Skip to content
Snippets Groups Projects
Commit 7fa45ade authored by Le, Mia's avatar Le, Mia
Browse files

temporarily removed digest from seed_var evaluation

parent 2048647d
No related branches found
No related tags found
No related merge requests found
...@@ -17,7 +17,7 @@ def predict_and_make_consensus(cami, vis=False): ...@@ -17,7 +17,7 @@ def predict_and_make_consensus(cami, vis=False):
if vis: if vis:
cami.use_nvenn(download=True) cami.use_nvenn(download=True)
def make_seedvariation(cami, n_iterations, removal_frac=0.2, vis=False, plot=True): def make_seedvariation(cami, n_iterations, removal_frac=0.2, vis=False, plot=False):
identifier = cami.uid identifier = cami.uid
base_seeds = cami.origin_seed_lst base_seeds = cami.origin_seed_lst
original_seeds = [cami.ppi_vertex2gene[seed] for seed in base_seeds] original_seeds = [cami.ppi_vertex2gene[seed] for seed in base_seeds]
...@@ -52,11 +52,11 @@ def make_seedvariation(cami, n_iterations, removal_frac=0.2, vis=False, plot=Tru ...@@ -52,11 +52,11 @@ def make_seedvariation(cami, n_iterations, removal_frac=0.2, vis=False, plot=Tru
for tool in prediction_tools: for tool in prediction_tools:
res_table.write(f'\t{tool}_msr_ks_pvalue') res_table.write(f'\t{tool}_msr_ks_pvalue')
with open(os.path.join(cami.tmp_dir, f'{used_tools[0]}_{cami.uid}_relevance_scores.tsv'), 'r') as f: # with open(os.path.join(cami.tmp_dir, f'{used_tools[0]}_{cami.uid}_relevance_scores.tsv'), 'r') as f:
for line in f: # for line in f:
val_name = line.split('\t')[0] # val_name = line.split('\t')[0]
redisc_table.write(f'\t{val_name}') # redisc_table.write(f'\t{val_name}')
res_table.write('\n') # res_table.write('\n')
# result dictionaries of the form {tool:list(value for each iteration)} # result dictionaries of the form {tool:list(value for each iteration)}
tp_rate_dict = {k:list() for k in used_tools} tp_rate_dict = {k:list() for k in used_tools}
...@@ -142,10 +142,10 @@ def make_seedvariation(cami, n_iterations, removal_frac=0.2, vis=False, plot=Tru ...@@ -142,10 +142,10 @@ def make_seedvariation(cami, n_iterations, removal_frac=0.2, vis=False, plot=Tru
list(module_size_dict[pred_tool])) list(module_size_dict[pred_tool]))
res_table.write(f'\t{p_val}') res_table.write(f'\t{p_val}')
with open(os.path.join(cami.tmp_dir, f'{tool}_{identifier}_relevance_scores.tsv)'), 'r') as f: # with open(os.path.join(cami.tmp_dir, f'{tool}_{identifier}_relevance_scores.tsv)'), 'r') as f:
for line in f: # for line in f:
rel_score = line.split('\t')[1].strip() # rel_score = line.split('\t')[1].strip()
res_table.write(f'\t{rel_score}') # res_table.write(f'\t{rel_score}')
res_table.write('\n') res_table.write('\n')
print(f'Result tables are saved in the following locations:') print(f'Result tables are saved in the following locations:')
...@@ -171,7 +171,7 @@ def make_seedvariation(cami, n_iterations, removal_frac=0.2, vis=False, plot=Tru ...@@ -171,7 +171,7 @@ def make_seedvariation(cami, n_iterations, removal_frac=0.2, vis=False, plot=Tru
#PLOT #PLOT
# Create a figure instance # Create a figure instance
#print(sys.getrecursionlimit()) #print(sys.getrecursionlimit())
fig1, (ax1, ax5, ax4) = plt.subplots(3, 1, figsize=(20,20)) fig1, (ax1, ax5) = plt.subplots(2, 1, figsize=(20,20))
fig1.subplots_adjust(left=0.2) fig1.subplots_adjust(left=0.2)
# Extract Figure and Axes instance # Extract Figure and Axes instance
...@@ -200,26 +200,26 @@ def make_seedvariation(cami, n_iterations, removal_frac=0.2, vis=False, plot=Tru ...@@ -200,26 +200,26 @@ def make_seedvariation(cami, n_iterations, removal_frac=0.2, vis=False, plot=Tru
ax1.set_ylabel('Rediscovery rate (<rediscovered seeds>/<removed seeds>)', wrap=True, fontsize=14) ax1.set_ylabel('Rediscovery rate (<rediscovered seeds>/<removed seeds>)', wrap=True, fontsize=14)
violins2 = ax4.violinplot([tp_rate_dict[tool] for tool in tools], showmeans=True, showextrema=True) # violins2 = ax4.violinplot([tp_rate_dict[tool] for tool in tools], showmeans=True, showextrema=True)
for violinpart in list(violins2.keys())[2:]: # for violinpart in list(violins2.keys())[2:]:
violins2[violinpart].set_color('k') # violins2[violinpart].set_color('k')
for violin, tool in zip(violins2['bodies'], tools): # for violin, tool in zip(violins2['bodies'], tools):
if tool in [tw.name for tw in cami.tool_wrappers]: # if tool in [tw.name for tw in cami.tool_wrappers]:
violin.set_facecolor('tan') # violin.set_facecolor('tan')
elif tool == 'first_neighbors': # elif tool == 'first_neighbors':
violin.set_facecolor('peachpuff') # violin.set_facecolor('peachpuff')
elif tool in ['union', 'intersection']: # elif tool in ['union', 'intersection']:
violin.set_facecolor('orange') # violin.set_facecolor('orange')
else: # else:
violin.set_facecolor('darkorange') # violin.set_facecolor('darkorange')
# Add title # # Add title
ax4.set_title(f'True positive rates after randomly removing {nof_removals} seeds {nof_iterations} times from {identifier} seeds.', wrap=True, fontsize=14) # ax4.set_title(f'True positive rates after randomly removing {nof_removals} seeds {nof_iterations} times from {identifier} seeds.', wrap=True, fontsize=14)
ax4.set_xticks(list(range(1,len(tools)+1))) # ax4.set_xticks(list(range(1,len(tools)+1)))
ax4.set_xticklabels(tool_labels) # ax4.set_xticklabels(tool_labels)
ax4.tick_params(axis='x', labelsize=11) # ax4.tick_params(axis='x', labelsize=11)
ax4.set_ylabel('Sensitivity (TP/TP + FN)', wrap=True, fontsize=14) # ax4.set_ylabel('Sensitivity (TP/TP + FN)', wrap=True, fontsize=14)
violins3 = ax5.violinplot([module_size_dict[tool] for tool in tools], showmeans=True, showextrema=True) violins3 = ax5.violinplot([module_size_dict[tool] for tool in tools], showmeans=True, showextrema=True)
# Add title # Add title
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment