Skip to content
Snippets Groups Projects
Commit 9dc8680e authored by Malte Schokolowski's avatar Malte Schokolowski
Browse files

fixed merge conflict

parents 48276712 30836634
No related branches found
No related tags found
1 merge request!7Main
class Publication:
#_registry = []
#_citations = []
#_references = []
def __init__(self, title, publication_date, contributors, doi_url,
subjects, num_citations):
#self._registry.append(self)
self.title = title
self.publication_date = publication_date
self.contributors = contributors
self.doi_url = doi_url
self.subjects = subjects
self.num_citations = num_citations
self.num_references = num_references
self._citations = []
self._references = []
class Citation:
def __init__(self, title, journal, contributors, doi_url):
self.title = title
self.journal = journal
self.contributors = contributors
self.doi_url = doi_url
class References:
def __init__(self, title, journal, contributors, doi_url):
self.title = title
self.journal = journal
self.contributors = contributors
self.doi_url = doi_url
......@@ -4,7 +4,7 @@ from input_fj import input, print_pub_info
import sys
if len(sys.argv) != 3:
sys.stderr.write('Usage: {} <url>\n'.format(sys.argv[0]))
sys.stderr.write('Usage: {} <url> <url>\n'.format(sys.argv[0]))
exit(1)
url = sys.argv[1]
url2 = sys.argv[2]
......
Article title: Feasibility of Active Machine Learning for Multiclass Compound Classification
Publication date: January 7, 2016
DOI-URL: https://doi.org/10.1021/acs.jcim.5b00332
Subjects:
Algorithms, Molecules, Drug discovery, Screening assays, Receptors
Contributors:
Tobias Lang, Florian Flachsenberg, Ulrike von Luxburg, Matthias Rarey
This publication is cited by the following 30 publications:
Title: Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery
Journal: Chemical Reviews
Contributors: Xin Yang, Yifei Wang, Ryan Byrne, Gisbert Schneider, Shengyong Yang.
DOI-URL: https://doi.org/10.1021/acs.chemrev.8b00728
Title: De Novo Molecule Design by Translating from Reduced Graphs to SMILES
Journal: Journal of Chemical Information and Modeling
Contributors: Peter Pogány, Navot Arad, Sam Genway, Stephen D. Pickett.
DOI-URL: https://doi.org/10.1021/acs.jcim.8b00626
Title: Designing Algorithms To Aid Discovery by Chemical Robots
Journal: ACS Central Science
Contributors: Alon B. Henson, Piotr S. Gromski, Leroy Cronin.
DOI-URL: https://doi.org/10.1021/acscentsci.8b00176
Title: Modeling Kinase Inhibition Using Highly Confident Data Sets
Journal: Journal of Chemical Information and Modeling
Contributors: Sorin Avram, Alina Bora, Liliana Halip, Ramona Curpăn.
DOI-URL: https://doi.org/10.1021/acs.jcim.7b00729
Title: Predictive Models for Fast and Effective Profiling of Kinase Inhibitors
Journal: Journal of Chemical Information and Modeling
Contributors: Alina Bora, Sorin Avram, Ionel Ciucanu, Marius Raica, and Stefana Avram .
DOI-URL: https://doi.org/10.1021/acs.jcim.5b00646
Title: Evaluation of categorical matrix completion algorithms: toward improved active learning for drug discovery
Journal: Bioinformatics
Contributors: Huangqingbo Sun, Robert F Murphy, .
DOI-URL: https://doi.org/10.1093/bioinformatics/btab322
Title: An Artificial Intelligence Approach Based on Hybrid CNN-XGB Model to Achieve High Prediction Accuracy through Feature Extraction, Classification and Regression for Enhancing Drug Discovery in Biomedicine
Journal: International Journal of Biology and Biomedical Engineering
Contributors: Mukesh Madanan, Biju T. Sayed, Nurul Akhmal Mohd Zulkefli, Nitha C. Velayudhan.
DOI-URL: https://doi.org/10.46300/91011.2021.15.22
Title: Artificial Intelligence in Medicinal Chemistry
Journal:
Contributors: Edward Griffen, Alexander Dossetter, Andrew Leach, Shane Montague.
DOI-URL: https://doi.org/10.1002/0471266949.bmc267
Title: Practical Chemogenomic Modeling and Molecule Discovery Strategies Unveiled by Active Learning
Journal:
Contributors: J.B. Brown.
DOI-URL: https://doi.org/10.1016/B978-0-12-801238-3.11533-8
Title: Machine learning phases and criticalities without using real data for training
Journal: Physical Review B
Contributors: D.-R. Tan, F.-J. Jiang.
DOI-URL: https://doi.org/10.1103/PhysRevB.102.224434
Title: Active learning effectively identifies a minimal set of maximally informative and asymptotically performant cytotoxic structure–activity patterns in NCI-60 cell lines
Journal: RSC Medicinal Chemistry
Contributors: Takumi Nakano, Shunichi Takeda, J.B. Brown.
DOI-URL: https://doi.org/10.1039/D0MD00110D
Title: Active learning efficiently converges on rational limits of toxicity prediction and identifies patterns for molecule design
Journal: Computational Toxicology
Contributors: Ahsan Habib Polash, Takumi Nakano, Christin Rakers, Shunichi Takeda, J.B. Brown.
DOI-URL: https://doi.org/10.1016/j.comtox.2020.100129
Title: Practical considerations for active machine learning in drug discovery
Journal: Drug Discovery Today: Technologies
Contributors: Daniel Reker.
DOI-URL: https://doi.org/10.1016/j.ddtec.2020.06.001
Title: Designing compact training sets for data-driven molecular property prediction through optimal exploitation and exploration
Journal: Molecular Systems Design & Engineering
Contributors: Bowen Li, Srinivas Rangarajan.
DOI-URL: https://doi.org/10.1039/C9ME00078J
Title: Applicability Domain of Active Learning in Chemical Probe Identification: Convergence in Learning from Non-Specific Compounds and Decision Rule Clarification
Journal: Molecules
Contributors: Ahsan Habib Polash, Takumi Nakano, Shunichi Takeda, J.B. Brown.
DOI-URL: https://doi.org/10.3390/molecules24152716
Title: Capturing and applying knowledge to guide compound optimisation
Journal: Drug Discovery Today
Contributors: Matthew Segall, Tamsin Mansley, Peter Hunt, Edmund Champness.
DOI-URL: https://doi.org/10.1016/j.drudis.2019.02.004
Title: A novel graph kernel on chemical compound classification
Journal: Journal of Bioinformatics and Computational Biology
Contributors: Qiangrong Jiang, Jiajia Ma.
DOI-URL: https://doi.org/10.1142/S0219720018500269
Title: Accelerating Drug Discovery Using Convolution Neural Network Based Active Learning
Journal:
Contributors: Pengfei Liu, Kwong-Sak Leung.
DOI-URL: https://doi.org/10.1109/TENCON.2018.8650298
Title: An Adaptive Lightweight Security Framework Suited for IoT
Journal:
Contributors: Menachem Domb.
DOI-URL: https://doi.org/10.5772/intechopen.73712
Title: Adaptive mining and model building of medicinal chemistry data with a multi-metric perspective
Journal: Future Medicinal Chemistry
Contributors: JB Brown.
DOI-URL: https://doi.org/10.4155/fmc-2018-0188
Title: Chemogenomic Active Learning's Domain of Applicability on Small, Sparse qHTS Matrices: A Study Using Cytochrome P450 and Nuclear Hormone Receptor Families
Journal: ChemMedChem
Contributors: Christin Rakers, Rifat Ara Najnin, Ahsan Habib Polash, Shunichi Takeda, J.B. Brown.
DOI-URL: https://doi.org/10.1002/cmdc.201700677
Title: Automating drug discovery
Journal: Nature Reviews Drug Discovery
Contributors: Gisbert Schneider.
DOI-URL: https://doi.org/10.1038/nrd.2017.232
Title: Classifiers and their Metrics Quantified
Journal: Molecular Informatics
Contributors: J. B. Brown.
DOI-URL: https://doi.org/10.1002/minf.201700127
Title: Active Search for Computer-aided Drug Design
Journal: Molecular Informatics
Contributors: Dino Oglic, Steven A. Oatley, Simon J. F. Macdonald, Thomas Mcinally, Roman Garnett, Jonathan D. Hirst, Thomas Gärtner.
DOI-URL: https://doi.org/10.1002/minf.201700130
Title: Selection of Informative Examples in Chemogenomic Datasets
Journal:
Contributors: Daniel Reker, J. B. Brown.
DOI-URL: https://doi.org/10.1007/978-1-4939-8639-2_13
Title: The value of prior knowledge in machine learning of complex network systems
Journal: Bioinformatics
Contributors: Dana Ferranti, David Krane, David Craft, .
DOI-URL: https://doi.org/10.1093/bioinformatics/btx438
Title: Lightweight adaptive Random-Forest for IoT rule generation and execution
Journal: Journal of Information Security and Applications
Contributors: Menachem Domb, Elisheva Bonchek-Dokow, Guy Leshem.
DOI-URL: https://doi.org/10.1016/j.jisa.2017.03.001
Title: Active learning for computational chemogenomics
Journal: Future Medicinal Chemistry
Contributors: Daniel Reker, Petra Schneider, Gisbert Schneider, JB Brown.
DOI-URL: https://doi.org/10.4155/fmc-2016-0197
Title: Small Random Forest Models for Effective Chemogenomic Active Learning
Journal: Journal of Computer Aided Chemistry
Contributors: Christin Rakers, Daniel Reker, J.B. Brown.
DOI-URL: https://doi.org/10.2751/jcac.18.124
Title: Large-Scale Off-Target Identification Using Fast and Accurate Dual Regularized One-Class Collaborative Filtering and Its Application to Drug Repurposing
Journal: PLOS Computational Biology
Contributors: Hansaim Lim, Aleksandar Poleksic, Yuan Yao, Hanghang Tong, Di He, Luke Zhuang, Patrick Meng, Lei Xie, .
DOI-URL: https://doi.org/10.1371/journal.pcbi.1005135
Article title: Matched Molecular Series: Measuring SAR Similarity
Publication date: May 1, 2017
DOI-URL: https://doi.org/10.1021/acs.jcim.6b00709
Subjects:
Substituents, Mathematical methods, Structure activity relationship, Biological databases
Contributors:
Emanuel S. R. Ehmki, Christian Kramer
This publication is cited by the following 5 publications:
Title: Matched Molecular Series Analysis for ADME Property Prediction
Journal: Journal of Chemical Information and Modeling
Contributors: Mahendra Awale, Sereina Riniker, Christian Kramer.
DOI-URL: https://doi.org/10.1021/acs.jcim.0c00269
Title: Approaches using AI in medicinal chemistry
Journal:
Contributors: Christian Tyrchan, Eva Nittinger, Dea Gogishvili, Atanas Patronov, Thierry Kogej.
DOI-URL: https://doi.org/10.1016/B978-0-12-822249-2.00002-5
Title: Bioactivity Prediction Based on Matched Molecular Pair and Matched Molecular Series Methods
Journal: Current Pharmaceutical Design
Contributors: Xiaoyu Ding, Chen Cui, Dingyan Wang, Jihui Zhao, Mingyue Zheng, Xiaomin Luo, Hualiang Jiang, Kaixian Chen.
DOI-URL: https://doi.org/10.2174/1381612826666200427111309
Title: BRADSHAW: a system for automated molecular design
Journal: Journal of Computer-Aided Molecular Design
Contributors: Darren V. S. Green, Stephen Pickett, Chris Luscombe, Stefan Senger, David Marcus, Jamel Meslamani, David Brett, Adam Powell, Jonathan Masson.
DOI-URL: https://doi.org/10.1007/s10822-019-00234-8
Title: The use of matched molecular series networks for cross target structure activity relationship translation and potency prediction
Journal: MedChemComm
Contributors: Christopher E. Keefer, George Chang.
DOI-URL: https://doi.org/10.1039/C7MD00465F
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment