Skip to content
Snippets Groups Projects
Select Git revision
  • 8e8719bfedf3c6cff0115c8d2fb6979dcf877fe6
  • master default protected
2 results

__init__.py

Blame
  • Code owners
    Assign users and groups as approvers for specific file changes. Learn more.
    Sim_0b_data.m 5.85 KiB
    function [H,Z,swro_Z,ro_water,ro_salt,Mw,Ms,Rw,T0,eta,sigma,p_r,rho_r,C_r,swro_L,swro_alpha,swro_R,swro_KK,swro_x_r,swro_b1,swro_b2,J_r,swro_gamma,swro_gamma2,swro_W_r,L,alpha,R,KK,x_r,b1,b2,Q_r,gamma,gamma2,W_r,cE,pE,rho_E,J_sf_0,J_wf_0,Pd_0,Pd_L,Pf_L,Q_sf_0,pd_0,pf_0,pd_L,pf_L,HP_eff,LP_eff,T_eff,V_m,ERD_eff,ERD_fric,A_ERD,eta_ERD,mix_density,pw,pe,swro_beta_fix,beta_fix,mixer_ERD,version,fig,swro_KF,swro_KD,KF,KD]= Sim_0b_data(input1, input2)
    %%  Sim_0b_data(input)
    %
    %   Data for Simulation in chapter 3
    %
    %   SWRO-PRO hybrid system I (realistic ERD)
    %
    %   option_data = 0.1
    %
    %   Input:
    %       input1        -   x
    %       input2        -   x
    
    %% model versions
    version=zeros(1,10);
    % version(1)=0 if co-current, 1 otherwise
    version(2)=1;  % 0 = SWRO beta fixed
    version(3)=0;  % 0 = PRO beta fixed
    version(4)=1;  % 0 = ideal SWRO
    version(5)=1;  % 0 = ideal PRO
    % ERD
    version(6)=3;
    % version(6) = 0 --> only SWRO (no ERD)
    % version(6) = 1 --> only SWRO (with ERD)
    % version(6) = 2 --> only PRO
    % version(6) = 3 --> SWRO-PRO hybrid system (with one ERD)
    % version(6) = 4 --> SWRO-PRO hybrid system (with two ERDs) 
    version(7)=1; % 1 = ICP and ECP for SWRO
    version(8)=1; % 1 = ICP and ECP for PRO
    
    %% Membrane unit properties
    H = 1e-3;           % height of the membrane [m]
    ro_water = 1000;    % mass density of water  [kg/m^3] 
    ro_salt = 2165;     % mass density of salt [kg/m^3] 
    Mw = 18;            % molecular weight of water [kg/kmol]
    Ms = 58.44;         % molecular weight of salt  [kg/kmol]
    Rw = 462;           % gas constant of water  [J/(kg K)] 
    T0 = 297;           % temperature [K] 
    eta = 1.3e-3;       % seawater viscosity [kg/(m s)]
    p_r = 1e5;          % pressure [Pa]=[kg/ms^2]
    rho_r = 1e3;        % density [kg/m^3]
    C_r = 1;            % salt concentration [%]
    
    %% SWRO
    swro_Z=1;               % width of SWRO membrane [m]
    swro_L=4;               % length of SWRO membrane [m]
    if version(6)== 2; swro_L=1; end
    swro_alpha = 5.0815e-9; % SWRO water permeablity co-efficient [s/m]
    swro_R =0.96;           % SWRO salt rejection rate 
    swro_KK = 1e-2;         % SWRO ICP mass transfer coefficient
    swro_KD = 1/swro_KK;    % SWRO ECP draw side mass transfer coefficient
    swro_KF = 1/swro_KK;    % SWRO ECP fresh side mass transfer coefficient
    swro_x_r=swro_L^2;      % x_r=swro_L^2 since x = linspace(0,1,n) (if x = linspace(0,swro_L,n) then x_r=swro_L;)     
    swro_b1 = H/swro_x_r;                           % H/swro_L ratio
    swro_b2 = swro_Z/swro_x_r;                      % Z/swro_L ratio
    J_r = sqrt(H^3/swro_x_r*p_r*rho_r);             % flux [kg/s^2]
    swro_gamma= swro_x_r * p_r *  swro_alpha /J_r;  % SWRO scaling factor - mass balance
    swro_gamma2= J_r^2./(swro_x_r^2 * p_r * rho_r); % SWRO scaling factor - momentum balance
    swro_W_r=J_r*p_r/rho_r;                         % net work [W/m^2]
    sigma=0.999 ;                                   % Rejection coefficient
    swro_beta_fix=4.43e-4/J_r*swro_x_r;             % value for fixed SWRO beta [kg/sm^2]
     
    %% PRO
    Z=1;                    % width of the PRO membrane [m]
    L=1.5;                  % length of the PRO membrane [m]      
    alpha = 5.47e-9;        % water permeablity co-efficient [s/m]
    R =0.94;                % salt rejection rate [1]
    KK=7.13e2;              % mass transfer coefficient [sm^2/kg]
    KD=1/KK;                % PRO ECP draw side mass transfer coefficient [sm^2/kg]
    KF=1/KK;                % PRO ECP fresh side mass transfer coefficient [sm^2/kg]
    x_r=L^2;                % x_r=L^2 since x = linspace(0,1,n) (if x = linspace(0,L,n) then x_r=L;)              
    b1 = H/x_r;             % H/L ratio
    b2 = Z/x_r;                           % Z/L ratio
    Q_r = sqrt(H^3/x_r*p_r*rho_r);        % flux [kg/s^2]
    gamma= x_r * p_r * alpha /Q_r ;       % PRO scaling factor - mass balance
    gamma2= Q_r^2./(x_r^2 * p_r * rho_r); % PRO scaling factor - momentum balance
    W_r=Q_r*p_r/rho_r;                    % net work [W/m^2]
    beta_fix =1.71e-4/Q_r*x_r;            % value for fixed PRO beta [kg/sm^2]
    
    %% Sea Water
    cE= 35/983/C_r;                            % salt concentration in seawater
    pE= 1e5/p_r;                               % external pressure
    rho_E=(cE + 1)./(ro_water*cE/ro_salt + 1); % density of incomming seawater
    
    %% SWRO operating conditions
    J_sf_0 = 0;              % salt flux in fresh side at 0 
    J_wf_0 = 0;              % water flux in fresh side at L               
    Pf_L = pE;               % pressure fresh side at L
    
    Pd_0 =  66e5/p_r;        % pressure draw side at 0
    Pd_L =  60e5/p_r;        % pressure draw side at L (not need in the hybrid system)
    
    %% PRO operation conditions 
    Q_sf_0 = 0;              % salt flux in fresh side at 0
    pf_L = pE;               % pressure of fresh side at L
    
    pd_0 = 12e5/p_r;         % pressure draw side at 0
    pd_L = 14.6e5/p_r;       % pressure of fresh side at 0
    pf_0 = 1.3e5/p_r;        % pressure draw side at L 
    
    %% ERD/Turbine/Pump parameters
    T_eff  = .95;               % turbine efficiency
    HP_eff = .9;            	% high pressure pump efficiency
    LP_eff = .95;               % low pressure pump efficiency
    V_m=0.052;                  % Volumetric mixing
    ERD_eff=.96;                % ERD unit pressure efficiency
    ERD_fric=5e-04;             % ERD friction coefficient
    A_ERD=H*swro_Z;             % cross sectional area of ERD inflows/outflows
    eta_ERD=0.01;               % leak of high pressure brine
    mix_density=997/rho_r;  	% density of mixture in ERD
    pw=2;                       % water price [$/m^3]
    pe=0.5;                     % electricity price [$/kWh]
    mixer_ERD=1;                % PRO Draw outlet mixer adjustment (only if 2nd ERDs) (mixer_ERD=1 --> all flow to ERD2 no turbine needed)    
    
    %% display figures
    %fig=[1,0,0,0,0,0,0,0,1,0,0]; % f(i)=1 --> figure i will be displayed
    fig=[0,0,0,0,0,0,0,0,0,0,0]; % f(i)=1 --> figure i will be displayed
    
    %% model specific changes:
    % co-current
    if pd_0 > pd_L; version(1)=0; else; version(1)=1; end            
    % no SWRO needed (--> use trivial data)
    if version(6) == 2; version(4)=0; Pd_0=40; Pd_L=35; end
    
    end