Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
A
apollon
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Blaß, Michael
apollon
Commits
f8c67bdc
Commit
f8c67bdc
authored
Aug 15, 2020
by
Blaß, Michael
Browse files
Options
Downloads
Patches
Plain Diff
metric and init_weights now accept functions and strings.
parent
16d1a162
No related branches found
No related tags found
No related merge requests found
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
src/apollon/som/som.py
+25
-22
25 additions, 22 deletions
src/apollon/som/som.py
src/apollon/som/utilities.py
+6
-0
6 additions, 0 deletions
src/apollon/som/utilities.py
tests/som/test_som.py
+20
-14
20 additions, 14 deletions
tests/som/test_som.py
with
51 additions
and
36 deletions
src/apollon/som/som.py
+
25
−
22
View file @
f8c67bdc
# Licensed under the terms of the BSD-3-Clause license.
# Copyright (C) 2019 Michael Blaß
# mblass@posteo.net
from
typing
import
Dict
,
List
,
Optional
,
Tuple
from
typing
import
Callable
,
Dict
,
List
,
Optional
,
Tuple
,
Union
import
numpy
as
np
from
scipy.spatial
import
cKDTree
...
...
@@ -13,10 +13,13 @@ from . import neighbors as _neighbors
from
.
import
utilities
as
asu
from
..
types
import
Array
,
Shape
,
Coord
WeightInit
=
Union
[
Callable
[[
Array
,
Shape
],
Array
],
str
]
Metric
=
Union
[
Callable
[[
Array
,
Array
],
float
],
str
]
SomDims
=
Tuple
[
int
,
int
,
int
]
class
SomGrid
:
def
__init__
(
self
,
shape
:
Shape
)
->
None
:
if
not
all
(
isinstance
(
val
,
int
)
and
val
>=
1
for
val
in
shape
):
raise
ValueError
(
'
Dimensions must be integer > 0.
'
)
self
.
shape
=
shape
...
...
@@ -62,9 +65,9 @@ class SomGrid:
class
SomBase
:
def
__init__
(
self
,
dims
:
Tuple
[
int
,
int
,
int
]
,
n_iter
:
int
,
eta
:
float
,
nhr
:
float
,
nh_shape
:
str
,
init_
distr
:
str
,
metric
:
str
,
seed
:
Optional
[
float
]
=
None
):
def
__init__
(
self
,
dims
:
SomDims
,
n_iter
:
int
,
eta
:
float
,
nhr
:
float
,
nh_shape
:
str
,
init_
weights
:
WeightInit
,
metric
:
Metric
,
seed
:
Optional
[
float
]
=
None
):
self
.
_grid
=
SomGrid
(
dims
[:
2
])
self
.
n_features
=
dims
[
2
]
...
...
@@ -73,6 +76,7 @@ class SomBase:
self
.
metric
=
metric
self
.
_qrr
=
np
.
zeros
(
n_iter
)
self
.
_trr
=
np
.
zeros
(
n_iter
)
self
.
_weights
:
Optional
[
Array
]
=
None
try
:
self
.
_neighbourhood
=
getattr
(
_neighbors
,
nh_shape
)
...
...
@@ -98,16 +102,13 @@ class SomBase:
if
seed
is
not
None
:
np
.
random
.
seed
(
seed
)
if
init_distr
==
'
uniform
'
:
self
.
_weights
=
np
.
random
.
uniform
(
0
,
1
,
size
=
(
self
.
n_units
,
self
.
dw
))
elif
init_distr
==
'
simplex
'
:
self
.
_weights
=
asu
.
init_simplex
(
self
.
dw
,
self
.
n_units
)
elif
init_distr
==
'
pca
'
:
raise
NotImplementedError
if
isinstance
(
init_weights
,
str
):
self
.
init_weights
=
asu
.
weight_initializer
[
init_weights
]
elif
callable
(
init_weights
):
self
.
init_weights
=
init_weights
else
:
raise
ValueError
(
f
'
Unknown initializer
"
{
init_distr
}
"
. Use
'
'"
uniform
"
,
"
simplex
"
, or
"
pca
"
.
'
)
msg
=
f
'
Initializer must be string or callable.
'
raise
ValueError
(
msg
)
self
.
_dists
:
Optional
[
Array
]
=
None
...
...
@@ -302,23 +303,24 @@ class SomBase:
class
BatchMap
(
SomBase
):
def
__init__
(
self
,
dims
:
tuple
,
n_iter
:
int
,
eta
:
float
,
nhr
:
float
,
nh_shape
:
str
=
'
gaussian
'
,
init_
distr
:
str
=
'
uniform
'
,
metric
:
str
=
'
euclidean
'
,
seed
:
int
=
None
):
def
__init__
(
self
,
dims
:
SomDims
,
n_iter
:
int
,
eta
:
float
,
nhr
:
float
,
nh_shape
:
str
=
'
gaussian
'
,
init_
weights
:
WeightInit
=
'
rnd
'
,
metric
:
Metric
=
'
euclidean
'
,
seed
:
int
=
None
):
super
().
__init__
(
dims
,
n_iter
,
eta
,
nhr
,
nh_shape
,
init_
distr
,
metric
,
super
().
__init__
(
dims
,
n_iter
,
eta
,
nhr
,
nh_shape
,
init_
weights
,
metric
,
seed
=
seed
)
class
IncrementalMap
(
SomBase
):
def
__init__
(
self
,
dims
:
tuple
,
n_iter
:
int
,
eta
:
float
,
nhr
:
float
,
nh_shape
:
str
=
'
gaussian
'
,
init_
distr
:
str
=
'
uniform
'
,
metric
:
str
=
'
euclidean
'
,
seed
:
int
=
None
):
def
__init__
(
self
,
dims
:
SomDims
,
n_iter
:
int
,
eta
:
float
,
nhr
:
float
,
nh_shape
:
str
=
'
gaussian
'
,
init_
weights
:
WeightInit
=
'
rnd
'
,
metric
:
Metric
=
'
euclidean
'
,
seed
:
int
=
None
):
super
().
__init__
(
dims
,
n_iter
,
eta
,
nhr
,
nh_shape
,
init_
distr
,
metric
,
super
().
__init__
(
dims
,
n_iter
,
eta
,
nhr
,
nh_shape
,
init_
weights
,
metric
,
seed
=
seed
)
def
fit
(
self
,
train_data
,
verbose
=
False
,
output_weights
=
False
):
self
.
_weights
=
self
.
init_weights
(
train_data
,
self
.
shape
)
eta_
=
asu
.
decrease_linear
(
self
.
init_eta
,
self
.
n_iter
,
_defaults
.
final_eta
)
nhr_
=
asu
.
decrease_expo
(
self
.
init_nhr
,
self
.
n_iter
,
_defaults
.
final_nhr
)
...
...
@@ -353,6 +355,7 @@ class IncrementalKDTReeMap(SomBase):
def
fit
(
self
,
train_data
,
verbose
=
False
):
"""
Fit SOM to input data.
"""
self
.
_weights
=
self
.
init_weights
(
train_data
,
self
.
shape
)
eta_
=
asu
.
decrease_linear
(
self
.
init_eta
,
self
.
n_iter
,
_defaults
.
final_eta
)
nhr_
=
asu
.
decrease_expo
(
self
.
init_nhr
,
self
.
n_iter
,
_defaults
.
final_nhr
)
iter_
=
range
(
self
.
n_iter
)
...
...
This diff is collapsed.
Click to expand it.
src/apollon/som/utilities.py
+
6
−
0
View file @
f8c67bdc
...
...
@@ -218,3 +218,9 @@ def distribute(bmu_idx: Iterable[int], n_units: int
for
data_idx
,
bmu
in
enumerate
(
bmu_idx
):
unit_matches
[
bmu
].
append
(
data_idx
)
return
unit_matches
weight_initializer
=
{
'
rnd
'
:
sample_rnd
,
'
stm
'
:
sample_stm
,
'
pca
'
:
sample_pca
,}
This diff is collapsed.
Click to expand it.
tests/som/test_som.py
+
20
−
14
View file @
f8c67bdc
...
...
@@ -14,68 +14,72 @@ som_dims = hst.tuples(dimension, dimension, dimension)
class
TestSomBase
(
unittest
.
TestCase
):
@given
(
som_dims
)
def
test_dims
(
self
,
dims
:
SomDim
)
->
None
:
som
=
SomBase
(
dims
,
100
,
0.1
,
10
,
'
gaussian
'
,
'
uniform
'
,
'
euclidean
'
)
som
=
SomBase
(
dims
,
100
,
0.1
,
10
,
'
gaussian
'
,
'
rnd
'
,
'
euclidean
'
)
self
.
assertEqual
(
som
.
dims
,
dims
)
@given
(
som_dims
)
def
test_dx
(
self
,
dims
:
SomDim
)
->
None
:
som
=
SomBase
(
dims
,
100
,
0.1
,
10
,
'
gaussian
'
,
'
uniform
'
,
'
euclidean
'
)
som
=
SomBase
(
dims
,
100
,
0.1
,
10
,
'
gaussian
'
,
'
rnd
'
,
'
euclidean
'
)
self
.
assertEqual
(
som
.
dx
,
dims
[
0
])
@given
(
som_dims
)
def
test_dy
(
self
,
dims
:
SomDim
)
->
None
:
som
=
SomBase
(
dims
,
100
,
0.1
,
10
,
'
gaussian
'
,
'
uniform
'
,
'
euclidean
'
)
som
=
SomBase
(
dims
,
100
,
0.1
,
10
,
'
gaussian
'
,
'
rnd
'
,
'
euclidean
'
)
self
.
assertEqual
(
som
.
dy
,
dims
[
1
])
@given
(
som_dims
)
def
test_dw
(
self
,
dims
:
SomDim
)
->
None
:
som
=
SomBase
(
dims
,
100
,
0.1
,
10
,
'
gaussian
'
,
'
uniform
'
,
'
euclidean
'
)
som
=
SomBase
(
dims
,
100
,
0.1
,
10
,
'
gaussian
'
,
'
rnd
'
,
'
euclidean
'
)
self
.
assertEqual
(
som
.
dw
,
dims
[
2
])
@given
(
som_dims
)
def
test_n_units
(
self
,
dims
:
SomDim
)
->
None
:
som
=
SomBase
(
dims
,
100
,
0.1
,
10
,
'
gaussian
'
,
'
uniform
'
,
'
euclidean
'
)
som
=
SomBase
(
dims
,
100
,
0.1
,
10
,
'
gaussian
'
,
'
rnd
'
,
'
euclidean
'
)
self
.
assertEqual
(
som
.
n_units
,
dims
[
0
]
*
dims
[
1
])
@given
(
som_dims
)
def
test_shape
(
self
,
dims
:
SomDim
)
->
None
:
som
=
SomBase
(
dims
,
100
,
0.1
,
10
,
'
gaussian
'
,
'
uniform
'
,
'
euclidean
'
)
som
=
SomBase
(
dims
,
100
,
0.1
,
10
,
'
gaussian
'
,
'
rnd
'
,
'
euclidean
'
)
self
.
assertEqual
(
som
.
shape
,
(
dims
[
0
],
dims
[
1
]))
@given
(
som_dims
)
def
test_grid
(
self
,
dims
:
SomDim
)
->
None
:
som
=
SomBase
(
dims
,
100
,
0.1
,
10
,
'
gaussian
'
,
'
uniform
'
,
'
euclidean
'
)
som
=
SomBase
(
dims
,
100
,
0.1
,
10
,
'
gaussian
'
,
'
rnd
'
,
'
euclidean
'
)
self
.
assertIsInstance
(
som
.
grid
,
SomGrid
)
"""
@given(som_dims)
def test_dists(self, dims: SomDim) -> None:
som = SomBase(dims, 100, 0.1, 10,
'
gaussian
'
,
'
uniform
'
,
'
euclidean
'
)
som = SomBase(dims, 100, 0.1, 10,
'
gaussian
'
,
'
rnd
'
,
'
euclidean
'
)
self.assertIsInstance(som.dists, np.ndarray)
"""
@given
(
som_dims
)
def
test_weights
(
self
,
dims
:
SomDim
)
->
None
:
som
=
SomBase
(
dims
,
100
,
0.1
,
10
,
'
gaussian
'
,
'
uniform
'
,
'
euclidean
'
)
self
.
assertIs
Instanc
e
(
som
.
weights
,
np
.
ndarray
)
som
=
SomBase
(
dims
,
100
,
0.1
,
10
,
'
gaussian
'
,
'
rnd
'
,
'
euclidean
'
)
self
.
assertIs
Non
e
(
som
.
weights
)
@given
(
som_dims
)
def
test_match
(
self
,
dims
:
SomDim
)
->
None
:
som
=
SomBase
(
dims
,
100
,
0.1
,
10
,
'
gaussian
'
,
'
uniform
'
,
'
euclidean
'
)
data
=
np
.
random
.
rand
(
100
,
dims
[
2
])
som
=
SomBase
(
dims
,
10
,
0.1
,
10
,
'
gaussian
'
,
'
rnd
'
,
'
euclidean
'
)
som
.
_weights
=
som
.
init_weights
(
data
,
som
.
shape
)
self
.
assertIsInstance
(
som
.
match
(
data
),
np
.
ndarray
)
@given
(
som_dims
)
def
test_umatrix_has_map_shape
(
self
,
dims
:
SomDim
)
->
None
:
som
=
SomBase
(
dims
,
100
,
0.1
,
10
,
'
gaussian
'
,
'
uniform
'
,
'
euclidean
'
)
data
=
np
.
random
.
rand
(
100
,
dims
[
2
])
som
=
SomBase
(
dims
,
100
,
0.1
,
10
,
'
gaussian
'
,
'
rnd
'
,
'
euclidean
'
)
som
.
_weights
=
som
.
init_weights
(
data
,
som
.
shape
)
um
=
som
.
umatrix
()
self
.
assertEqual
(
um
.
shape
,
som
.
shape
)
@given
(
som_dims
)
def
test_umatrix_scale
(
self
,
dims
:
SomDim
)
->
None
:
som
=
SomBase
(
dims
,
100
,
0.1
,
10
,
'
gaussian
'
,
'
uniform
'
,
'
euclidean
'
)
som
=
SomBase
(
dims
,
100
,
0.1
,
10
,
'
gaussian
'
,
'
rnd
'
,
'
euclidean
'
)
som
.
_weights
=
np
.
tile
(
np
.
arange
(
som
.
n_features
),
(
som
.
n_units
,
1
))
som
.
_weights
[:,
-
1
]
=
np
.
arange
(
som
.
n_units
)
um
=
som
.
umatrix
(
scale
=
True
,
norm
=
False
)
...
...
@@ -84,7 +88,9 @@ class TestSomBase(unittest.TestCase):
@given
(
som_dims
)
def
test_umatrix_norm
(
self
,
dims
:
SomDim
)
->
None
:
som
=
SomBase
(
dims
,
100
,
0.1
,
10
,
'
gaussian
'
,
'
uniform
'
,
'
euclidean
'
)
data
=
np
.
random
.
rand
(
100
,
dims
[
2
])
som
=
SomBase
(
dims
,
10
,
0.1
,
10
,
'
gaussian
'
,
'
rnd
'
,
'
euclidean
'
)
som
.
_weights
=
som
.
init_weights
(
data
,
som
.
shape
)
um
=
som
.
umatrix
(
norm
=
True
)
self
.
assertEqual
(
um
.
max
(),
1.0
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment