Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
ParallelPrimeSearch
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Hailu, Dawit
ParallelPrimeSearch
Commits
f4e402f8
Commit
f4e402f8
authored
3 years ago
by
Hailu, Dawit
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
83689d8f
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
pipe.py
+132
-0
132 additions, 0 deletions
pipe.py
with
132 additions
and
0 deletions
pipe.py
0 → 100644
+
132
−
0
View file @
f4e402f8
import
cv2
import
mediapipe
as
mp
import
os
import
time
import
deepface
mp_face_detection
=
mp
.
solutions
.
face_detection
mp_drawing
=
mp
.
solutions
.
drawing_utils
# For static images:
# IMAGE_FILES = []
# with mp_face_detection.FaceDetection(
# model_selection=1, min_detection_confidence=0.5) as face_detection:
# for idx, file in enumerate(IMAGE_FILES):
# image = cv2.imread(file)
# # Convert the BGR image to RGB and process it with MediaPipe Face Detection.
# results = face_detection.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
# # Draw face detections of each face.
# if not results.detections:
# continue
# annotated_image = image.copy()
# for detection in results.detections:
# print('Nose tip:')
# print(mp_face_detection.get_key_point(
# detection, mp_face_detection.FaceKeyPoint.NOSE_TIP))
# mp_drawing.draw_detection(annotated_image, detection)
# cv2.imwrite('/tmp/annotated_image' + str(idx) + '.png', annotated_image)
# For webcam input:
# findcounter = 0
# notfindcounter = 0
# totalcounter = 0
# filename = 'video2.mp4'
# frames_per_second = 24.0
# res = '720p'
# # Set resolution for the video capture
# # Function adapted from https://kirr.co/0l6qmh
# def change_res(cap, width, height):
# cap.set(3, width)
# cap.set(4, height)
# # Standard Video Dimensions Sizes
# STD_DIMENSIONS = {
# "480p": (640, 480),
# "720p": (1280, 720),
# "1080p": (1920, 1080),
# "4k": (3840, 2160),
# }
# # grab resolution dimensions and set video capture to it.
# def get_dims(cap, res='720'):
# width, height = STD_DIMENSIONS["480p"]
# if res in STD_DIMENSIONS:
# width,height = STD_DIMENSIONS[res]
# ## change the current caputre device
# ## to the resulting resolution
# change_res(cap, width, height)
# return width, height
# # Video Encoding, might require additional installs
# # Types of Codes: http://www.fourcc.org/codecs.php
# VIDEO_TYPE = {
# 'avi': cv2.VideoWriter_fourcc(*'XVID'),
# #'mp4': cv2.VideoWriter_fourcc(*'H264'),
# 'mp4': cv2.VideoWriter_fourcc(*'XVID'),
# }
# def get_video_type(filename):
# filename, ext = os.path.splitext(filename)
# if ext in VIDEO_TYPE:
# return VIDEO_TYPE[ext]
# return VIDEO_TYPE['avi']
# # FPS = 1/30
# # FPS_MS = int(FPS * 1000)
# num_frames = 120
cap
=
cv2
.
VideoCapture
(
0
)
# cap = cv2.VideoCapture("/home/beyondem/Downloads/VID_20220225_170957.mp4")
# out = cv2.VideoWriter(filename, get_video_type(filename), 30, get_dims(cap, res))
# cap = cv2.VideoCapture(1)
fd
=
mp_face_detection
.
FaceDetection
(
min_detection_confidence
=
0.4
,
model_selection
=
1
)
with
fd
as
face_detection
:
while
cap
.
isOpened
():
start
=
time
.
time
()
success
,
image
=
cap
.
read
()
# time.sleep(0.5)
if
not
success
:
print
(
"
Ignoring empty camera frame.
"
)
# If loading a video, use 'break' instead of 'continue'.
continue
image
=
cv2
.
cvtColor
(
image
,
cv2
.
COLOR_BGR2RGB
)
results
=
face_detection
.
process
(
image
)
end
=
time
.
time
()
# Time elapsed
seconds
=
end
-
start
fps
=
1
/
seconds
# Draw the face detection annotations on the image.
image
.
flags
.
writeable
=
True
image
=
cv2
.
cvtColor
(
image
,
cv2
.
COLOR_RGB2BGR
)
if
results
.
detections
:
# print(len(results.detections))
for
detection
in
results
.
detections
:
mp_drawing
.
draw_detection
(
image
,
detection
)
image
=
cv2
.
flip
(
image
,
1
)
font
=
cv2
.
FONT_HERSHEY_SIMPLEX
cv2
.
putText
(
image
,
str
(
fps
)
,(
100
,
351
),
font
,
1
,(
110
,
110
,
255
),
2
,
cv2
.
LINE_AA
)
# Flip the image horizontally for a selfie-view display.
cv2
.
imshow
(
'
MediaPipe Face Detection
'
,
image
)
if
cv2
.
waitKey
(
5
)
&
0xFF
==
27
:
break
cap
.
release
()
# out.release()
cv2
.
destroyAllWindows
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment