Consensus Active Module Identification - CAMI
Description | Installation | Usage | Directory Tree| LICENSE
Description
Consensus Active Module Identification(CAMI)
CAMI has two functions:
- Consensus Prediction: Use different algorithms to find active disease modules in a given PPI-network and combines their results.
- Uses a protein-protein-interaction-network (PPI-network) and a seed list as input Evaluation: Evaluate different tools with respect to the consensus of multiple tools.
Cami was tested with the python 3.7
interpreter, we recommend using this
version of python
for a better user experience.
Added channels and modules added to the cami environment variable
are found in the file cami_env.yml
in the root directory of this repository.
Installation
git clone https://gitlab.rrz.uni-hamburg.de/bay2046/cami.git
cd cami
After successfully cloning the cami repository, follow the steps below for proper installation and use of cami
0. Create cami environment:
sh cami.sh
option: y create cami env
1. Initialize cami:
conda activate cami
2. Update cami:
sh cami.sh
option: u update env cami
3. Install cami certificate:
sh cami.sh
option: ce fix drugstone certificates
4. Execute a example:
sh cami.sh
option: ex execute a example
5. Remove tmp file:
sh cami.sh
option: cl remove tmp file
Usage
./cami.py [-n] [PPI] [-s] [SEEDS] [-t] [TOOLS] [-id] [IDENTIFIER]
Example
./cami.py -n ./human_annotated_PPIs_brain.txt -s ./ms_seeds.txt -t robust -id test_run
CAMI flags
-n or --ppi_network # Path to a csv file containing the different edges
# of the base PPI
-s or -seeds # Path to a txt file containing the seeds delimitered
# by breakline characters
-t or --tools # List of tools that the user wants to use
# for prediction. Available tools are
# domino, diamond, robust, hotnet.
# The default tools are: diamond, domino and robust.
-w or --tool_weights # List of weights for the tools. If you have
# [domino, diamond, robust] as list of tools and
# diamonds weight should be twice as high as
# the other tools type: 1 2 1
-c or --consensus # run the consensus prediction part of cami
-e or --evaluate # run the evaluation part of cami
-o or --output_dir # path to output directory
-id or --identifier # ID for the current excecution of cami.
# Defaults to a randomly generated ID
-tmp or --save_temps # keep temporary files
-v or --visualize # Visualize results using Degradome, an external webtool.
# Please note that degradome can only be used
# for visualization with up to 5 tools.
-img or --save_image # Save the venn diagram from the visualization as png.
# (Only possible for up to 5 tools)
-f or --forcei # Ignore warnings and overwrite everything when excecuting CAMI.
-d or --drugstone # Visualize the cami module via the drugstone API. If
# necessary the user needs to provide a list of the two titles of the two
# columns that contain the symbols of the gene edges in the inputfile of the
# PPI network. The order needs to correspond to the order of the first two
# columns. The default is 'Official_Symbol_Interactor_A
# Official_Symbol_Interactor_B'. Please note that the symbol columns cannot
# be the first two columns. If the two main edges in the first two columns
# are correspond also the gene symbols please duplicate these columns.
-ncbi or --ncbi # Save the NCBI URLs and Summaries of the genes in the CAMI output.
Directory Tree
.
├── bin
├── cami
│ ├── AlgorithmWrapper.py
│ ├── cami.py
│ ├── cami_suite.py
│ ├── degradome.py
│ ├── DiamondWrapper.py
│ ├── DominoWrapper.py
│ ├── drugstone.py
│ ├── example_run.py
│ ├── HHotNetWrapper.py
│ ├── ncbi.py
│ ├── preprocess.py
│ ├── RobustWrapper.py
│ └── test_run.py
├── cami.sh
├── cami_env.yaml
├── CHANGELOG.txt
├── data
│ ├── input
│ ├── output
│ └── tmp
├── doc
│ ├── cami.txt
│ └── tags
├── docker_cami
│ ├── docker-compose.yaml
│ ├── Dockerfile
│ └── README.md
├── drugstone_certificates.txt
├── LICENSE
├── Makefile
├── module_to_exec.txt
├── README.md
├── src
├── tools
│ ├── DIAMOnD
│ ├── diamond_packages.txt
│ ├── HHotNet
│ └── robust
└── tree_cami.txt
LICENSE
Released under the GNU General Public License v3.0.