
(
1
,
m
,
3
)
self
.
norm1
=
torch
.
nn
.
BatchNorm2d
(
m
)
self
.
conv2
=
nn
.
Conv2d
(
m
,
n
,
5
,
stride
=
2
)
self
.
norm2
=
torch
.
nn
.
BatchNorm2d
(
n
)
self
.
conv3
=
nn
.
Conv2d
(
n
,
n
,
3
)
self
.
norm3
=
torch
.
nn
.
BatchNorm2d
(
n
)
self
.
conv4
=
nn
.
Conv2d
(
n
,
o
,
3
,
stride
=
2
)
self
.
norm4
=
torch
.
nn
.
BatchNorm2d
(
o
)
self
.
conv5
=
nn
.
Conv2d
(
o
,
o
,
3
)
self
.
norm5
=
torch
.
nn
.
BatchNorm2d
(
o
)
self
.
conv6
=
nn
.
Conv2d
(
o
,
p
,
3
,
stride
=
2
)
self
.
norm6
=
torch
.
nn
.
BatchNorm2d
(
p
)
self
.
conv7
=
nn
.
Conv2d
(
p
,
p
,
3
)
self
.
norm7
=
torch
.
nn
.
BatchNorm2d
(
p
)
self
.
conv8
=
nn
.
Conv2d
(
p
,
q
,
3
,
stride
=
2
)
self
.
norm8
=
torch
.
nn
.
BatchNorm2d
(
q
)
self
.
conv9
=
nn
.
Conv2d
(
q
,
q
,
3
)
self
.
norm9
=
torch
.
nn
.
BatchNorm2d
(
q
)
self
.
up4
=
nn
.
Upsample
(
scale_factor
=
2
)
#nn.Upsample([74, 74])
self
.
conv10
=
nn
.
Conv2d
(
q
,
p
,
3
)
self
.
norm10
=
torch
.
nn
.
BatchNorm2d
(
p
)
self
.
conv11
=
nn
.
Conv2d
(
p
+
4
,
p
,
3
)
self
.
norm11
=
torch
.
nn
.
BatchNorm2d
(
p
)
self
.
up3
=
nn
.
Upsample
(
scale_factor
=
2
)
self
.
conv12
=
nn
.
Conv2d
(
p
,
o
,
3
)
self
.
norm12
=
torch
.
nn
.
BatchNorm2d
(
o
)
self
.
conv13
=
nn
.
Conv2d
(
o
+
4
,
o
,
3
)
self
.
norm13
=
torch
.
nn
.
BatchNorm2d
(
o
)
self
.
up2
=
nn
.
Upsample
(
scale_factor
=
2
)
self
.
conv14
=
nn
.
Conv2d
(
o
,
n
,
3
)
self
.
norm14
=
torch
.
nn
.
BatchNorm2d
(
n
)
self
.
conv15
=
nn
.
Conv2d
(
n
+
4
,
n
,
3
)
self
.
norm15
=
torch
.
nn
.
BatchNorm2d
(
n
)
self
.
up2
=
nn
.
Upsample
(
scale_factor
=
2
)
self
.
conv16
=
nn
.
Conv2d
(
n
,
m
,
3
)
self
.
norm16
=
torch
.
nn
.
BatchNorm2d
(
m
)
self
.
conv17
=
nn
.
Conv2d
(
m
+
4
,
1
,
1
)
self
.
skip1
=
nn
.
Conv2d
(
m
,
4
,
1
)
self
.
skip2
=
nn
.
Conv2d
(
n
,
4
,
1
)
self
.
skip3
=
nn
.
Conv2d
(
o
,
4
,
1
)
self
.
skip4
=
nn
.
Conv2d
(
p
,
4
,
1
)
def
forward
(
self
,
inp
):
a
=
inp
.
reshape
(
1
,
1
,
362
,
362
).
float
()
a
=
F
.
leaky_relu
(
self
.
norm1
(
self
.
conv1
(
a
)),
negative_slope
=
0.2
)
#torch.Size([1, 16, 360, 360])
b
=
F
.
leaky_relu
(
self
.
norm2
(
self
.
conv2
(
a
)),
negative_slope
=
0.2
)
b
=
F
.
leaky_relu
(
self
.
norm3
(
self
.
conv3
(
b
)),
negative_slope
=
0.2
)
#torch.Size([1, 32, 176, 176])
c
=
F
.
leaky_relu
(
self
.
norm4
(
self
.
conv4
(
b
)),
negative_slope
=
0.2
)
c
=
F
.
leaky_relu
(
self
.
norm5
(
self
.
conv5
(
c
)),
negative_slope
=
0.2
)
#torch.Size([1, 64, 85, 85])
d
=
F
.
leaky_relu
(
self
.
norm6
(
self
.
conv6
(
c
)),
negative_slope
=
0.2
)
d
=
F
.
leaky_relu
(
self
.
norm7
(
self
.
conv7
(
d
)),
negative_slope
=
0.2
)
#torch.Size([1, 64, 40, 40])
e
=
F
.
leaky_relu
(
self
.
norm8
(
self
.
conv8
(
d
)),
negative_slope
=
0.2
)
e
=
F
.
leaky_relu
(
self
.
norm9
(
self
.
conv9
(
e
)),
negative_slope
=
0.2
)
e
=
F
.
leaky_relu
(
self
.
norm10
(
self
.
conv10
(
self
.
up4
(
e
))),
negative_slope
=
0.2
)
#torch.Size([1, 64, 32, 32])
d
=
self
.
skip4
(
d
[:,:,
4
:
-
4
,
4
:
-
4
])
d
=
F
.
leaky_relu
(
self
.
norm11
(
self
.
conv11
(
torch
.
cat
((
d
,
e
),
1
))),
negative_slope
=
0.2
)
d
=
F
.
leaky_relu
(
self
.
norm12
(
self
.
conv12
(
self
.
up3
(
d
))),
negative_slope
=
0.2
)
#torch.Size([1, 64, 58, 58])
c
=
self
.
skip3
(
c
[:,:,
13
:
-
14
,
13
:
-
14
])
c
=
F
.
leaky_relu
(
self
.
norm13
(
self
.
conv13
(
torch
.
cat
((
c
,
d
),
1
))),
negative_slope
=
0.2
)
c
=
F
.
leaky_relu
(
self
.
norm14
(
self
.
conv14
(
self
.
up2
(
c
))),
negative_slope
=
0.2
)
#torch.Size([1, 32, 110, 110])
b
=
self
.
skip2
(
b
[:,:,
33
:
-
33
,
33
:
-
33
])
b
=
F
.
leaky_relu
(
self
.
norm15
(
self
.
conv15
(
torch
.
cat
((
b
,
c
),
1
))),
negative_slope
=
0.2
)
b
=
F
.
leaky_relu
(
self
.
norm16
(
self
.
conv16
(
self
.
up2
(
b
))),
negative_slope
=
0.2
)
#torch.Size([1, 16, 214, 214])
a
=
self
.
skip1
(
a
[:,:,
73
:
-
73
,
73
:
-
73
])
a
=
torch
.
sigmoid
(
self
.
conv17
(
torch
.
cat
((
a
,
b
),
1
)))
out
=
F
.
interpolate
(
a
,
[
362
,
362
])
return
out
.
reshape
(
362
,
362
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment