{"cells":[{"metadata":{},"cell_type":"markdown","source":"# Welcome to Jupyter!"},{"metadata":{"trusted":true},"cell_type":"code","source":"\n##########################################################################\n# This program implements a more advanced version of the zero-layer model.\n# It carries out the following steps:\n# 1. Calculate surface temperature T_surf from heat-flux balance\n# 2. If T_surf > 273 K, set T_surf to 273 K and calculate surface melting\n# 3. Calculate heat flux in ice assuming a linear temperature profile\n# 4. Calculate change in ice thickness from energy balance and ice bottom\n# 5. Calculate new ice thickness\n#\n# Based on AGF 211 exercise, part 3.1\n#\n# Written by Dirk Notz\n#\n# 07 February 2013\n#\n#########################################################################\n\nimport numpy as np\nimport matplotlib.pyplot as plt\n\n\n\ndef snowfall(day):\n if day>232 and day <=304: \n SF = 0.30/72\n elif day > 304 or day < 122:\n SF = 0.05/176\n elif day >=122 and day < 154:\n SF = 0.05/31\n else:\n SF = 0\n #SF=0\n return SF \n\ndef otherfluxes(day):\n LW = 118. * np.exp(-0.5 * (day-206.)**2 / (53.**2)) + 145.#179.\n return LW+8.5\n \n#def shortwave(day):\n# SW = 314 * np.exp(-(day-164.)**2/4608.)\n# return SW\n\ndef shortwave(day, lat=90.):\n swAA=np.sin(day/365*np.pi)**6*np.sin(lat/180.*np.pi)\n if lat<0: swAA=0.\n sw=np.cos((lat-30.*np.sin(day/365*np.pi)**2+15.)/360.*2*np.pi)**2 +0.5* swAA\n sw=sw*360.\n return sw\n \n\ndef albedo(day):\n alpha=-0.431/(1+((day-207.)/44.5)**2)+0.914\n return alpha\n\nQ_ocean = 13.5 # Heat flux from the water\nalbedow = 0.1 # albedo of the water\nh_ice1 = 0. # Initial ice thickness\neps_sigma = 0.95*5.67e-8 # Constant in Boltzman-law\nL = 334000. # Latent heat of freezing for water [J/kg]\nc_w = 4000. # Heat capacity of water\ndepth = 50. # Depth of the mixed layer\nrho_w = 1025. # Density of sea water\nrho_i = 970. # density of ice [kg/m^3]\nrho_s = 330. # density of snow [kg/m^3]\nk_ice = 2.2 # heat conductivity of ice [W/(m K)]\nk_snow = 0.3 # heat conductivity of snow [W/(m K)]\nTbot = -1.8+273.15 # Bottom temperature in Kelvin\ndt = 86400.\ndays=3650\n\n\nT_water=np.zeros(days+1)+Tbot\nh_snow=np.zeros(days+1)\nh_ice=np.zeros(days+1)\nh_ice[0]=h_ice1\nTsurf=np.zeros(days+1)\n\n\nfor day in range(days):\n doy=day%365\n if doy==0: doy=365\n \n if h_ice[day] > 0:\n Q_surf_in = (1-albedo(doy))*shortwave(doy) + otherfluxes(doy)\n \n # Calculate surface temperature\n a = eps_sigma\n b = 0.\n c = 0.\n d = 1./(h_ice[day]/k_ice+h_snow[day]/k_snow)\n e = - Q_surf_in - Tbot/(h_ice[day]/k_ice+h_snow[day]/k_snow)\n Tsurf[day]= np.max(np.real(np.roots([a,b,c,d,e])))\n \n if Tsurf[day] > 273.15: \n Tsurf[day] = 273.15\n \n # Heat flux in the ice\n Q_ice = - (Tsurf[day] - Tbot) / (h_ice[day]/k_ice + h_snow[day]/k_snow)\n \n # Outgoing longwave heat flux\n Q_surf_out = eps_sigma * Tsurf[day]**4\n \n # Calculate heat flux imbalance at surface. \n # This is zero as long as Tsurf < 273.15\n Q_surf = Q_surf_out - Q_surf_in - Q_ice\n \n # Calculate thickness change at bottom\n delta_h_bot = (Q_ice-Q_ocean) * dt / (rho_i * L) \n \n # Calculate thickness change at surface\n if h_snow[day] > 0:\n delta_h_snow = Q_surf *dt / (rho_s * L)\n delta_h_surf = 0\n else:\n delta_h_surf = Q_surf *dt / (rho_i * L) \n delta_h_snow = 0\n \n # Calculate new ice thickness\n h_ice[day+1] = h_ice[day] + delta_h_surf + delta_h_bot \n \n # Calculate new snow thickness\n h_snow[day+1] = h_snow[day] + snowfall(doy) + delta_h_snow\n\n # If more snow melted than we had, melt some ice\n if h_snow[day+1] < 0:\n h_ice[day+1]=h_ice[day+1]+h_snow[day+1]*rho_s/rho_i\n h_snow[day+1] = 0\n \n T_water[day+1]=Tbot\n\n else: # If there is no more ice\n \n # Set surface temperature to water temperature\n Tsurf[day] = T_water[day] \n \n # Calculate heat flux at sea surface\n Q_surf = -((1 - albedow) * shortwave(doy) + otherfluxes(doy)) + eps_sigma * T_water[day]**4\n \n # Change water temperature accordingly\n T_water[day+1] = T_water[day] - Q_surf / (rho_w*c_w * depth) * dt\n \n # Change water temperatute for the few cases where h_ice <0, otherwise\n # nothing happens here since h_ice is usually 0\n T_water[day+1] = T_water[day+1] - h_ice[day] * rho_i * L / (rho_w * c_w * depth)\n \n # Set h_ice to 0\n h_ice[day] = 0\n \n # If water starts freezing, set temperature to freezing temperature\n # and use excess heat to form some ice\n if T_water[day+1] < Tbot:\n h_ice[day+1] = -(T_water[day+1] - Tbot) * rho_w * c_w * depth / (rho_i * L)\n T_water[day+1] = Tbot\n h_snow[day+1] = 0\n else:\n h_ice[day+1] = 0\n h_snow[day+1] = 0\n\nif 1:\n # Plot temperature evolution\n fig, axes=plt.subplots(nrows=4, sharex=True)\n ax=axes[0]\n ax.plot(Tsurf-273.15)\n ax.set_xlim([0, days])\n ax.set_ylim([-35,20])\n #ax.set_xlabel('day')\n ax.set_ylabel('Temperature [°C]')\n\n # Plot ice-thickness evolution\n ax=axes[1]\n ax.plot(h_ice)\n ax.set_xlim([0, days])\n #ax.set_xlabel('day')\n ax.set_ylabel('Ice thickness [m]')\n \n # Plot snow-thickness evolution\n ax=axes[2]\n ax.plot(h_snow)\n ax.set_xlim([0, days])\n #ax.set_xlabel('day')\n ax.set_ylabel('Snow thickness [m]')\n \n # Plot water temperature\n ax=axes[3]\n ax.plot(T_water-273.15)\n ax.set_xlim([0, days])\n ax.set_xlabel('Time [days]')\n ax.set_ylabel('Water temperature [°C]')\n \nif 1:#plot seasonal cycle\n fig, ax=plt.subplots()\n doys=np.arange(365)\n otherf=np.zeros(365)\n swf=np.zeros(365)\n for doy in doys:\n otherf[doy]=otherfluxes(doy)\n swf[doy]=shortwave(doy)\n ax.plot(doys, otherf, label='Other Fluxes')\n ax.plot(doys, swf, label='Shortwave Fluxes')\n plt.legend()\n \n \nif 1:#find approximation of fig 3a in https://acp.copernicus.org/articles/5/2847/2005/acp-5-2847-2005.pdf\n #plt.figure()\n lats=np.linspace(-90,90, 100)\n doys=np.arange(365)\n lats2d, doys2d=np.meshgrid(lats, doys)\n\n swAA=np.sin(doys2d/365*np.pi)**6*np.sin(lats2d/180.*np.pi)\n swAA[lats2d<0]=0.\n sw=np.cos((lats2d-30.*np.sin(doys2d/365*np.pi)**2+15.)/360.*2*np.pi)**2 +0.5* swAA\n sw=sw*265.\n \n plt.figure()\n plt.contourf(doys2d,lats2d, sw)\n plt.colorbar()\n ","execution_count":2,"outputs":[{"output_type":"display_data","data":{"text/plain":"<Figure size 432x288 with 4 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAAAYoAAAEeCAYAAACUiVJFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACLJUlEQVR4nO2dd3hT59XAf0eyJW8bT8wwZm8II2SQSdLMZjRNmpDOdCRt06Z77737tRnNbNMZyN57AiEQwOyNMeC999R6vz+uZGQjy/dKV7JJ7u959Ni+upKOX937nveM9xxRSmFhYWFhYTEUtpEWwMLCwsJidGMpCgsLCwuLsFiKwsLCwsIiLJaisLCwsLAIi6UoLCwsLCzCYikKCwsLC4uwWIrCwsLCwiIsCXpOEpFsHaf5lFKt0YljYWFhYTHaED0b7kSkF6gGJMxpdqVUkVmCWVhYWFiMDnRZFMA+pdSicCeIyDYT5LGwsLCwGGXotSiSlFK90Z5jYWFhYXHyoTeYPV9ELh18UESuFJElAJaSsLCwsHhvoldR/AHYF+L4Xv9zFhYWFhbvUfQqihyl1NHBB5VSpUCOqRJZWFhYWIwq9CqK5DDPpZohiIWFhYXF6ESvonhNRH4lIgPSY0XkZ8Ab5otlYWFhYTFa0Jv1lAo8ACwDtvsPLwS2AJ9VSnXGSkALCwsLi5FFl6LoP1lkCjDX/+cepVRZTKSysLCwsBg16FYUIpLiP78rtiJZWFhYWIwm9LqebgPOABSwSSn1lxjLZWFhYWExStCrKEqApWi1nrYopRbHWjALCwsLi9GB3lpPvwee8P/+l9iIYmFhYWExGjEUzLawsLCweP9hNS6ysLCwsAiLLkUhIlvNOMfCwsLC4uRDbzC7BzgU7hQgc7Q0LsrNzVXFxcUjLYaFhYXFSUNJSUmjUiov1HN6g9mzdJzj1S9SbCkuLmbLli0jLYaFhYXFSYOIHBvqOV2KQik15BtYWFhYWLy3sYLZFhYWFhZhsRSFhYWFhUVYDCsKEZkkIhf6f08WkXTzxbKwsLCwGC0YUhQi8jngMeBe/6EJwFMmy2RhYWFhMYowalHcCiwH2gGUUoeAfLOFsrCwsLAYPRhVFH1KKVfgDxFJQKsoa2FhYWHxHsWoolgjIt8HkkXkA8CjwLPmi2VhYWFhMVowqii+AzQAu4BbgBeAH5otlIWFhYXF6EHvzmxExAbsVErNA+6PnUgWFhYWFqMJ3RaFUsoH7BCRUVHPycLCwsIiPui2KPwUAntEZBPQ3ztbKXWlqVJZWFhYWIwajCqKn8VEimEQkUuAvwJ24AGl1G9HQg4LCwuL9yOGFIVSak2sBBkKEbEDdwEfACqBzSLyjFJqb7xlsbCwsHg/YkhRiEgHx/dNOIBEoEsplWG2YEEsA0qVUmV+GVYDVwFDKoo+jy+iD7p/bRn7atv7/7aL8LlzpjCjIJ1et5f2HjcZyYkkJdoBeHZHNQUZSSybnB3R54XiYF0H968twzuoT0hWsoPvXTaLRPvxsNKbB+pRSrFiVoFpnx/grjdLOdzQOeDYpfMK+cCcEz/L4/Vx15uH+eSZk8hKcZgmw7GmLu56sxSPb+BYFGWn8NULZww4trOylUN1nXx4yQTTPh9AKcVfXjtERUv3gOOzx2bwuXOmnHD+nuo2dle1cf2p5obydla28q93jqGCti3ZRPjUmcXMG5854FyP18edb5Zy0/LJZCYnmiaDz6f406sHqGnrHXA8L93Jdy6ehc0mA46/sqeWFEcCZ03PNU0GgJJjzTz0bsWAsQi+V4Pp83i5683DfP7cKaQ4jDpQhsbrU/z+pf00dPYNOD6zIJ1bzp16wvlvHajHF4N7dcPhJh4tqRhwTBBuWn7iddHS5eJfG45y24rpJ3xXw2HUohjwLYjI1WgTeSwZDwSPRCVw2uCTRORm4GaA5LEnflHD0d7r5tcv7iMrOZFUpzYslS09PLW9imn56eyvbScwdxfnpHDOjDz+vUGrvn70t5cb/ryhuH9tGY+WVDJhTHL/sV63l8ZOFz1uL6kOO16lKMxM4tcv7Df98wEaO/v4w8sHyE51kOLQlGJ1aw9PbK3igln57Khs61eas8am09HnYUdFK01dffz8qnmmyfHIlgoeLalkfNbxsejs89Da7cbt9dHc5QYU4zKT+dOrBwFMVxSVLT389fVD5KQ6SPaPRVuPmye2VlHZ0s3OqjY6ej1kJCUwuzCD/71bDmC6ovj720d4YVcNBRlJA2R7dW8d587I41hzNzaBSdkptPW4efNAA90uL9+/bLZpMpQ2dHLXm4fJTXP0L5a6XV6au1w0tPfR1uOmvddNZnIic8ZlcvvrWq8zs6/Pe9aUseZAA/kZzv5jlS09vHmgntOm5FDR3I2IMDknhcqWHrYca8GZYOPW86eZJsPuqjbuXVtGXroTZ4K2eGv3Xxd17X3sq2mny+UhK8XBnMIM7llzGDB/LP72VimbjjSTlz5wLF7ZU8uFcwqobOnGbhMm56bx3M5qOno9LJ+Wy6nFxha3UalYpdRTIvLdaN5DB6FU3wm7wZVS9wH3AaRPmGl4t/jOijaUgttXLuLs6VqTp8nfex63V5HqsHPbiunkpjtp7XKxvaKVR7dUGv0IXWyraOXC2fk88MlT+49tOdrMtfdsYNWmcpIT7dhtQmefJyafD9rqFeDujy7mtCk5AHzqwU28daCB/bUdnD8zj5w0Jy1dLrZVtHCwTrM8AgrWLLaVtzJvXCbPfvms/mNPbK3k64/s6J+wQGjq6hv6TaJkZ2UbAA/edCoLJmQB2qT9i+f28r93y1kyaQwzC9Jp7Ozjme3VMZVjxax87v340v5ji3/xKs1dLt490sSMgnR8SrGxrJnadm3Fn2by97GjohWA1TefzrR8bc345v56bvrnZp7YVsWssemMSXFwrKmbN/bXm/rZweysbOWy+WP5yw2L+o9N/f4LNHa62F7eytT8NHy+gWORYaJlFZAB4MkvnsmEMSkA/Oudo/zkmT38Y/0RTpmYRU6qg/qOPv7+dpmpnx1AKcWOilauWTye31yzoP/4wp+9QluPm7dLG5mSm4rbq3jeryQgsuvCqOvpmqA/bcBSYl/CoxKYGPT3BCDsHRlY+Rlhe0ULQP9kAPD0rctxJNiYNfZEz1pnn4d5P3mZ06eY53bq7PNwuKGTKxaMG3B8yaQx3PvxJUzPT2NybioiQmNnH0t/+dqA1bZZ7KhowyYMMF1/cdU8qlt7OLU4+wSz9e1DjXzs7+8yLS/NNBm8vsBNMNBCuHxBIanOBBZNzCLfv7pu63Fz5Z1vc6ypO9RbRcXOylYc9oHXwPWnTmRSdgqnT80ZcNO5PD6uuXs9u6vaQ71VxLR1uznS2MW1g6ylf396GX0eH4uLshA5/p28sqeWm/9TwqScFFPl2FnZRpozgSm5x7/nc2bkcd/Hl7CoaMyAVW17r5sFP32FWWPNLS5d195LXXvfgPsUtAkbYP74zP6xUErxzI5qvrJ6O/lBspnB9oo2ctMcA+6/Dy+ZQGFmEqdPzSEj6bhiCswVhZlJod4qYo42ddPe62HhoLF46HOn4fL4OGVi1oCx+N1LB/otG6MYVS1XBP3uAY6ixQtiyWZguohMBqqAG4Abw73AYTfeZmN7RStT8lIH+HQHX4zBpDkTmFOYQZrTvJXKnirNqlkwYaBvUUS4eO7YAcdy05ysmJVPfcdAf7EZ7KxsZVp+2gALYWJ2ChOzQ088gQlpcFwlGkrrO+lyeVlUlDXguDPBfsJYZCYncsGsAh7ZMtBXawY7KluZXZiOI+H4NZXmTODCELEaR4KNs6blcbC284TnomFnVSvACRPCYB90gICf3mfi9wHadTFvfMaAhYLdJlw06PsAyEhK5DQTY3cBAlbNwokD//dQ96qI9I+FisFYLJgwUEGnORNCjkWaM4ELZuVTZ/K9GrBqBv/vc8edeF2ISP+95PUZHwujiuIBpdT6QQIsB2JmZyqlPCLyJeBltPTYfyil9oR9jfHPYHtFK+fMCNlXfEjsNjH1ZtxVpbk5hpoABmMTwRtZ3H5IlFLsrGzj/Fn6iwLb/ROHL4ILcCi2lWsW3qKiMTpliOwGCIfXp9hV2XaCVTOsHKZPStp1MX+C/usCMPXa6PN42VfTwU3Li3W/xiaCx2fuBbqjshW7TUJOhkPJAOaORWefh9KGTi5fUKj7NRKDe3VHRRtJiTZmFOiz5G391oXxzzKqKO4AFus4ZipKqRfQ6krFhMqWHho7XSyamGXodTYxd3LaWdlGYWbSABM+HHabuZMzQFVrD01dLhbqnJQ0OfyKwkRRtpW3kpWSSLFO94nNJqZP0GUNmlUz2MILh13EdIW1o6KVKbmpujOYbH7jx8xrY39NBy6vj4UG7hG7TejzmK80Zxak9wfTh5dB+2nmtbHbb/kPtvCGk8Pse3VnZStzx2WSoNODEs1Y6FIUInIGcCaQJyJfD3oqA22Vf1Kzvd+czTL0OlsMLIr5Oq0J0G7EWK1ew7ndBhOwvs2UZVtFC4smDjTtw2EXMf1G3OEfCyPXhS3IujKagji0HK2c4U8q0ENAcZv5fRx3c+i/PjXlbZoI/dbuZfNPdO8MKYOYb+1GMhZm36ser4/d1W2sXKY/u+64dWVcDr3OfAeQhqZY0oMe7cC1hj81xhj1R24rbyUp0cbsQmPbQWxinqJo79UCloZuxJhMjq0k2oVZhfqDkHaTb8b2XjeH6jt1u50gVkqzlRSHnakGgvT9E5NJsgwVvA2HPYoJYSh2VLaRk+owlDxhF3NjA8eaumnrcRsbC1tsxmJ8VjI5afoD5GbfqwfrOul1+wxaNZFfm7osCv+O7DUi8k+l1DHDnzLK2VrewoLxWQM2s+lBW8WaI8PuqoAfOkv/58dgctxR0crswgycCfoNxWguwFAEUpUHB7LDYRNBKW1i0muFDMeOilbmj8/s///0ELyaNyM5dajgbThsJn8fEAjeZhoaW7vNXDfcDv9K3sjkaLbiBu07MfJ9gPn3akRWTRwsigDdIvIHEXlBRN4IPAx/6iii1+1lT3WboUkpgM3EwOWuQMDSiOvJZH94IHh7ikEXnJi8gg0Eskdy5djr9rK3pt2QVQPBrg5TxGBruWbh6Q3eDpRh5Cy8gBxmXp/byjULb6aBlFuzlWZ9Ry+VLT0smmh8LMxUVoEY3uTcVP0yRJF0YlRR/A/YD0xGKxB4FC19dVRhZBj2VLfj9irDNwEEVrFmTY6tTMxOJjtVfwkMm81cc/ZQfQddLq9hRWG2RbHlWAszCtIMlZ8w2y8fuC6MjwWmyrGtvIU54zJ1B28haOVo0qWxo6IVpWBxBIrC3MmxhQUTDFp4Jmc9bS9vBWDxpCxDr7OZ6H0AzQtiJIYXkAEiSzoxqihylFJ/B9xKqTVKqU8Dpxv/2NFDYPVq9IsH80xrpRRbjrWwdJKxvHO7mGvOBm4Co0rTzJvR51NsLW9hyaSRXckHEhyMWppmujo8Xh87K9uMZ+OZnPW09VgrIsbcX2Cu60mz/Ns5xehK3mTFHYmFB+amb7f1RGbhxTzrKQi3/2eNiFyOtkPa3OI6ZmBgHDYfbWZidjL56cZ3TYqYk9VxrKlb22ldbPQmMDc3e3uFsZTUAIFFjRmT46H6Tjp6PSwxqjRjsJIfn5U8oLaSHsx0++yv7aDH7WWxQaVptnW1raKFGfnppCcZ21xqs0lEOfuh2FPdhsenDCtusxMtIrHwwNwYRSA+EYmFB/FxPf1SRDKBbwDfBB4Avmb4U2OM3mHw+hQbDjexfGpk1S3NyurYfLQZwHChLrvN3CDd9opWFk4wZs5qcph3M5Yc0yy8pRFaFGat2rZXtBp2O4G5sZJ+azdCq8YMGXw+xbby1ohieHYxU3G3AkSw18m8sYjUwgvIMRosPIhxMNvfF2K6UqpNKbVbKXW+UmqJUuoZw586Sthd1UZ7r4czp0WoKEwyrUuOtZCRlGC4VpKZweyWLhcH6joMu3wCcoA5k8KWY83kpjkM1ykyU1lVtfZQ2dIT0VjYTFzNbzraQn6603A9LzOtmkP1nbT1uA1bNRCweM25PjeWNVGUndJf38uIDGDOgmpPdXtEFh6YG6/ZfLSZmQURWHhR3KdGemZ7gZOi5anSaVO8XdoIwJlT9W9mCkZETNmNvKGsKWSxveGw22y4PD5TrJqNZU0oBcunGR+L466n6GRQSvFOaRPLJmcbtmoS/GPnNiFIsd5/XSyPYAER+AqjFcPnU6wvbeSsabmRW3gmXJvrDjUAkY2FWZsgPV4fG8uaI5PBREURzXxh1qKy1+1l09FmzozACxJP19M7InKniJwtIosDD8OfGmt0jsMb++uZOy6DXAMbZ4Ix40Y40tjFsaZuzp1prM4UwOzCdHr8aZzRsv5wI6kOu6GU1AAigk2iX8EerOuktr2Xcw3W3AL6N8XtrGiLSgbQFEVumlN3DZ1g7CYFs/fWtNPc5Yqo6U9AWZlRZylQqjqSKsUJdom4iVgwOyrb6OzzcFaEygo4oflVJKw71MCcwsjmC63ulYp6Ubf5aDMuj4+zI7guEuzaWLgiCGwaVRRnAnOBnwN/8j/+aPhTRwH17b2UHGvhkhDVHvViMyFG8Ka/bv95M/QX4QsQUC5vHWiISgaAdw5rK3mjmw4DJNhtdLu8Ucmw9qD2fxgtzgiwtDibVIedNw9EV59SKcU7h5tYPi0noo17gd26R5u6opIjsHqNZHIUEabkpfZnbkVKn8fLu2XNEXeom1OYQVOXi7KG6Krpri9tRATOiGAln5RoIz/dyZ4oS793uzyUHGuJaIIGmJKXSrfLe0LXSKO8faiRRLtwWgTtDYqyU0hOtPfHAY1gaFbwxyUGP1YY/tRB+Dfx7ReRnSLypIhk+Y8Xi0iPiGz3P+7RJaeOc17eUwvAJfMiVxR5aU6qWnvodUc+Qb51sIEpuakURdA7ID89ifnjM3krysmxqrWHsoauiMzZAIuLsvpdNpGy5mAD0/PTKMw0vnp1JNg4c1oubx1oiGrVtr+2g4aOvogTHM6cmoPDbuONfdF9J+sONTCjIM2wTz7ABbPyebesOaoGVyXHWuhxeyNSVkB/BeJomxitPdjA3HEZhvYYBRARVszKZ+3BBlxRWDfvljXj9qqI3F8AK8wai0ONLC4aE1Fb16REO8un5fLG/nrD94ghRSEiBSLydxF50f/3HBH5jKFPDM2rwDyl1ALgIPC9oOcOK6VO8T8+b8JnAfDktiqm56cxvSDyxioXzC6g2+XltX11Eb2+tdvFhsONXDDbuDUR4PyZeZQca6GxM/Iub6/4lWY0clw0ZywH6jo42hjZSrq5y8WGsiYumB15T+HzZuZR1drDgbqOiN/jpd21iMCKCMci1ZnA6VNzeG1fXcQKq7nLxcayZi6MYixWzCrA5fXx9qHIlfdLu2txJtginhwnjElhZkE6r0ehNOvbeykpb+EDsyNf0K2YlU9Hn4ct/uzCSHhxdw1pzgSWRdhjY1xWMrPGRjcWx5q62FfTHtV1ccHsfCpbevq7UurFqJ/hn2h9IQIt2A4CXzX4HieglHpFKRVY+mwkxnsz9la3s7W8lRsMVF4MxRlTc5ien8avnt9He697+BcM4oVdtbi9iqtOGR+xDJcvGIdPwbM7Im/D+fKeWmYUpDElig51F88bS4JN+L/XDkb0+hd21eD1Ka5cOG74k4eSYa4mw+MlkbepfXlPLacWZ0cctwL4wOx8jjZ1R+z6eWVPLV6f4rL5+vsdDGZp8RjGpCTy+NbIxsLrU7y4u5bzZ+ZH1eL24rkFvHukicqWyLoPvry3DqXgUgMVYwdz1vRckhPtPLGtKqLXu70+Xtlbx4Wz8w3vnwjmojkFbD7aTHmEnRif31UDRDcWF8zKxybaQtkIRhVFrlLqEcAHWlMhIDrH9Il8Gngx6O/JIrJNRNaIyNl63mC4hdzdaw6TnGjnw4sjn6ABEu02/njdQuo7+vjGIzsMZzU8VlLB1LxU5o4zVrU2mJlj05k7LoNVm8pxRxCkqm3rZdOR5qhiNQDjs5L58orpPL29mqciuCGf2FrJtPw0ZhuoWjuY3DQnH5hTwCNbKqlvN95NbH9tO/trO7g0CnckwNWLxpOX7uQ7j++MyC355LYqinNSorouEu02blo+mVf31vHS7hrDr99wuImGjj5DzXlCcf2yIhLsNn76zN6ILKzAdTE9P/JFTIojgZXLinh8ayUby5oMv37NgQZau91RKW6AG0+bRFKine88vtNw4odSiqe2VbFwYlZ/j+5IyM9I4tJ5hfzznSOG4iVGFUWXiOTgDwOIyOmArjQTEXlNRHaHeFwVdM4P0Fqs/s9/qAYoUkotAr4OPCQiIe8eEblZRLaIyJbOXteQF8TGsiae3VHNZ86aTFaKcZ/nYBZOzOJHl8/m1b11fOuxHbr9oCXHmtla3spHT5sUdbXTL50/jYN1ndz5Rqnh167eXI5PwbVLJg5/8jB88fypLCvO5tuP7TQUN9la3uIfi6Kox+IbF82kz+Pl64/sMKw4/7vxGM4EG1dHYeEBpCcl8sfrFnKwrtPwpLCvpp13jzSzcln0Y/H5c6eyYEIm335sJ/trjQVz//nOUXJSHVw0N3I3B2gLiO9cMovX9tVxz5oyQ6/dXdXGtvJWbjRhLL5x0QwmZadw26ptVDQbW9H/a8NRxmYkGer6GIqxmUn85Io5bChr4ncv7zekODeUNXGwrpOPRukFAfjxFXNISrRz6/+20tajzxNiVFF8HXgGmCoi64E1QKE/CD3U43UApdSFSql5IR5PA4jIJ4EPAh9V/hFUSvUppZr8v5cAh4EZoQRTSt2nlFqqlFpqt9u54b6NfPIfm3j7UCMe/4Sxo6KVLz20jcm5qXz+vKkG//Wh+dTyyXztwhk8sbWKG+7bwKFhfORKKX7/0gHGpCRyw7LoJ+hL5xdyzaLx/PX1QzxhwNXQ7fLwv3fLOWdGXkTB9MEk2m3c/4mlTM1P4zP/2sI9aw73j/1QKKX48ysHyUhK4CNLox+Laflp/OzKubxd2sjXHt6ue0Vf397L4yVVXLFwHGMiCJoO5twZeXzr4pk8vb2aL6/eRpfOoPKdb5SSnGjn+lOjHwtHgo27blxMiiOBj97/ru7V9J7qNl7fX8eNpxUZKjc/FDedWcwVC8fxu5f2c+cbh3QrzjvfKCXVYefDS6L3RKc6E7j340vp8/hYef9G9lTrS6PeXtHKukONfPyMSRFnBAbzkaUT+ehpRdy7poyfP7dX12JGKcVdb5aSnergylMid80GKMhI4vYbFnG4oZNP/GOTLuvbaNbTVuBctDTZW4BS4APAFUM8rgSGzXUUkUuA7wBXKqW6g47n+XeEIyJTgOnAsMuSmQXpfOvimeypbuNjf3+XRT9/leW/fYOr7lpPol24/xNLSIvC7xqKr1w4ndtXLqKssYtL/7qOnz27h9ZuV8hz71lTxrtHmvnOJbMiyl4Ixa+vmc8ZU3L4+iM7+N1L+3VNkPetLaOho4/bVkwzRQaAzJREHv38GVw4O5/fvrify29/O2w21EObynm7tJFvXDQzKl94MNefWsT3Lp3Fcztr+PDd77C1fPh0wN++uB+318eXzjdvLG49fxrfvXQWL+6q4eK/rOXp7VVh3ZNvHajn+V013HLuFFOsXYCJ2Sn873OnkZGcyI33b+QHT+4KOzG4vT5++NRuspIT+ezZU0yRwWYT/vyRhVy5cBx/fOUgK+/f2F9WfyjeOlDPS3tqueXcqYaqCIdj5th0/vOZZbi9Pj70t3f43Uv7w66o+zxefvTUbvLSnXzyzGJTZBARfnHVPD51ZjEPrj/KFXe8zZqD4TP1ntlRzfrSJm5bMS2qGEkw58zI484bF3OwtoNL/7qO/70bvs2QGDF/RCQJ+CJwFpr7qRL4jlJqyCtPRM5SSr09zPuWAk4gsOTZqJT6vIh8GG3PRiAW8hOl1LPDybl06VK1ZcsWet1eXt9Xz4ayRjp6PcwuzGDlqUVkpphz4YWiqbOPHzy5m5f2aNkz88dnsnxaLrPGpmO3Ca/urePp7dV8cEEht9+wyLR2maDt2vzJ03t4eEsFhZlJfHr5ZG5aXhyyp+7agw3c9M/NXDa/kDtWLjJNhgBKKV7ZW8dPn9lDTVsvMwvSWTY5m2WTs5lekIZS2g1w75rDnDMjj79/8lRD5aP18OreOr7/5C4aOvo4a1ouX71wOgsmZOFIOD4eSinuX1fGr1/Yz20rpvH1i2aaKgPAu2VN/OzZveytaWfW2HRuPK2I+eMzmV2YQVKiHaUUb+yv56sPb2d8VjJPfnE5yQ5zOwx39Lr5w8sHeOjdcmwifOKMSZwxNYf5EzL7C2K2drv4/pO7eGFXLXesXMQVUSQWhEIpxapNFfzxlQM0d7n4wJwCPrJ0IvPGZzA2I6nfvfTO4Ua+8N+tFGYm8dSty02bHAM0dvbxy+f28tT2alIddj53zhSWTc5m3vhMMvxlMVq7XXz7sZ28sreOez62JKo0+qF4aXcNv3x+H5UtPSybnM11SyawYEIWU/NSSbDbUErxwq5avvHoduaNy2TVzaebYtUEc7Cugx8+uZtNR5s59rsPliilloY6z6iieAToAP7rP7QSGKOUui5qiU0koChGCqW0UtlvH2pifWkjW8tb+neGpjjsfOrMYr72gRmmf+kB3i1r4o+vHGDz0RacCTZOmZjFlLw0pualkp6UwLbyVh4r0YKED99yhmkrtlA0d7l46N1jbDraQsnRZroGbcq7ZtF4fvmheaZZVoPp6vPwj7eP8NfXD+HxKRLtwpTcNGaOTSctKYEdFa3sqW7nsvljuf2GRbob1RvF51M8+M5R7n6rlMZOzdJMsAnjspLpdnlo7HQxoyCNB29aFtEuaL2U1nfwncd3sbW8pT/poyDDSaozgYrmbjw+xQ8um22aNRGK9l43v3txPw9tKu+XITvVQXFOCm09bg43dFGck8J/PnMaE7Ojd4kOxfaKVr7z2M4B6dRF2SmkOOyUNXbh9vr48QfncNPyyTGToc/j5S+vHeLf7xztvzeSE+1MGJNMa4+bho4+5o/P5B+fOpW89Mgz8cKhlOJLq7bxt48uMU1R7FBKLRx8DPgB8AtgElrpctE+X0WethEFI60oBtPj8lLVqt2Ek7JTTV8tDsWT2yrZcLiJww1dHG7opLVbM7OTE+1cvWg8371kVkytq8F4vD721rRT2dKDTykWjM8yJTaih4rmbraWt3CgtkN71HXQ6/ZSlJ3CdUsn8pGlE023aEKhlKKmrZedlW3sqmqlorkHR4KNZZOzueqUcabEBPTQ1edhb007Oyvb2FPdRp/bx4QxyXxo8XhmjY3PbdvV52F/bTt7qtvZXdVGVWsPyYkJnD4lmxtPK4rZ4mEwzV0udlW1sbuqjb017fS5fRTnpHDt0glxGwufT1HW2MWuqlZ2VrZR29ZLssPO8qm5XHnKuJgtKgPc/dZhvnj+NNMUxT+Be5RSG/1/nwZ8ErgIuAbYpYy8YYwYbYpitNDU2UeP20teujNuE5KFhcXoZzhFYVRlnwZ8QkTK/X8XAfuAscB//TurLUYpOVFsIrOwsHj/YtSimDTEUwvQmhm9DPTXklBK/Tkq6SJERDqAAyPx2VGQC0RXLGlksOSOL5bc8eX9JPckpVTILFVDFoVS6piIjAEmDnrtl4FmIAkwJ68vOg4MZUKNVkRky8kmM1hyxxtL7vhiya1hSFGIyC+AT6FtfAuYIgrIUEpdZJZQFhYWFhajB6Mxio8AU5VSA3aSichvReQipdQr5olmYWFhYTEaMJpztRvICnH8VuAlf++IdhHpEJHo265Fzn0j+NmRcjLKDJbc8caSO75YcmM8mL0UeBpNYQQHrU+KXtoWFhYWFsYx6nr6F/A7YBdaqfFstCD2kIjIWKVUbWTiWVhYWFiMNEYtijVKqXOD/t6qlFo8zGuGPcfCwsLCYvRiVFH8Gc3l9Iz/52agB38jo1AvAdqVUtEV+LewsLCwGDGMKoo3QxxWSqkV5olkYWFhYTGaMKQoThZyc3NVcXHxSIthYWFhcdJQUlLSaMrObBEpAH4NjFNKXSoic4AzlFJ/N0FO0yguLuZkKAqolOK/G4/xj/VH8SnFZ86azMdPj741qoWFhYVRRGTI7kVG91H8E62eU6CjyUHgqxFJZcHPn9vLj57eQ26ag4L0JH789B7+9tbhkRZrRPD6tHaPZ//+DS788xqe3Ka/pauFhUVs0aUoRCRgeeQqpR7BH7xWSnkAr4hMFRGn/9zzROQ2EcmKhcDvFR56t5wH1x/lpuXFPHLLGay++XR/q8gD7K7S18/3vYLXp7ht1Tb+8PIBinNSSXHY+drDO4Ztz2hhYREf9FoUm/w/u0QkB3+dJxE5HWgDHkdTGNOAvwOTgYdMlvU9Q2VLN798fi9nT8/lh5fPQUSw2YRffmgeY1Ic/PL5vSMtYlz5y2sHeX5XDd+/bBb/+cxpPPGFMzlvZh4/e3Yvhxs6R1q89zW9bi917b1hezpbvPfRqygCTvOvo6XGThWR9cC/0SrH+vzWxYeAvyilvgYUmi3se4WfPrMHgN9cM39AV7WMpES+vGIaG8ua2XI07D7G9wxbjjZz55ulXLdkAjefMxWABLuN31+7AIfdxp9eOdmqxUePUoo3D9Tz7cd28NsX91PfPmRL+pjKcNebpSz6+auc9uvXuequ9Rxr6oq7HKD1uH5+Zw0lx1pGTGG197p5cP0Rfv/SfnZUtI6IDPXtvXx51Tbm/+RlLvnLWtYcbIjbZ+sNZueJyNf9vz8JvICmPPqACwG3iKxE63Z3hf+8+PXYPInYfLSZ1/bV862LZzJhzIltQK8/dSK3v36Ie9Yc5oHi7BGQMH54vD5++NRuCjOS+NlVcwc8l5+exKfPmsztrx9ib3U7c8bFpyVlr9vLy3tqaejo4/xZ+UzNS4vL5wbw+RQ/e3YP/9pwjMzkRLr6PDxWUsnqm09nWn58ZFFK8YOndvPQu+VcPLeAxUVjuHvNYVbet5EXvnI2WSnx6yTwxNZKfvTU7v5+0pfOG8v/XX8KSYnx69C4v7adz/xzC1WtPdgE7l5zmF9ePY+PnjZUex7zqWju5ob7NtLU1cdVC8dTUt7Cp/+5mX986lTOnREyUclU9FoUdiANSAdS0RSMHUjxH7sJOAP4lVLqiIhMBv5rvrgnN0opfv/SfvLTnXx6iIbtKY4EPnFGMa/tq+dQUNP39yIPbSpnf20HP/rgnJD9kT9z1mRSHXbuWxufAH9pfSeX3b6Or6zezi+f38clf1nLE1vjG1T/v9cO8q8Nx/jMWZPZ8sMLeeErZ6OU4tb/baXP442LDP/ecIyH3i3nlnOncM/HlnDLuVP596eX0dDZx8+fjZ9b9LGSSr7+yA7mT8jkiS+eybcunsmLu2v5+XPxk6G6tYePPbAJj8/H4184kx0/uYjzZ+bzw6d2U3IsPlZ/t8vD5/69hY5eN4/ecia/u3YBT926nGl5aXzjke20dbtjLoNeRVGjlPq5UupnQzz2KqVuU0qt8jc2SldK/TaWgp+MrDnYwOajLXz5gukkO4ZeEX3yzGJsAs/uqI6jdPGlx+Xl9tdLOW1yNpfMGxvynMzkRG48rYhnd9ZQ2dIdU3mqW3v46AMbaet28+CnTmXD91awdFI233psJ1vLW2L62QHeOlDPHW+U8pGlE/jh5bNJtNuYUZDOH65bwIG6Dv6zIfbB/dL6Tn71/D5WzMrnOxfP6k/VXjAhi8+ePYUnt1extzr2haF3V7Xx/Sd3sXxaDv/69DIWF43h1vOncfM5U3jo3XI2HYn9JO3x+vjC/7bS5/by38+cxpJJY0hPSuT2lYsYl5nM957YhdcXe1fYb17Yz4G6Du64cTHzJ2QCkOZM4E8fWUhTl4u718R+IWU0RhH6SZG3RCRDRLKBHcCD/nIfFkHcu6aMwswkrl86Mex52akOCjKSqGqNj2+6x+Xl6e1VPLj+COVNsZ2QA/zv3WM0dvbxjYtmht03ctPyyXh9iud21sRMFrfXxy3/KaG7z8v/Pnca58/KpzAzmfs+sYT8dCffezz2E0K3y8MPntzNtPw0fn7VvAFjsmJWAWdPz+WuN0vp6vPETAalFD94chdJiTZ+9+EF2GwDv5fPnzuVdGcCd7xxKGYyALg8Pr7+yHayUxzcfsMinAnHF1Vfu3AGBRlOfvvivpjHKx5cf5QdFa38+pr5TC9I7z+e5kzg+5fN5mBdJ8/tjO1iruRYM/999xg3nTn5BBfTvPGZXLlwHP985wjNXa4h3sEc9CqKC4Z5PlMp1Q5cAzyolFqCFrsY9Sil4hIg21XZxoayJj69fDKOhOGHfWxmErXtPTGXa291Oxf9ZQ1fWb2dnz27lwv/vIZnYmzJdLs83LPmMMun5bBscvg4zLisZLJTHZQ3x06B3flGKbuq2vjDdQuYNfZ4LCQ9KZEffXAOB+o6Ym7d/eW1Q1S19vCba+aH9L9/7QMzaOl288iWipjJ8NT2Kt490sz3LptNXrrzhOczkxP52OmTeGlPLUcbYxfY/vvbRzhY18mvPjSPnLSBciQ77HxpxXS2lreysSx2VkVFczd/evUAF84u4IMLTszLuXTeWKbnp3HHG6X4YrSI8PoUP3hyN+Myk/nGRTNCnvOl86fR6/bx7w1HYyJDAF2KQik13DeSICKFaB3wnotaqjjg9Sn+/MoB5v7kZU791Ws8ta0qpp9337oy0p0J3LAsvDURYFxmMjUxtij217Zzw30b8HgV//nMMtZ9+3xOKcriG49sZ1sM3S2rNlXQ2OniaxeGvvgHM2FMMpUtsVGa+2vbufPNUj60aDyXzDtxQrhk7lhmjU3njjcOxcyqqGju5sH1R7h+6UROHSKBYXHRGE4tHsMD647g9g5VgzNyXB4ff3rlIPPGZ4S1eD91ZjGJNhsPvF1mugwAVa09/PX1g1w8t4ALZheEPOe6JRPITXNwbwxjV3/0Z9v94uq5IS1em0340opplNZ38tq+upjI8OS2KvbXdvD9y2aT6gyddzS9IJ0LZ+fzr3eO0uOKXQzL6M7sofg52o7tw0qpzSIyBYitfRolv395P7e/Ucq5M/Ioyk7hqw9v5439sfnCK5q7eWFXDStPKyI9SV8y2NjMJGraYpe/3tbj5vP/KSEp0c4jt5zB2dPzmJidwv0fX0pumpPvP7k7JhOjx+vjwfVHWFaczVKdWV3js5KpbjVfUSil+MVze0lPSuAnV8wJeY7NJnx5xXQON3Txyp7YtFX5v1cPYhPhax8IrzhvOWcqVa09vLjbfDlWbSqnsqWHb1886wSXUzD5GUlceco4HiupjMn18dfXDuJT8OMr5g55TlKinU+dWcxbBxrYV2N+vGR3VRtPb6/mM2dNpjAzecjzLp9fyPisZB54+4jpMvS6vfzfqwdZMCGTy+aHjuEFuPmcqbR0u3l+V+zcs6YoCqXUo0qpBUqpL/j/LlNKfdiM944F6w41cO+aMj52ehF3f2wJD33udGYXZvCdx3fFRCv/Z6MWhPzUmcW6X1OYmUSP20t7T2x80j96ajeVLT3c9dHFTMw+nqabmZLIDy6fzb6a9phYWa/sraOypYdPnxU66ysU+enOmOwleG1fPetLm/jahTPCpnxeMm8sRdkp3LfO/FX0/tp2ntxexaeWFzM2MynsuStm5ZPmTGDrMXOtva4+D3e8cYjTp2Rz9vTcYc9fMCGTXrePps6+Yc81Qml9J4+VVPLx0ycxPmvoCRrgY6dPQgRe2WP+4u53L+1nTEoit5w7Nex5CXYbV54yji1Hm/GYbOX9d+Mxqlp7+M4ls4at/bZk0hjsNuFIY+w2p5qiKERkhoi8LiK7/X8vEJEfmvHeZuPx+vj5s3spyk7hRx/UVpFJiXZ+efVcGjr6+JfJvr4+j5dHt1Rw0ZwCxg1z8QcTWMlUt5m/kn5zfz3P7Kjmyyumh3R1XDavkFlj0/nbW+b7X//+9hGKslP4wJzQboVQ5Gck0d7roddtnhJ3eXz86vm9TMtP48bTisKea7cJ1586kW3lrbR2mxs0/NMrB0lzJvCFYSYl0KybggwndSYrTS2xwMW3Lh5+UgIYm6EptFqT5fi/Vw+SnGjni+cNPxZZKQ5y05zUmHx/bCxrYt2hRm49fxoZOqz/8VnJ+BQ0dpp3XfS6vdyz5jBnTctl+bThFbfdJhSkO6ltM1dxB2OW6+l+4HuAG0AptRO4waT3NpUntlVxqL6T7182a0A2xZJJ2ZwzI48H1pWZOiG9tLuWlm73sJPRYAoytCBefYe5X35Xn4cfPrWb6flpfGGIG9JmE754/jQON3Txsonulm3lLZQca+Gm5cUDdqQPRyCwWt9u3lg8WlLB0aZuvn/ZLBLtw98GgY13Fc3mTUwH6zp4dW8dNy2frHsTm5bkYN4E3efx8sC6I5w1LZclk8bolgGgts08OXZXtfH8rho+c9bkEwLYQ1GYmUS1iTIA3PVmKblpTj52ur7NdIWZ5ivNR7ZoMbwvr5im+zUFmUmmLyCCMUtRpCilNg06Frs8vghRSvHAujJmjU3n4rkn+v1uOWcKjZ0unt5unsvlf++WU5SdwvKpw68Mgsn13ywNJiuKv71VSlVrD7/98Pyw2VeXzy9kcm6qqTnaD64/SrozgeuGSQ8eTH5AUXSYcyP0ebzc9UYpp0zM4vyZ+bpeM2GMZuFVtZqXfXXPmsMkJ9q5yYBLsiAjydQJ+smtVdR39A25aAhFwKIwc2K6+63DpDsT+Ow5U3S/pjAziVoTLYqdla2sO9TIZ8+erHvnd0HAujJJDrfXx71rylgyacywGYHBjM0wdwExGLMURaOITOV4scBrgWEjKyJyiYgcEJFSEfluiOfPE5E2Ednuf/w4GiHXHWrkYF0nnz17SkgT+8ypOcwuzODB9Uej+Zh+Sus72HSkmZXLisIGCEMRWEU3mugHrm7t4YF1R7jqlHEsmRT+IrTbhE+cMYmdlW0cMSEVsqmzj5d21/LhJRNIGyKDYyjy07Wb0Szr6pEtlVS39fK1D8zQ3fsjMCGYJUNlSzfPbK9m5bIixqTqL4kxNiOJ+o4+UwLJXp/i3rVlLJiQyZlTc3S/LifNid0mpk1MRxq7eHF3DR87Y5Iud0+AQpMzA//25mEykhL4qAHrv9Bk6+q5ndVUtfbwxfOmGupLY/YCYjBmKYpbgXuBWSJShdaj4gvhXiAiduAu4FJgDrDS3whpMOuUUqf4Hz+PRsh/rD9CfrqTKxeOC/m8iHDx3AIO1HWY4n7637vlJNqF65ZOMPzaVGcCyYl2Gk20KP70ykEU8M2LZuo6f3ahtqegyoTU1Ce2VuHy+gy74ADyA244EyamPo+Xv71ZyuKiLM7REbgNkJPqwG4T09xfD6zTMmU+e7b+oD5obh+vT5kSSH55Ty1HGrv4wrnGJiW7Tcg30Sd+39oyEuw2blpebOh1BRlJdPR5TNmEWFrfwct7a/nkmcW6MxNB2xzrsNuoMeHa9PkUd791mJkF6bot3QBjM5Po7PPQGaMNmWZlPZUppS4E8oBZSqmzlFJHh3nZMqDU/1oXsBq4ygx5QlHX3svagw18ZOnEsC6XouwUlCLqvH2318dT26q4aM7YfjeSUfLSnTSYZFHsqW7jiW2V3HRm8YAsp3AUmBS0VEqxalM5SyeNYUbQDle9ZKc4SLCJKav5R7ZUUmPQmgAtbpOb5jDF/dXS5WL15nKuXjTeUIIDmBtIvn9dGZNzU7kohBt2OAoyzPGJ17f38nhJJdcumdBvOerFTKv7gXVHcCbYDGUmgra4LMh0mrKaf7tU83h8/rwphj0Q/ddFjKwKs7KenCJyI/AV4Gsi8mMdbqLxQPA200r/scGcISI7RORFERk6uXoYntxWhU/Bh5eEX90H0vKizaZYe7CBlm431ywO9S/pIzfNYZrr6XcvHSAzOZEvnm8gQOZfyUc7Ibx7pJmyxi5WLjNuTYA2SeelO6NWFF6f4v61ZSycmMVZOrJJBpOfnmSKsnp4SwW9bh+fO1u/Pz6AWYHkA7UdbCtv5aOnFRlKLOiXwySf+D/WH8Xj83FzBGMRUBTRxvE6et08vb2aq08ZrzuQHkxBepIpluaqTeVkpzq4bL7xDg0FMYgbBWOW6+lpNGvAA3QFPcIR6uoc7HjdCkxSSi0E7gCeGvLNRG4WkS0isqWhYWCddqUUj5VUsmTSGCbnpoYV6viAR/fFP7mtijEpiZwTRQng3DQnjR3Rp92VHGth7cEGvnDuVDKT9ZvVKY4E0pMSonb5rNpUTkZSApeHKIWgl3wTFMWre2spb+7mlnNCx6h0yRDldeH1Kf6z4RinT8lm5ljj1pVZsZJVm8px2G1cs9i4WxQ0d2C010Wv28vDm8u5aM5Yioe5L0ORZ1LCx9Pbq+lxe7khwoVMQUYSdVFamg0dfby6t44PLx4/IBtTvwzmJnwMxixFMUEpdb1S6vdKqT8FHsO8phIITn+ZAAwoqKOUaldKdfp/fwFIFJGQS0Gl1H1KqaVKqaV5eQMn552VbZTWd3LtMNYEmKOZO3rdvLq3jisWjtOVejkUZrme/vr6IbJTHXz8DOP186NdOXb0unlpdy1XLxofVQ+BvPSkqCem+9cdYWJ2csiMNz3kZ0SvrN7YX09Vaw+fPKM4otfnpDoQiS5e0+v28uS2Ki6eN5ZsA4H0YPLTnVHvbXl5j5Y6/tHTI5ugzXI9rd5czuzCDBb6K7NGIke0C4jHt1bi8SmuPzWyscgPLCBMTCEPxixF8Y6IzDf4ms3AdBGZLCIOtH0XzwSfICJjxb/0E5FlaPI2GRXu2R3VJNpFl0mX7LCTkZQQlaJ4aXctfR4fVy+K3O0EmkXR0u2KatfntnLNmvjc2VNC9nwYDs0XHfnF98qeOvo8Pq46JbqxyEt3RjUhlBzT9nB8ZvnkiFwtmgxJNHX1RfV9/HvDUQozkwxtOAwmwW4jNy06hfXynlraetzccKqxNOVgAvGEaFbzD0WYOh4gO9WBTaKTYVdlG7ur2rlx2cSIrEzQ7pHOKILqSike3lzBsuLsiJtTpTkTSHHYTd93FcAsRXEWUOJPdd0pIrtEZGe4F/hbp34JrUbUPuARpdQeEfm8iHzef9q1wG4R2QHcDtygDBY/Ukrx0p5azpqWq9vtEm2g7qntVUzKSWHRxKyI3wMgN92JUkRVQvivrx9iTEoin4jAmgBtLKJZvT67s5rxWcksLsqK+D1AUxRNXZErzQfWlZGRZHwPRzD5/u8j0l24pfWdrDvUyEdPKyIhCkszPz263dmrNmkT9BlT9KfEDiYvSlfH4YZO3j3SzA3LJhoO3Aaw24Ts1Ois7oc2lZOUaOOqKBZ1x/f5RCbHxrJmjjR26S4YGk6OWMUojC8xQ3NpJC/yu5NeGHTsnqDf7wTujEawPdXtVLb0cNuK6bpfo+1+jexLr23r5Z3DTdy2YnrEK5QAAR9sfUdfv2lphF2Vbbx1oIFvXTxzyOqTw1Hgd7f4fMrwDd3c5eLtQ41D7lsxQmCSbupy9bsH9VLe1M3Le2q55dypEY9DQAbQJsfh6jKFYtUmLV06UvdCgGgWMkcau9hY1sy3Lp4Z8QQNQWMR4X2y6t1yEmyiyx0cjrx0Z8QWRWefh2e2V3HFgnGG9m8Mpj9u1N47bAw0FKs3azG8SILYwUSTbDFcYzCzLIoLlVLHgh8Ms48iXry0uxa7TbjQSG2hKPzhz++qQSm46pTQezWMkJeu+Y8jdbkESptHak2ANiF4fIqWCGocvbCrBo9PDblvxQjRZLj8852j2EQMpz4OJqCsI/k+XB4fT26r4sLZBSF7PRiSI90ZsTvw4c0V2G3CdVFO0NFsgux1e3l8ayUXzS0wnBI7GC2OF5mF9+yOarpckQexAwT2+dRFMBat3S5e3F3Lh6KM4YFm5UWqNB/eHL7PiVmK4loR+WjgDxH5G9qeihHnxd01nDY521DQbmymM+Ldry/vrmXW2HSm5EXmawwmsP8iEldHJKXNQ5EXxYTw7I5qpualMrvQeHbPYCIt49Ht8vBoSQWXzi80bIkMJhpl9dq+Opq7XHwkirhAgPyMyGIlbq+Px0oqWTErPyILNZj+DYgRuJ4CQexI06WDyU1zRLwpdfWmcmYWpEftFi1IP25RGOWJrVW4PL6olRVEXmXZ4/UN2xDLLEVxDfApEVkpIv8GXEqpz5j03hFzqK6Dww1dXDpET+ahyE/Xdr8ajQ3Ud/Sy+VjzkD2gjRJNvacH1x9FMFbaPBSB1ZJRGWrbetl0tJkrF46P2u0EkU/Sz2yvpqPXE5VVFSA3TVtsROJueXhzBYWZSZwzPfr1U6Sxktf31dPY2cfKKH3hELQBMYKxiDaIHUzA9WS0b8vuqjZ2VLaxMoogdoCM5AQcCTbDiymlFKs3l7NwYlZ/FYRoyE9PosvlNRxUf+tAw7AWalSKQkSy/X2yk4HPAt8G2oGf+4+PKK/vrwfgA3OMKorIVq+v7q1DKbg0RKe0SEj1ZzIYdXW0dbtZvbmcKxaOM7zzdzCR5qo/t7MapeCKheaMRSQVZJVS/HvDMWaNTWepzsqo4XAm2MlMTjQcPK1u7WHtoQauXTIh4oyrYI7vpTB2fa7eXM7YDHOUFUTmEzcjiB1MXpoTl9dHe6+xyXH15nKcCTY+tCg6Fxz4d2dHsK9ka3krB+s6WWmClQmRB9VXby4ftnpEtBZFCbDF//NNIAu4POj4iPLWgXpmF2YYDjzmR1ji+6XdtUzOTWVGQfRupwC5acb9jg9tKqfb5TVcRygUeRFefM/uqGbe+AxTXHAQ2SS9tbyFvTXtfPyMSaZYNRBZ8PSxkkqUguuWmDwhGFCaVa09rDnYwEeWTogq42qwHEavi0AQ26yxiMTS7HZ5eGpbNZfPLyQzJXK3bDD56cbTyFdvKifVYecKE2J4MDCorpfatl7e2F8/bD26qK4YpdRkpdSUQT8DD+N78k2ko9fNlqMtnDfT+OqpP0fcwBff2u1iw+EmLp471rRJSZPFaWjl6PL4+Oc7Wn+BueMi20AUTKozgVSH3dCNeLSxix2VbaYEsYMxujP6PxuOke5M4Ooo93AEk2dQcft8ike2VHDm1ByKcvTV2BqO/k2hBq6LR/0+6GjSgweTn+GkwYAMwUHsaAP6AY5nBuqX47kdNXT2eVgZQYHKodCyA/XL0NHr5rmdNVx5yrioMvGCiWSB++iWCnyKYffUmFXr6VYRyQr6e4yIfNGM946U9aVNeHyKcyMooZEXgevp9X31eHzKcDxkOAoyjJn3z+6opq69j88ZqOs/HHkGldVzO7UN9pcvMFdRGNmp3tjZxwu7tLLmZt2IRmUA2FDWRGVLD9eb5F4ALVai7c7WJ4fXp3hkcwVnTcvVXRBSD9oGRP17W8wMYgeIJIb20KZypuWnmeKO7JfDYL2n/rIhUaZKD5TBmKLw+RQP+xcxk3LCp/WaFaP4PGAL+luAz/v/zormMyJlzcF60p0Jurt2BZOUqLk5jEzQL+6upTAziQURlgEYCq2mjj45lFLcv66MmQXphkpoDytDepKhG/GZHdWcWjxm2L7HxuXQr7Ae3lyBy+uLqGxJOIy6nh7ZUkFGUkLEZUNCkWC3kZOqfyzWHmqguq3X1AkajAfVzQxiB8gzuEN8X0072ytaWbmsyFzLP8NJR5+Hbpe+WEmgbIiZ80VmcqIWVNfpenq7tJHKlh5dGVfRWhTVaLGImWhxieDHLP/PsDu0Y8VbBxpYPi034lpLRtwcXX0e1h5qMN3tBMfLA+ipM7/uUCP7azv4XIRF74bCyCp6f207B+s6TfO7niCHjgwXj9fH/zYeY/m0nP4WpmbK0K0zs6TdX+fqylPGRZ0jPxgj1+fDmyrISXVw4ezIyoaEkwH0Wd5mB7EDZCQl4DSQcbR6UzmOBBvXRFleZzD9+0p0fCe7q7SyIWZkXAUjIuQZKO+yenM5Y1ISuXju8NdFtIpinz8W8Vc0hfFZ4DNodZzuUEpNJoLaTNHS5/ZR09bLuRHEJwLkG/A5vnWgAZfHZ1pabDAFBpr23L+ujIKMoRszRUpeulN3vObZHdXYbfrqahklPz2JXrePjmEm6df311Pd1svHTy82XQYjWWDP76yhz+PjWpMCt8EUZDh1xSgaOvp4bV8dH14yIWwflkgwUohu9SZzg9gBRPwl6HXcHz0uL09sq+LSeWMNdRXUg5Ee96sCZUNMjJ0F0DtvNXZq1WqvWTxBV7XaaK+cM/w/vwO8gbYb+1bgdbRU2eBz4kan3/yLxsQ1kvr34u4aclIdnFpsfkZwYDPPcBkVe6vbWXeokU+dOdn0CSEvXTOre1zhK4UqpXh2Rw1nTs2JuFnTcHLA8JP0fzceY1xmEhfONtYlzJAMOiysx0oqmZafFnFV0nDo9Yk/VhKoSmq+stLrE+91e3msxNwg9mA59Nyrz++qoaPXY7oLTpNBX9XpbpeHp7dXc9n8QkMl//XLoc/SfLykErdX6S4MGW3WU6//pw+tQ93PgV+hWRQLg8+JJ119HsZlJjExO3IfeeDiG87N0ev28ub+ei6aW2BKjvwJcujMmX9gXRmpDntErUaHQ2855+0VrZQ3d8fE7QT60kLLGrTCezdGWXhvKPQqq7KGTkqOtXDdkgmmuyNBW8E2doavHqBVJS1n2eRs011wcHxD6HDXZiCIfeMyc+NFAfQu6lZtKmdKbiqnTY7Bgk6nRfHcTn/GVQyUFegbi0C12iWTxjBdZ8fJaIPZj/h/1gN1wDvA2qDHiNDV5+H0KTlR3aB56U5cHh9tPe6w560vbaTL5TU1WBmMni5zNW09PLOjmutPLYrZKgWGnxCe3VGDw26L2VjoWc3/Z+MxUwrvDSvDMDfj41srsQl8yGRfeL8cGUn4FGF7Z28sa+ZoU3dU5cTD4UiwkZ3qGHZiCgSxz5waebXacOhponSwroOSYy2mB7ED6A0kr45BxlUwBRlO2nrcYfuEBDpOGrkuol1yfcX/swOYA8wd9BgRPD7F6VGUUIbglXz4m+CVPXWkOxM408RMjmACdebDuZ7+uf4oPqUMN6fXi57J0edTPL+rmnNn5sVEWcHwPRC6XR4eK6nk0nmFMXFxAIxJ0WochRsLr0/xxNYqzp2RF3VNpaEoSA8sIIaWw6yqpOHISwvv6ohVEDsYPU2UApV7o2lNHA4RGdYFdrCug63lrdxwqrlB7GD09AlZvamcdKexjpPRup5q/L9uB9pDVJAdMaJWFDrcHF6f4vX9dZw7M8/0uEAArTzA0F3mOnrdPPRuOZfNLzQ1Rz4YPbuzt1W0UNfex+UxnJSO19QJPRYv7qqlo9fDx06PjYsDtB4IOamOsDfihsNN1LT1DtufPRqGc0l29nl4aXctV50SfVXS8HKE33T3yJaKmASxB8gwzOQYqNx70dyxEfXE1i9H+H4Qj5VU+pVV7K6LvGFcYG09bl7YXctVi8YZamRm1uy2EagWEbf/4RGR8D4bQEQu8Tc7KhWR74Z4XkTkdv/zO0VksV6BoolPgD53y+v76mjsdEXcrUwv47KSqGzpCfnck9uq6Ojz8NkImtPrJSfVOWwnsT+/epAEm7AiBgHkAIH0v6EysJ7YVklRdgqnFsfGrA8wXLrw09urSHMmmJ6OGsxwPvFX9wa6LMYmXhQgL8wq2udTPLu9mnNn5MXMwgvIAEPfq2sPNtDa7ebaGE7QEH5zrM+neHZHNedMz4u4/awe8vut/9Bj8dLuGlwRZOKZpSh+CfwOuAi4ELjA/3NIRMQO3IXW9GgOsFJE5gw67VJguv9xM3C3XoGibpSjw/V0839KADhvZuwmR4DJuakcaeg8IbDu9vr41ztHmT8+k1Oi7KYXDrtNyAlTumJ3VVv/TvhoGsDooTAziarWE5XmH18+wPrSJj60yJxqteEIt+lue0Urj5ZUcvHcsTFdyeemOREJHbtq7nLxtYd3ALBoYmyVZmAzpi9EUP1rj2ynuq2XK03ozRKOcK7RHpeXz/57CzaBs0zchBqKcBbFLf8toSYOY5EfJkuytdvFdx7fRVF2iuFMPLNqG/QqpX5g8DXLgFKlVBmAiKwGrgL2Bp1zFfBvf/vTjSKSJSKFQS6vkIw1wS/c34NWR6pZrHzyASbnptHe66Gl2012qgOlFErB9B+8CMCvP2S0Xblxwm3kCZRjj5X/N5iJ2SlsOtJ8wvE73ywFYhc8DiYvzcn+mo6Qz11913rAvKq5Q5Fot5EzRCB53aGG/t9jFRcIENzYarBb5+ntWimXWFvc4WocPba1EgCfIuLNt/rlSKKjV0sjT3YMXCS8urcOIKZWJoTvE/Ktx7S9z2NSHYYXU1EpChG5xv/rYRHZi5Yi2xV4Xin1pzAvHw8Ed8uoBE7Tcc54IKyiSDQpXjA2I4kH3znCfzcOHW756oX6W6xGyhR/e8Wlv3wVBQzO2I31KgU0V8cb++uZ4VdOwfj8An0uhu6vABOzU3hyWxXTf/ACwokXe3EErSiNMiknhUdLepn6/RewD3HDnTUttqtX0FwdqzaV89iWygHHvf7v49HPx34LU6Ay8+m/eT3k95GRlGDIFx4JOalOUh12fvz0Hn753L4Bz7n8dage+MTSmMoAxxeoC372csixyEl1mFp3LBQ2mxZUv/utw9y/9siA5wJj8eePLDT8vtFKfYX/Z2D59IWg5xQQTlGEusMG2696ztFOFLkZzT3FuInmBDN/dMWckKvXAHYRPmJiNc6hOHNaDt+6eCY9Li820dxqNhHKm7tZPCmLtBhffABfuXAGs8I0V8lKTmSmzpzsaLjRn3/uDlGI7oJZsXUBBvjoaZNweVVIGQDOnp4bkz0cg/n+ZbN5u7Qx5HPZKY6YpWAGc+6MPL7+gRn0hMg4sglxuT/sNuH2lYvYcqwl5PN5aU4uiGHsLMCFcwr46oXT6fOceF0I8bF2AX5+1Ty2locei2l5aRHtqRGjnaFCvonIcqXU+uGODXr+DOCnSqmL/X9/D0Ap9Zugc+4F3lJKrfL/fQA4bzjX09KlS9WWLSPeDsPCwsLipEFESpRSIU2vqBSFiHxQKfWciGxVSi0e9NxWpdTiwDkhXpsAHEQLfFeh7ea+USm1J+icy4EvAZehuaVuV0ot0yFXB3Ag4n9sZMgFQi8PRzeW3PHFkju+vJ/knqSUClkgL1qfxZ0icj4wTkSC3UxpQJo/nfXXwAmKQinlEZEvAS8DduAfSqk9IvJ5//P3AC+gKYlSoBu4SadcB4bSjKMVEdlysskMltzxxpI7vlhya0SrKFqAa4Ax/p8BPGhVY/8EHBrqxUqpF9CUQfCxe4J+V2hFBi0sLCwsRoioFIVSahGAiEwa6Z3YFhYWFhaxwZTUjFGoJO4baQEi4GSUGSy5440ld3yx5MakrCcLCwsLi/cusU/2trCwsLA4qTFlp5aI3IYWzM5F2519HlrmkRWItrCwsDjJMWvDXSewAvgvWgOjPwKrlFKxqXttYWFhYRE3zKr9IEqpTSKSgbbb+ulYV/AMR25uriouLh6xz7ewsLA42SgpKWmM1Ya7AF0isgptP8ULInID2l6KEaG4uBirhEfkVDR309jZx5xxGTgTYlcq28LCYvQgIkNmr5qlKM4DVgE+YA9alVcrPnESUt/Rywf+bw29bh+3XTCdr39gxkiLZGFhMcKYpSj60PpLJADnoDUaetak97aII/9cf7S/+uX2itaRFcbCwmJUYFZ67Dto9Z0KgTuBWYDl+znJ6Ozz8N+Nx7hk7lhWzMqnKUy7z/cDbq+PW/6zhavvWs/GsqaRFsfCYsQwS1GkK6Wa0FJk/6KU+iIQ+246FqayelM57b0ebj5nCrlpDhrf54ri2R3VvLynju0VrTxeUjn8CyxiTnVrD6s2lVNybOg+MfGg1+2lq2/EwrBxx7QNdyLyceATwHMikmzme1vEHrfXxz/ePsKyydksKhpDdqqTli73SIs1YiiluG9tGTMK0jhlYhY1baF7IceDF3fVcOWdb/Ptx3aMmAxur4/vPLaTz/17C/tr20dMjm8+uoPvPbGLT/x905CNo2JNRXM3p/z8Feb+5GVe3lM7IjKAtrD74B3r+MVze4c/OUrMmsz/BvwOWA+cD6wF3jDpvS3iwPM7a6hu6+WWc7R2pmlOOy6vD1eIbl3vB9YcbGB/bQc3nzOVvHTniFlXHq+PX72wj52VbTyypZK69pFRWM/uqObhLRW8ureORzaPjHW1q7KNdw43MTE7mS6Xl+rWnhGR4+9vH8Ht1fafrR+iw2Cs6XZ5+O1L+9ld1c4/1h+hN0SHQTMxqyjgN9HaoCYAc4EfKqUuM+O9LWLP7qo27njjENPz0zh/ptYyMtDnuMcV2wtwtHLvmjLGZiRx5cJxfjeca0TkeGF3LZUtPaxcprUUHQnLJmBdzSxIZ0ZBGpUt3XGXAeDetYdJdybw7YtnAYzId9LS5eLhzRVcfcp4puWn0dAxMguIRzZX0NrtZuWyiShFzOUwRVGIyBXA74EVSqlvAHUi8owZ720RGzp63fx34zE+eMc6PnjH21S19vDtS2Zhs2kbJVOd2v6JLtfI+GFXbypn/k9e5so738bri2/hyp2VrWwoa+LTZxXjSLCRkZRIZ1/83XBKKe5dc5ipealc5+893TgCE1PAuvrcOVPITXPS1BX/Cbq8qZsXdtVw4+lFFOekAoxIssV/Nx6jx+0d0Tiex+vjgbePsHTSGC6aMxaAhhjLEVV6rL/lqAJSgS4gVUTa0XqJW+U7DLK1vIW73ihl/JhkfnblXMze3a6UYntFK6s2lfPsjhp63F5mjU3n51fN5apTxpOZnNh/brLfougeAUXh8vj4v9cO0tHnYWdlG2UNnUwvSI/b59+7tox0ZwIrlxUBmnXV6/bh9SnstvhVHHjncBN7qtv57TXzyU93AozIxHTf2uPW1dqDDeyobI27DH9/uwy7Tfj08sn9sYmW7vgqrF63l3++c5TzZuYxc2w6OWlO9lXHP14TsDJ//ME55Kb5r4sYLyCibVyUDiAi7yqlThORbUHNjHaaIeD7iV8/v48tx1oA+Pjpk0ybHNu63Ty5rZLVmyvYX9tBisPOVaeM44ZlRSyckBlSIaU6/BZFX/xdT09vr6KuvY9bz5/KXW8epq69L+aKoqvPw7M7qlm1uYIdFa18/typpCdpijNgXXW7PP3H4sG9a8vITXNy9aLxuPyTY2ecM20CcYHvXTpLs66SE+joja8MzV0uHt6iuXsKMpJo9SuI7ji7RR/fWklTl4tbzpkKQLozIe4Wt+YGPMyUvFQunF1Ahd8NGOvrwqwNd7tF5EbALiLTgdvQ9lZY6KTkWDNbjrVwxcJxPLujmsrWnqgmR6UUm4+2sHpTOc/vqqHP42PBhEx+/aH5XHnKONKc4b/6QIxiJG6E+9eVMWtsOh9aNIG73jwc01X0rso2HtpUzjPbq+hyeZmen8aPPjiHj51e1H9OSr915Y2bothb3c7agw186+KZJCXaSfBbMvFW3IG4wMrTtPFIdSTELS1UKcXOSi1+1uv2cbM/0SL4+4gX9e29PLDuCAsmZHL6lOx+Obrj/H28c7iJ3VWalWmzSdB9Gls5zFIUXwZ+gLZDexXwMvALk947LjxWUsmRxk6uPmV8XN0cAe5dU0ZWSiJfPG8qz+6ojtiUbO5y8cTWSlZtKudwQxfpzgSuWzqBG04tYt74TN3v07+KjvON8NaBBg7WdfLnjywkLy027pb2XjdPb69m9aZy9lS3k5Ro44MLxrFy2UQWF405wcLqj9fEYYIMVlxpzgQ+dtokABLsNpwJtri4At1eH2/sr2f1pnLeOtjAzWdPIcOvIFMcCfR5fHi8PhLsscmAb+tx8/T2KlZtqmBfTTvJiXa+csH0/vvSkWAj0S4x/z68PsXagw08tKmcN/bX41OKBz6xtP/6SHXa6XJ5UEqZ7iYOZvCiLz9dszIDMgB0nwwWhVKqG01R/MCM94s3B+s6+OajWo76saZu7rxxcVw//3BDJ6/uq+NL50+jKFsL7RjJ6PD5FBvLmli1uYKXd9fi8vpYXJTF769dwAcXFPavOoyQ4nc9dcc47W4w96w5zLjMJK5YOA6bmLeKVkqxtbyV1ZvKeW6nFp+ZXZjBL66ay5WD4jODSU4MuJ5iMxZDKa5PL59MZspxuVJj7OqoaO5m9eZyHtlSSUNHH/npTm49bxq3nj8tSIbj10WGiYpCKUXJsRZWbarg+V3V9Lp9zBufwS+vnsdVp4w7wZJLcSTE7Puobu3h4c0VPLqlguq2XnLTHHzu7CnccOpEinNTB8jgU9Dn8ZGUaH7xzMGLvjT/ou/Tyyf3f15Sgh2Rk8SiEJEZwDeB4uD3VEqtMOP9Y819a8tITrQzc2w6ZQ1dcf/8B9aVkWi38ckzi0lxaG4GI1k2f339EH99/RAZSQnceFoRK5cVMXNsdFZRoGpsPPdRvFvWxLtHmvnh5bNJ9E9C0a6i27rdPLGtktWbKjhQp8Vnrl40jhtOLWLBEPGZwaT63XRmrmBDKa45wyiuFIfddAvP5fHx6t46Vm8uZ92hRmwC58/M54ZlRZw/M+8Eq6Hf7dPn7bcyoqGly8UT26pYvamcQ/WdpDkTuGbxBFaeWsT8CUNbwKkOu6nfR7AVteZgAwo4e3oeP/rgHC6YXYAj4USlGGxpmqUoAou+hzaV88qeumEXfTabkJJoPzksCuBR4B7gAUD3lSwilwB/BezAA0qp3w56/qPAd/x/dgJfUEqZuj21tq2Xp7dXceOyInrcXtYejO8GmvqOXh7fWsW1Syb0ZzCkOOyGVtFvHWzglIlZrL75dNMu2MCN0eeJ7UolMFGt2lTO26WN5KQ6uGHZ8fhAJKvogKm+alM5LwTFZ35zzXyuWDh8fGYw/daVCau21m4XT26r6ldcqX7FtXJZEfPHh1dcqQ7zLIqyhk4e3lzBYyVagHZcZhJfu3AGHzl1AoWZyUPLYELatFKKDWVNrN5UwUt+C/iUiVn8/sMLuHxBYb9iDkeK0xyLImBFPbqlkvqOPgoynNx6/jQ+snQiE7PDJ24Gx0pyopSjoaOPx0oqWb25nGNN3WQmJ+pe9KU4E6KyKNxeH6/trQt7jlmKwqOUutvIC0TEDtwFfACtLPlmEXlGKRW8H/0IcK5SqkVELgXuA04zSWYAHlx/BK9P8dmzp/CfjcfilnJX397Lo/4Lw+318bmzp/Q/l+pM0L2K9voUB2s7uGHZRFPNX2dAUbhjY1EMnqjGZyXz9Q/M4PpTJw6YyI2uojccbuKHT+3qj898ZOlEblg2kbnj9MdnBhMY10iVplKKTUeaWb25gud31eDy+FgYgeJKcdqjmhx73V5e3lPLqk3lbCxrxm4TLpiVz8rTijhnep6u1N/UIIvCKI2d2mT48OYKjjR2kZGUwMplE7lhWRGzCzMMvVeqwx6xsjJqRYWTASJXmj6fYl1pI6veLee1fXV4fIplk7P56oXTuXReoe77OdVhpycCGY42drF6cwWPlVQM6+o2S1E8KyJfBJ5EC2gDoJQKV7lrGVCqlCoDEJHVwFVAv6JQSgVnTm0EJpgkL6BtOnvo3XIunV/IxOwUMpMT6fP46HV7Y+Jz9PoUaw81sOrdcl7fX4/Xpzh9SjY/vWIukwf4Pu26Vwjlzd39/nYz6Xc9mVhPZ/BElWATLpxdwA3LJnL2EBOV0VX0X147SEevhz9cq61OI4nPDOa4dWVsLJo6+3h8q5aWXOZXXNdHobhSInS3HKrrYNWmCp7YVklrt5uJ2cl86+KZXLdkAvkZSYZlAGPpmO8cbuS/G4/x6t463F7FqcVj+PKKaVw2X/9kOJikRONKM1IraiiSI0whr23r5dEtFazeXEFVaw/ZqQ5uWl7M9acWMS0/LQI5Eug0IEPJsRb+9MoB3jnchN0mrJiVz8plE7ngd0O/xixF8Un/z28FHVPAlBDnBhgPVAT9XUl4a+EzwIsRSTcEqzaV09Hn6a9vlOUPHLZ2uxmbaZ6iqGnr4ZHNlTyyRbswclIdfPasyVx/6kSm5J14YaQ6E3T7HPfXaBt+Zo81V1E4TLQoBk9URdkpfPuSmVy7ZAL56eEnKiOraKUU+2s7uHxBYf9OZjNwGlQULo+P7z2xi2d2VOH2KpZMGsMfrp0ateJKSrDT2q0/drWtvIVf+ffmJNqFi+aOZeWpRZw5Nad/B75RnAatq91Vbdx4/7uMSUnkE2cUs3LZRKblR59V6EiwGdrP8edXDnD7G6URWVFDYTSO1+3y8PWHd/DK3lp8CpZPy+G7l87iorkFUXWSTEq0GbJ2v/P4Tlq73Xzzohlct3QiBToWC2YpiilKqQF1FkRkuE8P9Q2FrNUgIuejKYqzhnwzkZuBmwGKioqGOg04rtEfePsIZ0zJYcGELCDYFx29H9jj9fHmgQZWbSrnrQP1+BScPT2X7182mw/MCR0cC2DEothX24FNYHqB8ZVIOOw2IcEmEbtbelxent9V4y8JfXyiunFZEWdM0T9RGcnbr2nrpa3HzewoA/mDCdzEehXFxrImHt9ayXVLJvC5c6Yww6R0a0eCzVBywS+e28uxpm6+f9ksrll8PAYWDUaVZol/A+lzt53N+Czjq/ah5bDT6NHvJn58axWnTc7mjpWLDFtRQxG4h/Va3a/ureOlPbXctLyYT51ZzKSc1OFfpEcOu/7rosflpayhky+vmM6XVkzX/RlmKYq/A58O/CEiqcAzwAVhXlMJBC/7JgDVg08SkQVoQfJL/T0vQqKUug8thsHSpUtPUDhen2LNwXoeereCN/bX4VNw5tQcfnbl3P5zkhOj38hT0dytpdaVVFDX3kdeupMvnDeV65cWUZSjr6pJqiOBug59xd/21bQzOTc1Jq4yp8GJCbSNYqs3l/Pktio6ej1MyU3lB5fN5prF48mJYKJKdth176MIlL+eZbIb7rh1pVN5+6287182mzGpDtPkcCbYdE/QPp9mXX1k6URu9u8kNksG0L+K3lfTTlZKIuMyzZmc++VItOHSuYhp7XZR1drDx06fZJqSgOA4nj459ta047Db+P5lx7P6TJEj0U57jz5L80BdBz6FYVe1WYqiSkTuVkp9QUTGAM8D9w/zms3AdBGZDFQBNwA3Bp8gIkXAE8DHlVIHIxKstYdHNlfwyJYKatp6yU1zcsu5U7l+6cCcaDhuURgt2RvIGnjIn7kDcN6MPH5+VRErZuUbvihSnAl0NeqTYX9te79FZDYOAxNTr9vLTQ9uZkNZE44EG5fPL+SGUyeybHJ2VJuRjCirfTUdAFGnBoeSAfSvHPfWtFOYmWSqktDksOu28I41d9Pt8jK7cGStq3017cwem2H6hjSnXf+1Gbgu5owzdwGRlGjMutpb3c60/DRTlQQYW0AEFjFzzFIUInKNjtf3KqVeUEr9SER+JyL3AEuA3yqlHg/3QqWUR0S+hLaL2w78Qym1R0Q+73/+HuDHQA7wN/+F5lFKLR1OKAW8vKe2f2cpaDnRP7lCy4ke6osymgaplOKuN0v55ztHaex0UZiZxG0rpvORUydGZWYnJdh0rVI6et1UNPdwvYn++GCMTEwlx1rYUNbEredP5XNnTyErxZxJUpNB/00wYUyyKfn9A2UwFq/ZV9Nu+EbUgxHXU2BCMD3JIVG/ReH1KQ7UdXDjskmmyhCQw+jkaLbSdNiNxSj21XRw3sw8U2WAwHWh39pNcyYwYYyx+SmcRXE/8DShYwkBLvVnOwFsAn7k/6lE5Bql1BPhPlwp9QLwwqBj9wT9/lngs+HeIxT7a9q55T8lFGQ4+fL507hOR040HM9i0Kso9td28MdXDrJ8Wg6/P2sy587IN6W6qCPBpmv1erBOWymZPRkMkEPnTbCnug2Az55lnpIAYxPC/toOZpkc1AcQERw6V7C9bi+HG7r6yz+bidGVo90mpsVHAjjs+vfXHGnsotftM32CDshhRGnmpjmGTZwwitOARdHQ0UdjZ19M7lWj18WssemGkxnCKYoXlVKfDvM8InIYuCLo0DYg0X9MobmN4o5NhAc+sZTzDOREw/FSDT1ufcHTXZXa5PiLq+aFzF6KFGeCXdfqNWBSm+2TPy6H/gtwd1U742LibtGX0dHr1oJ0l84zf4IOyKFnYjpU14nXp2IzISTqnxz3VrczJQaxKyOTY6ysGk0O/dbu3pr2mE3QoE9pxsqq0eTQZ3Urpdhf09FfJ8oIQyoKpdTHdHyweVEyE0lKtHPhnALDrzNalXJnVSvpzoT+RipmoXcVfbSxi6REm+mBQqNygGZRzIliU9tQ6I2THKrrjChIpxenzhTE0oZAnMTcLDTQXB0en9JVkG9fTTtLi7NjIIN+19P+2nYSbGJ6Rh4cV9zDFeTz+hSH6jr51PJi02VwGAjs740wNqAHp05XdVVrDx19HmZFoKyGvNpE5GMi8vEQxz/nLykefOxfIpIV9PcYEfmHYWlMItK4WcD1pLf9Z0uXm/wMZ8Q56UPhsGuup0EZxyfg8SkcdlvMKlcaMe8rmnuYmmeuwgRttRSYEMJxoC42gewAesciYAmasdFvMP3xgWHckkopqtt6maQzy84ICXYbdp1p040dLnLSHFHtERgKh92GT2n3QDj6PF5cXh/ZJlu6ARm0zxj+uqhv7yPVYTfVLRvAqdNVHdgkOSYCGcItS74BPBXi+Gr/c8EsUEq1Bv5QSrUAiwxLM8KkGFQUsep4pte89yllupIaIIeBYLbH5zM9m0OTQd/kGNhrkRWmCmxUciTqM++9foUWk+tC5wo2oFNj1Y1PW8HqGwt7jBYx+u8R7WcshiLBbtO918inYtcdMeAiHm4x5fMPVSRihLuz7UqpjsEH/ccG3402f1osACKSjXmpt3Ej0b9a6tU5OXqV6i+FbSZ6UxB9MbwRQb/rSSmFTxETpaV3g1egr3Zsb0Y9E4L2MxbXhd5SIv3KKlaWps4VbCwXMnp3RQeui1h8H+B3jepQmrEcC0eCDaXA7R1GUajIxyLcZJ4oIqlKqQF1t0UkHRhsu/wJeEdEHvP/fR3wK8PSmEQ0X0dyop1enWmQKkaKYmDl1qFXyF4fMW2Yotfd0r+CjYnS1LeKDtwEMXPD6Qxm+/onJvNl6F9ADHN99k8II2xR+HyxuT9Af3VjFUMLD/S7fby+GFpXQXXZwlV88EUxFuEsir8Dj4lIceCA//fV/uf6UUr9G/gwUAfUA9copf5jWBqziOL7SEq00aNzw13MXE+6XQyKGDUZ0+RItOvLl1dxmBx1KopYm/fDEUs5jpeMCH99HncxxG5i0jU5qth+HzC80hw9FkXsFLfeygHRjEW4rKc/ikgnsEZE0tDSXbvQNtPdDSAiGUqpdr+rqRZ4KPB6EckepnpszJAoNEVSol33zuzR4G6JpetJ796B/gswlvGaYW8C7Wcs3S26/PK+2Fk2getiOIv3eJzEdBGAQCaaPr98rC5PvXWWvDG3rvTF8TTrKiYi6J4v+t2iEQgSNo7g3/x2j19RSIiYxUPAB4ESBhb0E4avHjsqMaYoYvPl63cxxNj1pHMVHcvgaX865jATwnF3i+ki9Muhp1ppLC0K/RNCbFfRRlxPsXa3DHevBq7NWE7SepMcRj6wH7nlH1ZRiMhFaJP+K4OrwwIopT7o/znZ+EfHjnjFKGK1ote7kSeWmRQBOfSslmLqekrU52LwxcHFoCtGEcOJSW8AN9ZjYcQNF2vXk95gdiwnaX3XxcgH9n1RjEW4Wk8PAlvQLIN/AZ8I90YiMh6YxMCe2WsNS2QG0cYodKbH+mKW9aQ/gBtDPaF7N3Is/cB6YxSxz/TRGa+J5Vgk6l1AaD9jN0nrc7fEMtnCaJJDbF1PIxvY17uwjMYNF86imAl80//7cErid8D1aN3pAtIqYGQURRQkJdp1d+/y+WLj6tBrSnp9sd1HEXA9Dbf7NZaZJbqtqxjGSUB/vCYeYzFsjCLGY+FMtNHVpc8NF8s4Cehwt8Q8sK/X6o6t4obhx+K4G85cRfFZ4HdomVGfH+Z9rgZmKqX0NQ6IMdF8HUmJ9mH7xwbwKUViDDRFoCqlHv9rrG4AOD4xub0KR0L4MgkQW4tiWBdDjN1wevcOeGM4MR2fEIZ3SWoymC4CoHXa07t3INYxCr2r6FgpLGeCTdfCMpaB/cDCcrj54vheI+OfES7raS/6K7eWoSX8jwpFEQ3JBoLZsdpwp7fOfcyznoIyS8LlZ8cys8TIDtzR4IaL5SRtNJgdS7+8PtdTeEs0WhlgNAT2dSrNmAb2daYKR7HXKFyMYrFSamu4F4vIarR9E93AdhF5nSBloZS6zbBEJhDNxZmUaNOf9RQjv2Og4udwcsRylQLB2Vde0pxDG5/x2HCnx/UUS+sq0S66FYVIjNJjDSwgILYb7vQkfMQjmD286ynGisKA0hx511MMgtnAgyJyHuE9OWegNRcqQWt9OkAuw9KMApIT7bo33MVqFdtvSuop4RFjdwvoyFUfBbuRY3kjghHXU+xWjoEFxHB7SqLxRetB/96B2Fl5umMUMQ7s641dxTKVPUlnkkP/XiOTg9mZaAog3LvWKaX+JSJfUUr9NfgJEfmKYWlGAUb2UcRqctI7IfhiHKPor445gsFTI/WNYrv50I7Xp4b9zmP5nRivexUTMQztHYilsgIju5FjIobuemixDOwbrV4QyVcypOhKqWKl1BSl1OQwj2X+0z8Z4i0+NdyHi8glInJAREpF5LshnhcRud3//E4RWaznn4rmmnD691EMV4kRYpcem6RzM1Gss570l7XWfo6k60mpyMvL60Fv7wEtXz5GMugsa+2NsV8+SWclXV9M3S0GN2LGNEahs3pszGMU+jIDzbYohkVEVgI3ApNFJNj1lA40DfNaO3AX8AGgEtgsIs/4g+gBLgWm+x+nAXf7fw4jmIF/YhCBLnd9Ht+w3cFipSgS7YJNGNYFFut9FLotihjuijZS0ycubjiPr79vSShiGSsREV3pmCrmk6MNr44GSrG6PwIygIECiSO8+XB0BPa1n2anx+rhHaAGyEWrIBugA9g5zGuXAaVKqTLoD4xfhbYXI8BVwL/9u8I3ikiWiBQqpWrCvXF06bHaoL99qJHUMAFcgIN1nUzPN79RjoiQnGjnaGM3Gw4PrW93VbUxzcQWrINx+hXltoqWsCmAhxs6gdjcjIFGOWWNXWHHYvPR5ti64fwT04ayRjKTh278sinGcjgTbBwb5roI9FKP2Wref4+sK23st35Dsae6ndOm5MREhkAf8yPDXBfbK1qB2O5h8PgU75Q2hlUEu6ramBqjezWwoCut7ww7FusPNwIjoCiUUseAY2hBbaOMByqC/q7kRGsh1Dnj0ZTTkERzowY6YX3231t0nT82Rm1Is9McPL+rhud3hf1XY/b5AGNStBLnP356j67zCzOTYySHgye3VfHktqqw580bH5s2qJoM2lh8/r9hEwEBmJ4fO+WdnergpT21vLSndthzY3VtBDqk3fTg5mHPjVWbXoAxqYk8s6OaZ3ZUD3tuzO7TVO26uPGBd0dMhgS7jYykBB4tqeTRksrw59qE3DTjHe5kOF+8aGryo8AUpdTPRaQIGKuU2mT40wa+73XAxUqpz/r//jiwTCn15aBzngd+o5R62//368C3lVIlId7vZuBmgKKioiXHjh2LSC6vT7G9ogWXZ/gYhQgsmJAZk7aXVa09lDd1D3venHEZZMaoq5tSit1V7bo2FKU47CyYkBkT87qiuZvKlp5hz5ual0p+RmxuRu26aNWVIjs5NzVmk0J1aw/HdFwXqU4788fH5vvweH1sr2gdtlEOwPwJmWFTq6NB73WRnpTAvPHm93MHzRW5o7IVj46xiOW9Wt7UTVXr8GORl+5g2hBeEBEpUUotDfmcDkVxN+ADViilZvs72b2ilDp1WKnCv+8ZwE+VUhf7//4egFLqN0Hn3Au8pZRa5f/7AHDecK6npUuXqi1b9FkEFhYWFhbhFYUeVX+aUmqxiGwDrR+2iAywXURkBbBRKTX8Uuc4m4HpIjIZqAJuQAuMB/MM8CV//OI0oG04JQFQUlLS6VcqJxO5QONICxEBltzxxZI7vryf5J401BN6FIXbn6GkAEQkD83CCOZTaH0rmoB1/sfbSqmWod5UKeURkS8BLwN24B9KqT0i8nn/8/cALwCXAaVou79v0iEvwIGhNONoRUS2nGwygyV3vLHkji+W3Bp6FMXtwJNAvoj8CrgW+GHwCUqpT/iFG+d//i5g3HDvr5R6AU0ZBB+7J+h3BdyqQ0YLCwsLixgxXOMiG3AE+DZwAVrm6dVKqX2DzvsYcDYwH83cuRPNqrCwsLCwOMkZbsXvE5E/KaXOAPaHOfUvwGHgHuBNpdRR0ySMjPtG+PMj4WSUGSy5440ld3yx5EZf1tPP0DbPPRGqHWrQeXOBc4Cz0HZSH1BKfdxEWS0sLCwsRgA9MYqvA6mAR0R60dxPSinVv7tJRDKAIrSoeTFaQUF9jactLCwsLEY1w1oUut5EZCfwtv+xVikVfnughYWFhcVJgx7X0zmhjiulTuiHLSLp2lOq0xzxLCwsLCxGGj2K4tmgP5PQivmVKKVWBJ0zD/gPkI3mmmoAPqmU2m26xDrIzc1VxcXFI/HRFhYWFiclJSUljUqpvFDPDRujUEpdEfy3iEwEfj/otPuAryul3vSfc57/2JkRyBs1xcXFmF3Co6PXzXM7a7hsXiGZKbGp12JhYWExUojIkAXyIukgUAnMG3QsNaAkAJRSb6EFwN8z/PnVg3zviV389qVwWcIWFhYW7z2GtShE5A6O97+2AacAOwadViYiP0JzPwF8DG2j3nuGNQcaAHh1by2//tC8mDUhsbCwsBht6EmPDfbheIBVSqn1g875NPAz4Am0GMVa9NdlGvU0d7koa+yiKDuF8uZuKpp7KMpJGWmxLCwsLOKCHkWRpZT6a/ABEflK8DF/8b/bzBZutFBaryVxXb1oPLe/fohD9R2WorCwsHjfoCdG8ckQxz4V/IeIzBCR+0TkFRF5I/AwRcJRQEWzVj19xax8QGuB+n7G7fXx+r46enU0lbewsDj5GdKiEJGVaP0hJovIM0FPpQODG7M+ilbn6QHgPTd7VLRoimLW2HRy0xyUN3eNsEQjy59fPcjdbx3mlnOn8L1LZ4+0OBYWFjEmnOvpHbTe1LnAn4KOd6DVfgrGo5S622TZRg2VLT0UZDhJSrQzLiuZqtbekRZpRHlpt9av+cVdtZaisLB4HzCkolBKHQOOAWfoeJ9nReSLaH0r+oLeozlqCUcBNW09jM9KBqAwM4myhvevRdHS5eJIY5ffsuqmvr03Zn2qLSwsRgfDxihE5HQR2SwinSLiEhGviLQPOu2TwLfQrJAS/+M907S6qdNFTpoTgHFZyVS39mBGjayTkf21HQBct3QiAIfq39/xGguL9wN6gtl3AiuBQ0Ay8FngjuATlFKTQzymmC/uyNDU5SInVWsTPj4rmS6Xl/YezwhLNTIE4jXnz9QC+4cbLEVhYfFeR9fObKVUKWBXSnmVUg8C5wOIyKkiMjZwnoh8QkSeFpHbRSQ7NiLHF59P0dzlIidNUxR56Zpl0dD5/oxTVLb0IAKnTMwizZnA4fe5RfFOaSMX/99atle0jrQoFhYxQ4+i6BYRB7BdRH4vIl/jeHmOewEX9FeZ/S3wb6CNMB2WROQ6EdkjIj4RGbIBuIhcIiIHRKRURL6r838ylfZeN16fIjtVUxB5fhdUQ4drJMQZcSpbuinMSMKRYGN8VjLVbe9PhRngjjdKOVDXwZ1vHBppUSz8VLf20No98ven2/veacmjR1F83H/el4AuYCLwYf9z9qCA9fXAfUqpx5VSPwKmhXnP3cA1aDu4QyIiduAu4FJgDrBSRObokNdUGju1Cy7Xb1EEYhVNXX1Dvua9TFVLD+PHaIH9sZlJ1L6PFYXL42PzUe3yf+dwE54Rmhg8Xh8fuXcDn/zHpvdt7CxAQ0cfF/3fWq6+a/2ITtQPrj/C3J+8zIbDg3cSnJyEVRT+yfpXSqlepVS7UupnSqmv+11RAHYRCWROXQAEb7ILl1G1Tyl1YBjZlgGlSqkypZQLWA1cNcxrTKe5S1MU2f4YRUBhNHa8PxVFY2dfv/ttXFYSNe9jRXG0qQuPT3H29Fy6XV6O+Tdmxpt1hxrZdKSZNQcb2DaCLrDS+k6+98Qu6jtG7pp4ZW8tnX0ejjZ1s/VYy4jIoJTigXVHcHl8/HvD0RGRAbSFzBf/V8Idr0dv7YZVFEopL5Dndz2FYhWwRkSeBnqAdQAiMg3N/RQN44GKoL8r/cfiSrPfcsjxu57GpDiwyXFL4/1Gc5erX2mOzUimsbMPl+e9Y2IbIVDa5fL5hQAc9GeExZuAVQOM6Ar2Ny/sY9Wmcv7y2si54baXt+JM0Ka1TUdGJju/pq2XqtYeQLM0R8rKe2N/PS/squVPrx6kvj065a3H9XQUWC8iPxKRrwceAEqpXwHfAP4JnKWOj4gNSBCR3SEeeq2CUOVZhxxxEblZRLaIyJaGhgadHzE8AYUQCGbbbEJ2qpPGzvefReHx+mjtcffHawoztf0TdVFehCcrAUVx0dyxA/6ON3tr2pk1Np1JOSnsrR6cuR4fXB4f60obAXhzf/2IyABQ2tDJ4qIxFGWnsL9uZBT3Qf/nfnBBIW09buraR2auWO//PkCzOqNBj6KoBp7zn5se9ABAKbVRKfWkUqor6NhBpdRpSql5IR5P65StEi0eEmCCX5aQKKXuU0otVUotzcsL2aQpItp63ABkJh9vVpSb5nhfWhQt3W6UOu5+K/Aritr3qaKoaeshN81BdqqD3DQH1W09IyLHobpOZo1NZ1pe2ogpqyONXbg8PhZOyKSmrXdEFlJKKUrrOpmWn8aMgnQOjJCFF/gOPrhgHAAHRlBhLZyYhTPBxr6a6BYQejrc/QxARFKDlUEc2AxMF5HJQBVwA1rtqbjS3uvGkWAjKdHefywv/f1pUQwVr2l6H44FQH17H3npmrIcn5VMZUv8FYXXp6ht72X8mGQ8XsW6Q414fQq7Lb79Uo6vosexo7KNg7Ud5E5zxlWGpi4XHX0epuSlkuyws/ZQAz6fwhbnsaho7iY9KYGlxWMAONLQybkzzFu86uVwQycrZuXj9fmiVlZ6dmafISJ7gX3+vxeKyN+i+VAR+ZCIVKKVB3leRF72Hx8nIi8AKKU8aJlWL/s/+xGl1J5oPjcS2ns8ZCQNbH2aneqgZRSk38WbQKZXQFEE4jZNXe+/sQCo7+ijIOP4jv2AXzqeNHT04fUpxmYmMzE7BZfXR8MIJFocadTWkJfM09xwI7FjP+ACLcxMYnxWMi6Pb0Suzdr2XsZmJJGT6sCZYBuR66Kt201jp0uzrvLTo97vpKcfxV+Ai4FnAJRSO/x7JiJGKfUkWl2owcergcuC/n4BeCGaz4qWjl43GUkDhykrOZHWbvcISTRyNPWnCvsD+6maAm0eITfcP9cfweX1cfM5U0fk8+vae5ldqHlhx2cl8+aBepRSce1+WON3d43LTCLwsdVtPYzNjG/9rdr2XnJSHUwYk4wzwUZlS/wzwOr9sYC89CTsNm0NXNXa05+lFy9q2/sYm5mEiDB+hBYQgc+cOCaFzl4Pte29uL0+Eu2RdL/WvzO7YtCh91wp8aFo7/WQnjzQoshMcfRvxHs/Mdj15Eywk+5MGJFV27GmLn767F5+/cJ+9lRHm2BnHK9P0djZR77f9TQ2M4let4/23viWdgmkJxdmJlOYqe1vqRmB6sZ1bVpxyJGcHANpufnpzv4intUjIEddWy8F/kKZ48ckUzUCLsn+schwMi4rGZ8iqj1PehRFhYicCSgRcYjIN/G7od4PDGVRKKU9F2++9egObnpw04hsJgooiqwgxZmd5ug/Hk/Wlx5PA11z0LwsN700dfXhU9qNCMetrHjHrgITYWFmUn8WWs0IBNXrOnoZ6x+LEZsc+y2KkVMUXp+iobOPsRnHY1cjojT9Y5GfntS/QTYaOfQois8Dt6LtYagCTvH//b6go9dD+mBFkaJNlPF2P5XWd/BoSSVvHmgYkRTEjl4Pac4EEoLM15xUx4jsUt9V1UpWSiKTc1PZMQKbzBo7Brrh+hVFnOMDDZ19JNqFrJREMpMTSU60j8gmyNq2vn5310hNjnUdvWSlJJKUaCcjOQGH3Rb3eE1jpxYzCsSu8tOdNHW54r5rP2BRBCvNaJS3nqynRuCjEX/CSU57j/uEYHa/ouiJr6LYdOT4TtN3Djf15+/Hi45e9wlKMzvVOSL+6IP+lNDM5MQRSQkNpE0HrKvcdP+O/TjHa1q73GSlOPrjIoUjUFbF7fXR1NXX724Zm5lEY6crKp94JNS395Hvj0eICHnpThribOEFLMrAwiEv3YlS0Nzt6ndTxoP6jj4ykzWlGVDgdVHsmNeT9TRFRJ4VkQYRqfdXh33PlBAfjlAWRWayNinEu/DYzspWslMdLJ00ZkT88u0hFEVO6si4nipbupkwJoVp+WkcbeqO++7wth7tf870LxpGyvXU0u0iO+V44YTctPinbjd29qEU/RNhYCya4qw0W7pd/Zl4mhzx3+/U5vcyZKUEUsgDlmZ85QhWmimOBFIc9qhk0KPuHwIeAQqBcWj9sVdF/IknEW6vjx63d0iLoi3OFsWxpm6Kc1KYXpDOofrOuJcG6OgNkSrsj1HEUxaXx0d9Rx/js5KZlJOK16fi7pcfvBHzeGmX+E7Srd3u/usRtAoC8VbcLV3aWGT7s+ACWUYjMRYDN8Y64+4KDHgZAhmBuSM0Fg1BNdkg+r1fehSFKKX+o5Ty+B//JUwpjfcSHf4MlhNiFMkjE6Mob+6mKDuF6flptHa7455tFMq6ykl14PGpuDZyqmnrQSmYMCaZcZmBoGV83S39rif/ytFuE7JTHSNiUYwJsiiyUx1xvy4ClnXA0g6souPt9mnrGag0c9Pi73oK7K/KGjQW8VeaA6+LaC1NPYriTRH5rogUi8gkEfk22ia57PdKc6KhCGQ1ZQxOj02Ov0Xh9vqoaeuhKDuFidkpQHTBqUjQYhQDxyJwMcZzA2IgUDo+K5lxWSOT6dPa7cZuE1Idx3fs56Y5496npKXb3b96Ba0Mfku3K66p24NX0XkjENhXStHa4+53BYIWN2rucuGL51j0u54CLslA7CreStMzYN7S3HCRy6Bnw931/p+3DDr+aTTL4j0brwiskgdPjgl2G2nOhLhaFDWtvfgUTBiTMiANcuHErLjJ0B7CogjsqWjudlHc388qtgT8znnpzuN7B+IcwG3r0dwcwZvr4h0fUEqdsHLMSXWglKa4A6vZWNM/OQZW0f7AfjxX871uHy6P7wTXk9entNhF3MbCRVLi8ZI/ac4EnAm2uMZKlFK09bhOsK42H4287LqerKfJEb/7EIjIdcBPgdnAMqXUliHOOwp0oG3w8yilhuyGFwsCFsXgyRE0q6K1J35ffqD1amADDcTX3aKU0vaUDLKuxqTGP7Df3Hm8lEiyw86YlMS458u39bgH7CcBLT5QHseeFB19Hjw+NVBR+FewzV3xUxT97hb/xGRG8NQox7PQBrpbQFtYxE9RuAd8HyIS91hJt8uL26sGXJ+5fkvT4/UNSG/Xy7CKwt+86HKgOPh8pdSfDX/acQId7u7Vce75/hTduNPZp1kUac4ThykrJbE/wyEeNAaVzxiTkogzwRbXybHP48PtVScozTH+yaG5K35j0dzlQuR4fKAwM3lELIrBSjMn1RnXAomtXQPdHHDcwmvqdEFBfORo63EPWEVD/K2rwKJtcGAfAjXK0kO9LAZyDAyog9/tE8e4UaiK14E03aYuV38asxH0uJ6eBXqBXYApOYhKqUCBQTPeLmZ0u7RKJalDKIp47qNoCuqLISKMy4rv5Njeb12NAoui20VWcmJ/hdS89PhO0KDdjIFJOUBOmoMul5cel5fkoNhFrAis5Ae6nuLfqrelyzVgJQ/R+8SNctz9FaQo/GMRzyyw1u6BLh/QlHc83XCD4yQQXOk5dopiglJqgeF3NgcFvCIiCrhXKXVfPD88YFGkhrjps5Id7GuLX5OYwEQYuPjHZiTFtQ9EIF4zuJxJujOBBJvE9WYM7rIHml8+3pvu2nrcTM4dGJPJST2+gp3gSIm5DAHlnRliFR3XyXFQthHEfyNmYBUdbOX1x8/iqijcTMtPG3AsJ80Z194YAetq4FhEt4DQ46x6UUQuMvrGIvJalB3uAJYrpRYDlwK3hqtaG4sOd90ubXJMCWFRZCQn0h5Hi6Kxs4+MpAQc/jaPuenOuN4A/RlggywKESErJb5l15s6B26sGom9A4Nz9jU54ruC7ew90TU6JsWBxLlVb6hVdG5afNN020KsogO/x3PjX1sI11OOP2U5XnuN2rpPjNdEqzT1WBQbgSdFxAa40VqUKqVURrgXKaUujEiige9R7f9ZLyJPAsuAtUOcex9wH8DSpUtN+Ua6+jTXU0piCIsiJZG2Hnfcyko3DgpO5sQ5Z3+oPSWgbbRqiXOMYmre8VVbTpqTHreXbpeHFIeeSzo6+gP7SScGsyF+E1Oo78RuE8akOPp7vceD1m43U/IGWlfZqQ5a/Kmp8WgcFMovn2i3kZmcGNdFTGdf6MzAPo+Pbpc3pBvbbI7v8Ql2w0V3beqxKP6E1mAoRSmVoZRKH05JmIGIpIpIeuB34CK0IHjc0CYee8gLPTM5EbdX9ccxYk1TZ1//RATaiq2j10OfJz6f3x/YD6EoslIcNMczRtHlIjvtxNVSvCbobpcXnzpRaeamxndzVYf/O0l3hljBxnEV3dkXurmXx6f63WOxpqPPgwikOk7cEBovy8br0+aDNOeJYwHxuz5bQyjNTH9ML1KLQo+iOATsVibaTXo63KHlbLwtIjuATcDzSqmXzJJBD10u75Ar1Kw4b7rTSjUET47xdXP0B/ZDjEd2irZ6jAc+f178wPpGgdhAfGToCsSuBq0Oc+IsR7/rKcQKNq6Kotdzggz99Z7iOBapjoQTFnXZqY64NdYaajE1MPsq9rT3aJtBU4Jiqza/pRnp96HHDqoB3hKRF4H+/zSa9Fg9He6UUmXAwkg/wwy6+jykOkNnrwTvzg7sa4gl7YN8n8FujsCms1jSH68JEdgfk+qg5Vh8FGaXy4NPDVwt9Wf6xGklP1TadIrDjjPBFjfl3dHrJsVhP6E/dm6ak/218Um0UErR6fKQ7jxRWUHATRh7Obr6PCHT2LNTHRxrik9QvbPfwjuxwjLEb1HX1ech1WE/wSWuWZqR3SN6FMUR/8Phf7xv6Oob2qLIjHO9p/ZBBfniv4oeOlV4TEoird2uuMRrQq3a4m3adw5hUfRvroqjwgoVM8qJYyC52+VFqTDWVRzHItSiLjvVwbY49SsJJHycYFGkxtnS7PMOqTRjFsxWSv0MtDiBUqorok85Sel2eUgbyqKIYwVZj9en+YGTj39d8V5Fd7s0H7Az4URvZcAf3RHCV202HSEyfeLu8ulXFCdeGzlp8XP7BBpJDSY71UFrtzsu/SCGdLekxtn1FMaiaOmK0yImxLUZkAHi6Sb2hFzQZac52FcdmaWppx/FGSKyF3/7UxFZKCJ/i+jTTjLCxSiOu55i/+UHJsehXE/xoNvlJdWREPJm6y8MGIcbIVSmT3/JiDgpzYB1NTiIDPHt+NfR5yEthGIOpOnG8/sYanKMp5UXKtGiP6geh+rGHUMozXi7JDXrKoSlGUVgX89y4y/AxUATgFJqBzDkfob3EnpjFLGmPcQehjSn1uqxMU6TUiADLBSBqqHxuBGGqr+Vl+6kPk71dDr7NBlCuzqccQuehurnDpAbR1dHILA/+PtwJNhIT0qI656SUIkW8QwkByyKwTEKEYlrJlq4eE1bj2ZpGkVXUq9SqmLQSjI+OZkRUtvey+9e2h/1+9S19XLKENVZ05wJ2G3CK3vqaIlxnCLgXgreaSkiFGYlseZAA7Y47OMoOdYytKLwWxR/f/sIE7PrYipHWYO2A3twCmJ+upNt5S2mfO/Dsddvvoe6GXPTtHIN8ZCjvKmbZZNPrPQfWM3fs+ZwzBMtAvXGBn8foK1g3zncGJexqGnrYe74E7P2A4HkO98sjah0hRH21/ivi1CWTZqDkmPN8bkumrtZMmnMCccDsZJfv7BvQF0uPehRFBUiciagRMQB3IbfDTVaaezo4+/rjkT/RgILJmSGfkqEJZPGsL28lZ2VsW9LmpWSeEJpgPNn5vPQu+WUNZjwv+rgsvmhe3RPzk0lP93JK3tiqyQCFGYm9fehCHD6lBzuXVNmzveug8m5qQPSlQMsKsrCvkHiJkeohczU/DRy05y8uKs2LjLkpDqYlHNiyZJlk7N5alt1fMZCYOGErBMOzyhIIzvVwXM7amIvAzApJ+WEGmAAy4pz+O/GY3G7LkK1H5g3PpN0ZwL/21hu+P1kuO0RIpIL/BW4EG1X9ivAbUqpZsOfFieWLl2qtmwJWbncwsLCwiIEIlIyVCsHPYpiuVJq/XDHRhMi0gEcGGk5DJILjEg59Six5I4vltzx5f0k9ySlVMhdL3oUxVZ/Yb6wx0YTIrIl3k2OouVklBksueONJXd8seTWGDJGISJnAGcCeSLy9aCnMoDYF9u3sLCwsBgVhAtmO4A0/znB7aHagWtjKZSFhYWFxehhSEWhlFoDrBGRfyqljsVRJjOIa4MjkzgZZQZL7nhjyR1fLLnREaOwsLCwsHh/E9tCMBYWFhYWJz1hFYWI2EXka/ESxsLCwsJi9BFWUSilvICRHtcjiohcIiIHRKRURL470vIMRkSOisguEdkuIlv8x7JF5FUROeT/OSbo/O/5/5cDInJxHOX8h4jUi8juoGOG5RSRJf7/t1REbpcYl+8cQu6fikiVf8y3i8hlo0luEZkoIm+KyD4R2SMiX/EfH9XjHUbu0T7eSSKySUR2+OUOVMce7eM9lNzxGW+lVNgH8CvgTuBsYHHgMdzr4v1AS9k9DExBy9jaAcwZabkGyXgUyB107PfAd/2/fxf4nf/3Of7/wQlM9v9v9jjJeY7/e94djZxonQnPQNvR/yJw6QjI/VPgmyHOHRVyA4WB+wktu/CgX7ZRPd5h5B7t4y1Amv/3ROBd4PSTYLyHkjsu460nRnEmMBf4OVr/7D8Bf9TxunizDChVSpUppVzAak4Oa+gq4F/+3/8FXB10fLVSqk8pdQQoRfsfY45Sai0wuESLITlFpBDIUEptUNrV+e+g18RT7qEYFXIrpWqUUlv9v3eg1VEbzygf7zByD8VokVsppTr9fyb6H4rRP95DyT0Upso9rKJQSp0f4rFiuNeNAOOBiqC/Kwl/4Y4ECnhFREpE5Gb/sQKlVA1oNx+Q7z8+2v4fo3KO9/8++PhI8CUR2el3TQVcCqNObhEpBhahrRZPmvEeJDeM8vEWLfa6HagHXlVKnRTjPYTcEIfx1tO4qEBE/i5az2xEZI6IfGa4140Aofxsoy33d7nSSp9cCtwqIuH6epwM/w8MLedokf9uYCpwClr/9z/5j48quUUkDXgc+KpSKlwbstEu96gfb6WUVyl1CjABbZU9L8zpo13uuIy3HtfTP4GXgXH+vw8CX9XxunhTCUwM+nsCUD1CsoREKVXt/1kPPInmSqrzm4P4f9b7Tx9t/49ROSv9vw8+HleUUnX+G8wH3M9x992okVtEEtEm2/8ppZ7wHx714x1K7pNhvAMopVqBt4BLOAnGO0Cw3PEabz2KIlcp9Qjg8wvpYXQ2LtoMTBeRyaL1zbgBeGaEZepHRFJFJD3wO3ARsBtNxk/6T/sk8LT/92eAG0TEKSKTgeloQaiRwpCcfvO9Q0RO92dVfCLoNXEjcPP7+RDamMMokdv/GX8H9iml/hz01Kge76HkPgnGO09Esvy/J6O1T9jP6B/vkHLHbbx1RNvfAnKArf6/TwfWDPe6kXgAl6FZPIeBH4y0PINkm4KWhbAD2BOQzz+2rwOH/D+zg17zA///coAYZwwNknUVmhnrRluBfCYSOYGl/gv3MFrmnIyA3P8BdgE7/TdP4WiSGzgLzfTfCWz3Py4b7eMdRu7RPt4LgG1++XYDP/YfH+3jPZTccRlvPWXGFwN3APP8b54HXKe03tkWFhYWFu9x9CgKJ5qraSZaIOQAYFNKxaeTvYWFhYXFiPKebFxkYWFhYWEe4RoXjUXLr00WkUUcT6vKAE7spG5hYWFh8Z4kXOOii4FPoaVPBWdjdADfj6FMFhYWFhajCD2upw8rpR6PkzwWFhYWFqMMXY2LRORytHpPSYFjSqmfx1AuC4uYIiKBdEiAsWgJGw3ANODfSqkvmvx5/wTORSs2d0+I5zuVUmkmft6bwKnAeUqpLWa9r8X7k3CuJwBE5B60mMT5wANo/bJHcuOXhUXUKKWa0MoeICI/BTqVUrEudvktpdRjMf4MQKvRJiJvxeOzLN776Koeq5T6BNCilPoZWnnaicO8xsLipEREzhOR5/y//1RE/iUir4jWS+QaEfm9v5b/S/4SFoH6/mv8xR5fHrRbdqjPmSwiG0Rks4j8Iuh4moi8LiJb/Z9zlf/4L8Tf88H/969E5DYRKRSRtaL1ItgtImebPyoW73f0KIoe/89uERmHtut1cuxEsrAYVUwFLkcr2/xf4E2l1Hy0++Jyv7K4A7hWKbUE+AdaD5fh+Ctwt1LqVKA26Hgv8CF/+vn5wJ+CymV8EkBEbGglav4H3Ai8rLRicQvRdkhbWJjKsK4n4Dl/jZE/AFvRtu3fH0uhLCxGES8qpdwisgutOdZL/uO7gGK0jajzgFe1+Rw7WhmR4VgOfNj/+3+A3/l/F+DX/srCPrQU9QKl1FERafKnqhcA25RSTSKyGfiHX2E9pZTaHtV/a2ERgnD7KL4KrAd+o7RCgI/7TfIkpVRbnOSzsBhp+gCUUj4Rcavj2R8+tPtHgD1KqTMieO9QmSQfRSuTs8SvoI5yPInkAbSU9bFolgtKqbV+pXI58B8R+YNS6t8RyGJhMSThXE8T0MzjehF5S0R+jVax0B4XySwsTg4OAHkicgZopbdFZK6O161Hcx+BphwCZAL1fiVxPjAp6Lkn0Upin4pW+h8RmeQ//34095RVMcHCdIa0KJRS3wTwl+xeitYS9dPA/SLSqpSaEx8RLSxGL0opl4hcC9wuIplo99Rf0CoEh+MrwEP+AHXwPqX/Ac+KyBa0eMP+QZ/1JtCqlAqU+j8P+JaIuIFOtLLRFhamomfDXSZaptNy/88sYJdS6qaYS2dh8R7Bv4/iuWjSY/1B7K1o1ZsP6Tj/LeCb1j4Ki2gJF6O4D22TXQdaL9x3gD8rpVriJJuFxXuJNuAXIpIbasPdcIjIHOA54EmdSuJNtB4obsOSWlgMYkiLQkReAnLRelC8A2wAdqvhTBALCwsLi/cUYV1P/vztuWjxiTPR0gCbgQ1KqZ/ERUILCwsLixFFb62nCWgxijOBDwI5Sqms2IpmYWFhYTEaCOd6ug1NMSxH83OuR3M/rUcLZvviJaSFhYWFxcgRbmd2MfAY8DWllJ6dphYWFhYW70F0uZ4sLCwsLN6/6CkKaGFhYWHxPsZSFBYWFhYWYbEUhYWFhYVFWCxFYWFhYWERFktRWFhYWFiE5f8Boji5eOXN6hYAAAAASUVORK5CYII=\n"},"metadata":{"needs_background":"light"}},{"output_type":"display_data","data":{"text/plain":"<Figure size 432x288 with 1 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA84klEQVR4nO3dd3hUVf7H8fdJ75QklNBCLymGFIoUEREUQVgrRQEVQdRVdy0/rMvad2XXXRVQpCsqiKCuKKAgIp0k9NAhQCCkkgAhPef3xx0wQAIhyeTOTL6v58mTyZ2ZzCc3mW/uPefcc5TWGiGEEI7FyewAQgghqp8UdyGEcEBS3IUQwgFJcRdCCAckxV0IIRyQi9kBAAICAnRwcLDZMYQQwq7ExcWla60Dy7rPJop7cHAwsbGxZscQQgi7opQ6Wt590iwjhBAOSIq7EEI4ICnuQgjhgGyizb0shYWFJCUlkZeXZ3YUYWUeHh40bdoUV1dXs6MI4TBstrgnJSXh6+tLcHAwSimz4wgr0VqTkZFBUlISLVu2NDuOEA7DZptl8vLy8Pf3l8Lu4JRS+Pv7yxmaENXMZos7IIW9lpDfsxDVz2abZYRwBKln80hMP8+xzPNk5uRTWKwpKdHU9XIl0NedpvW8aNfQFzcXmz7OEnZIivtVJCUl8cQTT5CQkEBJSQmDBg3ivffew83NjW3btnHy5EkGDhwIwKRJk/Dx8eG5556rltceM2YMv/32G3Xq1AHg4Ycf5qmnnrp4wVdAQEC1vI6oXrkFxazcm8LqfWlsOpLB8czcaz7HzcWJTo396N0ukAEhDenU2E/OZkSVSXEvh9aau+66iwkTJvDdd99RXFzMuHHjePnll3nvvffYtm0bsbGxF4t7VRUXF+Ps7HzJtvfee4977rmnWr6/sK5dJ7KZvS6RZbuSySkopp6XK11a1md092DaNfSleX0vAnzdcXFSOClFVm4BaWfzOZKew46kbOKOnubDVQf4YOUBWgZ480C3Ftwb3RQ/DxlBJCpHzgXLsWrVKjw8PHjooYcAcHZ25v3332fWrFmcOXOG1157jQULFhAREcGCBQsASEhIoE+fPrRq1YoPPvjg4vf6/PPP6dKlCxEREYwfP57i4mIAfHx8eO211+jatSsbNmy4rnyJiYmEhoZe/Hry5MlMmjSJoqIiYmJiWL16NQAvvvgiL7/8crk5iouLGTNmDKGhoYSFhfH+++9Xep/VRhsPZ/DAjE0M+nAty3Ylc0d4Y74Y25XYV27lkwejGdurFb3bBRIc4I2Puwsers64uTjRwNeDkKA6DAoP4qWBHflmwo1sebkf794VRj0vV974IYFub6/knZ/2kHW+wOwfU9ghuzhy//v/dpNw8ky1fs9OQX78bXBIuffv3r2bqKioS7b5+fnRvHlzEhMTef3114mNjeWjjz4CjGaZvXv38uuvv3L27Fnat2/PhAkTOHjwIAsWLGDdunW4urry+OOPM3/+fEaNGkVOTg6hoaG8/vrrZWZ4/vnnefPNNwH47LPPCAsLu+bP5eLiwpw5c7jnnnv44IMPWLZsGZs2bWLPnj1l5ggJCeHEiRPs2rULgKysrIrsvlrvcNo53vlpLz8npNDA153/u60DI7o2p45n5Y+0A3zcGdalOcO6NGdnUjYz1h5m+prDfLHpGBP6tGZsz1bSNi8qzC6Kuxm01mW2e5a3HeCOO+7A3d0dd3d3GjRoQEpKCitXriQuLo6YmBgAcnNzadCgAWCcDdx9993lZqhss0xISAgPPvgggwcPZsOGDbi5uZWbY/DgwRw+fJg///nP3HHHHfTv3/+6X682KSgqYerqg0z59SBuzk48P6A9j/RsiYer87WffB3Cmtbhv8M6M6FPayYv38c/l+1jcfwJ3rkrjJjg+tX6WsIx2UVxv9oRtrWEhITwzTffXLLtzJkzHD9+nNatWxMXF3fFc9zd3S/ednZ2pqioCK01o0eP5p133rni8R4eHle0s1eUi4sLJSUlF7++fJz4zp07qVu3LikpKQBXzbF9+3aWL1/OlClTWLhwIbNmzapUJke360Q2z329nb2nzjIkIohX7uhEoK/7tZ9YBR0a+TFjdAy/7k3llW93ce/HGxhzYzATb+9Q7f9QhGORc7xy3HLLLZw/f5558+YBRofns88+y5gxY/Dy8sLX15ezZ89W6PssWrSI1NRUADIzMzl6tNxZOiusYcOGpKamkpGRQX5+Pj/88MPF+xYvXkxGRgZr1qzhqaeeIisrq9wc6enplJSUcPfdd/PGG28QHx9f5WyORmvN3PWJ3DV1PafPFzBjVDT/HdbZ6oW9tJs7NODnv/ZmzI3BzFmfyNAp69ifcu2/P1F7SXEvh1KKJUuW8PXXX9O2bVvatWuHh4cHb7/9NgA333wzCQkJl3SolqVTp068+eab9O/fn/DwcG699VaSk5OrnM/V1fViZ+ygQYPo0KEDAOnp6UycOJGZM2fSrl07nnzySZ5++ulyc5w4cYI+ffoQERHBmDFjyjyyr83O5Rfx+Px4/vb9bnq2DWDZ073p16mhKVm83FyYdGcIsx+KIf1cPkM+WsfSHVX/WxKOSWmtzc5AdHS0vnyxjj179tCxY0eTEomaZou/76TT5xk7N5YDqed4YUB7Hu3VCicn2xh/nno2jwmfxxN39DRP9W3DM/3a2Uw2UXOUUnFa6+iy7pMjdyHKsPXYaYZOWc+JrFzmPBTD+Jta21TxbODrwRePduW+6KZ8sOogj30eR05+kdmxhA2R4i7EZX7amcz90zfi5ebMksdvpFfbMpeoNJ27izP/uDucSYM78cueFEbO2MTpHBkTLwxS3IUoZWHscZ74Ip7QID++faIHbRr4mh3pqpRSjOnRko8fiCIh+Qz3frKB5OxrT3kgHJ8UdyEsZq87wguLdtCjTQCfj+1KfW83syNVWP+QRsx7uAunsvO4Z9oGDqedMzuSMNk1i7tSqplS6lel1B6l1G6l1NOW7ZOUUieUUtssHwNLPedFpdRBpdQ+pdQAa/4AQlSHj1Yd4O//S2BASENmjI7Gy80uLgG5RLdW/nw1rhv5RcXcP30jh6TA12oVOXIvAp7VWncEugFPKKU6We57X2sdYfn4EcBy3zAgBLgNmKqUkqsthM2auvogk1fs50+dmzBlRCTuLvb75xrapA5fPtoNrTXDp2+UI/ha7JrFXWudrLWOt9w+C+wBmlzlKUOAr7TW+VrrI8BBoEt1hK1pb731FiEhIYSHhxMREcGmTZsACA4OJj09vdLfd9u2bfz444/VFbPSnJ2diYiIuPiRmJjI6tWrGTRokNnRaszMtUf457J93HlDEJPvvQEXZ/tvqWzb0JcvHu1GcYlm+KcbOZKeY3YkYYLr+ktWSgUDnYFNlk1PKqV2KKVmKaXqWbY1AY6XeloSZfwzUEqNU0rFKqVi09LSrj+5lW3YsIEffviB+Ph4duzYwS+//EKzZs2q/H2Liopsprh7enqybdu2ix/BwcFmR6pR8zcd5Y0fjKaYf913A842NNSxqtpZCnxhsXEEn3T6vNmRRA2rcHFXSvkA3wDPaK3PANOA1kAEkAz868JDy3j6FVdKaa2na62jtdbRgYG2N9QsOTmZgICAi/PFBAQEEBQUdPH+Dz/8kMjISMLCwti7dy9gXNI/dOhQwsPD6datGzt27ACMGSPHjRtH//79GTVq1BXTBYeFhZGVlYXWGn9//4tTHjz44IP88ssvJCYm0qtXLyIjI4mMjGT9+vUA3H///Zf8kxgzZgzffPMNxcXFPP/888TExBAeHs4nn3xSqX0wadIkJk+efPHr0NBQEhMT2bJlC+Hh4eTl5ZGTk0NISAi7du0iJyeHhx9+mJiYGDp37sx3330HGDNsXphqODw8nAMHDlQqT3VaFJfEy0t20bdDAz4cHomrAxyxX659I1/mj+3K+YIiRs3cTPq5fLMjiRpUoV4jpZQrRmGfr7VeDKC1Til1/6fAhclNkoDSh7hNgZNVSvnTRDi1s0rf4gqNwuD2d8u9u3///rz++uu0a9eOfv36cf/993PTTTddvD8gIID4+HimTp3K5MmTmTFjBn/729/o3Lkz3377LatWrWLUqFFs27YNgLi4ONauXYunpydz5sy5ZLrgX3/9lXXr1tGiRQtatWrF77//zqhRo9i4cSPTpk3DycmJn3/+GQ8PDw4cOMDw4cOJjY1l2LBhLFiwgIEDB1JQUMDKlSuZNm0aM2fOpE6dOmzZsoX8/Hx69OhB//79admy5SU/Y25uLhEREQC0bNmSJUuWVGjXxcTEcOedd/LKK6+Qm5vLAw88QGhoKC+99BJ9+/Zl1qxZZGVl0aVLF/r168fHH3/M008/zciRIykoKLg4n71Zfk5I4YVF2+nZJoCpIyMdehrdjo39mDkmhgdnbmLM7M18+Wg3fGUBkFqhIqNlFDAT2KO1/nep7Y1LPexPwC7L7e+BYUopd6VUS6AtsLn6ItcMHx8f4uLimD59OoGBgdx///3MmTPn4v133XUXAFFRUSQmJgKwdu1aHnzwQQD69u1LRkYG2dnZANx55514enqW+Vq9evVizZo1rFmzhgkTJrBz505OnDhB/fr18fHxobCwkEcffZSwsDDuvfdeEhISALj99ttZtWoV+fn5/PTTT/Tu3RtPT09WrFjBvHnziIiIoGvXrmRkZJR5tFy6Waaihf2C1157jZ9//pnY2FheeOEFAFasWMG7775LREQEffr0IS8vj2PHjtG9e3fefvtt/vGPf3D06NFy90NNiDuayZNfxBPWpA7TR0XVipkVY4LrM3VkJHuSzzJuXhx5heb+cxU1oyJH7j2AB4GdSqltlm0vAcOVUhEYTS6JwHgArfVupdRCIAFjpM0TWuuq/TVd5QjbmpydnenTpw99+vQhLCyMuXPnMmbMGOCP6X0vTO0LxuyBl7sw97u3t3e5r9O7d2+mTJnCsWPHeOutt1iyZAmLFi2iV69eALz//vs0bNiQ7du3U1JSgoeHB2BMGdynTx+WL1/OggULGD58+MUcH374IQMGVG0U6tWmFc7MzOTcuXMUFhaSl5eHt7c3Wmu++eYb2rdvf8n36dixI127dmXp0qUMGDCAGTNm0Ldv3yplq4yDqWd5eE4sQXU9mTUmxi6HO1ZW3w4NmXxvOH9ZsJ2nv9rK1JFRDtXHIK5UkdEya7XWSmsdXnrYo9b6Qa11mGX7nVrr5FLPeUtr3Vpr3V5r/ZN1fwTr2Ldv3yVHu9u2baNFixZXfU7v3r2ZP38+AKtXryYgIAA/P78rHnf5dMHNmjUjPT2dAwcO0KpVK3r27MnkyZMvFvfs7GwaN26Mk5MTn3322SXNGsOGDWP27Nn8/vvvF4v5gAEDmDZtGoWFhQDs37+fnJzrHzERHBx8cQrg+Ph4jhw5cvG+cePG8cYbbzBy5Ej+7//+7+Lrfvjhhxf/yW3duhWAw4cP06pVK5566inuvPPOi30RNSnlTB6jZ23B1dmJuQ91wd+n5qbrtRV/6tyU1wZ1YvnuFN74IcHsOMLKHLexsYrOnTvH6NGj6dSpE+Hh4SQkJDBp0qSrPmfSpEnExsYSHh7OxIkTmTt3bpmPK2u64K5du9KuXTvAaKY5ceIEPXv2BODxxx9n7ty5dOvWjf37919yFtC/f3/WrFlDv379cHMzrqgcO3YsnTp1IjIyktDQUMaPH3/x7OJ63H333WRmZhIREcG0adMu5ps3bx4uLi6MGDGCiRMnsmXLFlatWsWrr75KYWEh4eHhhIaG8uqrrwKwYMECQkNDiYiIYO/evYwaNeq6s1TFmbxCRs/aTNb5AuY8FENzf68afX1b8nDPlozt2ZI56xOZtfbItZ8g7JZM+StsgrV+30XFJTwyN5Z1B9OZ/VCMzU4CVpNKSjQT5sexIiGFTx6Ion9II7MjiUqSKX9FrfX2j3v5bX8afx8SIoXdwslJ8Z/7OxPetC5Pf7WNHUlZZkcSViDFXTisLzcfY9a6IzzUI5iRXa/eX1LbeLo5M2NUNP4+bjw8J1YucnJANl3cbaHJSFifNX7PGw5l8Oq3u+jdLpCXB0rzXlkCfd2ZPSaG/KJiHp6zhTN5hWZHEtXIZou7h4cHGRkZUuAdnNaajIyMi8M7q0Nieg4T5scRHODNRyM6O8R8MdbStqEvnzwQxeG0HJ76civFJfJ+cxQ2O9C3adOmJCUlYYvzzojq5eHhQdOmTavle53JK+SRuVsAmDk6Gj+5GvOabmwTwN+HhPDykl28+9MeXr6j07WfJGyezRZ3V1fXKy6XF+JqiopLePKLrRzNOM9nj3SlhX/5F46JS43s2oIDKef49PcjtG3oy33RVZ8kT5hLzleFw3hz6R7W7E/jzaGhdG/tb3Ycu/PKHR3p2SaAl5fsJDYx0+w4ooqkuAuHMH/TUeasT+SRni0Z1qW52XHskouzE1NGRNK0nhfjP4uTETR2Toq7sHvrD6bzt+9206d9IC/JyJgqqePlyozR0RQUlzB2biw5+dd/ZbOwDVLchV07kp7DhPnxtAzw5oPhnWUyrGrQOtCHKSMi2Z9ylr8s2EaJjKCxS1Lchd3KzjVGxjgpmDk6RkbGVKPe7QJ5dVAnViSk8O+f95sdR1SCzY6WEeJqjJEx8RzPPM/nj3St1ZOBWcuYG4PZn3KWj349SNuGPgyJuNrSycLWyJG7sEtv/JDA7wfSeXNoKF1bycgYa1BK8fc7Q+nSsj7PL9rBtuNZZkcS10GKu7A7n208ytwNR3m0V0vuj5GRMdbk5uLExw9E0cDXnUfnxZKcnWt2JFFBUtyFXVl3MJ1J3++mb4cGTLxdRsbUhPrebswcHcP5/CIenRfL+QIZQWMPpLgLu3Eo7RwTPo+jdaA3/x0WISNjalD7Rr58OKIzCSfP8NcF22UEjR2Q4i7swumcAh6ZYyyTN3N0DL4yMqbG9e3QkJcGdmTZ7lNMXrHP7DjiGmS0jLB5BUUlPPZ5HCez8vhyXFea1ZeRMWZ5pGdLDqWdY+rqQ7QO9OHuqOqZ8E1UPzlyFzZNa80r3+5k05FM/nlPOFEt6psdqVZTSvH6kFBubO3Pi4t3skXmoLFZUtyFTfv098MsjE3iqb5tGNpZxlnbAldnJ6aOjKRJPU/GfxbHsQyZg8YWSXEXNmvF7lO889Ne7ghvzDP92pkdR5RS18uNmaOjKS7RPDJXVnGyRVLchU3adSKbp7/aRnjTuvzr3htwkpExNqdVoA/TRkZyJD2HP3+xlaLiErMjiVKkuAubk3Imj0fnxVLPy5VPR0Xh4epsdiRRjhvbBPD6kFB+25/Gm0v3mB1HlCKjZYRNOZtXyJjZWziTW8jXj91IA9/qW1tVWMeIrs05lHaOmWuP0LSeJ2N7tTI7kkCKu7AhBUUlTPg8ngMpZ5k5JoZOQX5mRxIV9NLAjiRn5/Lm0j009PNg8A1BZkeq9aRZRtgErTUTv9nB2oPpvHNXGDe1CzQ7krgOzk6Kf98XQZfg+jy7cDsbDmWYHanWkyN3YRPeW76PxVtP8Oyt7bjXzMWZtYbUBNi/DJJ3QHaSsd2zLjQKh+Ce0KoPOEk/wOU8XJ2ZPiqKez7ewLjPYln02I20b+Rrdqxa65pH7kqpZkqpX5VSe5RSu5VST1u211dK/ayUOmD5XK/Uc15USh1USu1TSg2w5g8g7N9nGxKZuvoQw7s058m+bcwJoTXs/RFm3grTboSVr8OpHeDuAx5+cC4F1n8An98F74fC+g+hKN+crDasrpcbcx/ugqerM2Nmb5ZZJE2ktL76BEBKqcZAY611vFLKF4gDhgJjgEyt9btKqYlAPa31/ymlOgFfAl2AIOAXoJ3Wuri814iOjtaxsbHV8fMIO/PTzmSe+CKevh0a8PEDUbg4m9BSePooLP0rHPwF6raA7k9AxzvBr/GljyvMhf3LIXYWHPkN6jaHIVOgZe+az2zjEk6e4b5PNhBU14OF47tT18vN7EgOSSkVp7WOLuu+a76TtNbJWut4y+2zwB6gCTAEmGt52FyMgo9l+1da63yt9RHgIEahF+ISv+1P46mvthLRrC4fDO9sTmHfvxw+7gXHNsJt/4A/x0PX8VcWdgBXTwgZCqO/h1HfgbMbzL3TOMovkTHepXUK8mP6g1Ekpp9n9OwtnJOFtmvcdb2blFLBQGdgE9BQa50Mxj8AoIHlYU2A46WelmTZdvn3GqeUilVKxaalpVUiurBnm49kMv6zWNo28GX2Q13wcjOh+2fjx/DF/VCvOUxYB90eA+cK5mjVB8avgc4PwO//gkVjjCN7cdGNbQL4aERndp3IZuzcLeQVlnvyLqygwsVdKeUDfAM8o7U+c7WHlrHtirYfrfV0rXW01jo6MFBGRtQmu05k88icLQTV9WTeI12o42nC9L2/vQfL/g86DoKHV0C94Ov/Hm7ecOeH0P8tSPgevhwGhXnVHtWe9Q9pxL/uvYFNRzJ5Yn48hXIVa42pUHFXSrliFPb5WuvFls0plvb4C+3yqZbtSUDp4Q5NgZPVE1fYuwMpZxk1azN+nq58/khXAnzcaz7E+o/g1zfhhuFwzxxwq8IUwkrBjU/C0Klw+DdY8AAUFVRbVEcwtHMT3hgSysq9qfx14XaKZaGPGlGR0TIKmAns0Vr/u9Rd3wOjLbdHA9+V2j5MKeWulGoJtAU2V19kYa/2p5xl+KcbcXZSfD62K0F1PWs+xI6vYcXL0GmI0Rla0WaYa4kYAYP/Cwd/hh/+Yoy+ERc90K0FE2/vwP+2n+SvC7fJPDQ1oCJ/2T2AB4GdSqltlm0vAe8CC5VSjwDHgHsBtNa7lVILgQSgCHjiaiNlRO2w79RZRny6EScnxZePdqNlgHfNhzgRB989AcG94K5Pq3+setRoOHMSfnsX/FtDr79W7/e3c4/d1JriEs17y/dRouH9+24wpxO9lrhmcddar6XsdnSAW8p5zlvAW1XIJRzI3lNnGPHpJlycFF+O60brQJ+aD3EuFb56AHwbwn3zwMVKzUF9JkLGAVj1BjSNgZa9rPM6duqJm9vgpBT/WLaXEq357/0RUuCtRPaqsKqEk2cYPn0jbs5OLBjf3ZzCrjV8+zjkZsL988HLiqs5KQWDP4D6reCbsZCTbr3XslMT+rTmxds7sHRHMk99tVU6Wa1Eiruwmi2JmQybvgEPV2e+GmdSUwzAlhlGW3j/N6FxuPVfz90H7pkNuadhyWMyBr4M429qzSt3dOTHnad4dF4s5wtkHHx1k+IurOKXhBQemLGJAB93vn6sO8FmFfb0A7DiVWjTD2LG1tzrNg6HAW8Z/1RiZ9bc69qRsb1a8fafwlizP42RMzaRdV5GGVUnKe6i2i2MPc74z+Po0MiXrx/rTtN6VRhqWBUlxbB4nHFl6ZApRpNJTYoZC637wi+T/piATFxiRNfmTB0Zye6TZ7j34w0yF001kuIuqo3WmmmrD/HCoh3c2NqfLx7thr8Z49gv2DIDTsbDwPfAt1HNv75SMOh90CWw9FkZHlmO20IbM/ehLpzKzuPuqes5kHLW7EgOQYq7qBb5RcU8v2gH/1i2l8E3BDFzdAze7ibOKH0mGVa+YRw5h95tXo56wdD3FWMK4d2Lr/nw2qp7a3++Gt+NwhLNXVPX8+u+1Gs/SVyVFHdRZenn8hn56SYWxSXxTL+2/Pf+CNxcTP7TWv4SFBfAwMk13xxzua6PQVAk/DQR8uWotDwhQXX47okeNPf34pE5W5jx+2GuNWutKJ8Ud1Ele5LPMOSjdew6mc2UEZE8068dTk4mF9NDq4yj5F7PGhcTmc3JGe6YDDmpxiRjolxBdT35+rHuDAhpxJtL9/DCoh3kF8k1kJUhxV1U2pKtSdw9bT3FJZqvx9/IHeFlTJNb00qKYfnLRnNIj6fNTvOHJlHGXDYbpsDpRLPT2DQvNxemjIjk6Vva8nVcEvd9spHjmefNjmV3pLiL65ZXWMzEb3bwlwXbCW1Sh++f7EFY0zpmxzJs+8JYJu+Wv4Grh9lpLnXLa+DkAj+/ZnYSm+fkpPjLre34+IFIDqee444Pfmf57lNmx7IrUtzFdTmYepahU9bx1ZbjPN6nNV+M7UoDPxspogU58Otb0CQaQv5kdpor+QVBz79AwneQuM7sNHbhttDGLH2qF8EB3oz/LI5J3++WZpoKkuIuKqSkRDPj98MM/GAtKWfymP1QDC/c1sG25gXZMAXOJhsXD5ndiVqe7k+Cb2Nj9SbpLKyQ5v5efP1Ydx7qEcyc9YncNXU9e09dbUkJAVLcRQUczzzPiBkbeXPpHnq3DWD5X3pzc/sG135iTTqfCev+Cx0GQfNuZqcpn5sX9H4Ojm801mwVFeLu4szfBocw/cEoTmXnMfjDtXy06oBMHXwVUtxFuQqLS5i+5hD931/DrhNn+Oc94Xw6KpoGvjbSDFPaho+MZpmbXzY7ybV1HmUsxC1rr163/iGNWPGX3vQPacTkFfu5a9p6dp3INjuWTZLiLsoUf+w0gz9cy9s/7qVHG+No/b7oZihbbO44nwmbPjEWr27Yyew01+biBn1ehFM7YM/3ZqexO/4+7kwZEcnUkZGczMpl8EdrefXbXWSfLzQ7mk2R4i4ucSIrl2e+2spdU9eTdb6QTx6MYsboaJqYsWpSRV04au/9gtlJKi78PghoD7++LUfvlTQwrDErn+3D6O7BzN90lL7/Ws2Xm49JU42FFHcBwJm8Qv65bC99J6/mp12neLxPa3559iYGhJgwJ8v1sLej9gucnOGmFyB9H+z9wew0dquOpyuT7gzh+yd7EhzgzYuLd3Lbf39nxe5Ttf7qVmULOyA6OlrHxsaaHaNWyjpfwKy1R5i9PpGzeUX8qXMTnhvQ3raP1Etb+Tr8/m+YsN6+ijsYF1x9FA3ufjBute2O8LETWmuW707hn8v3cjgth8jmdXmybxtubt/ANpsTq4FSKk5rHV3WfSbO7CTMlHY2n5lrj/DZhkRyCoq5LaQRT/ZtQ2gTG7kYqSLs9aj9Aidn6PEM/O8pY8qENmWuWikqSCnFbaGN6NexAQtjk5jy60EenhNLh0a+PH5zG+4Ia4yz2VNj1CA5cq9FtNbEH8ti3oZEftyZTFGJZlB4EE/e3Ib2jXzNjnf9Vv8DVr8NEzbYZ3EHKMqH/0YYy/I9tNTsNA6lsLiE77edZOrqgxxKy6F5fS9Gdm3OPVFNzZ2Kuhpd7chdinstkH2+kKU7k5m/6Si7T57B192Fu6OaMqp7C1qZsaZpdSjMhfdDjEWoRywwO03VbJwGyybCw8tte4y+nSop0axIOMWstYlsTszEzdmJ28MaMaJLc7q0rG/XTTZS3GuhvMJiVu1N5dutJ1i9L42C4hLaNfRhVPdg/tS5iblzrVeHLTOMBTDG/AjBPcxOUzUFOfCfMGPahJELzU7j0PannOWLTcf4Ji6Js/lFNKnryaAbGjM4PIiQID+7K/RS3GuJtLP5/LovlVV7Uvn9QBo5BcUE+rozODyIoZ2DCGtSx+7+eMtUUgwfRoFXfRi70jE6Ite8B6vehMfWQaNQs9M4vPMFRfy08xQ/7DjJ7wfSKSrRtArw5tZODbmpfSDRLeqbvyZBBUhxd1Dn8ouITcxk4+FMNhzOYEdSFlpDIz8P+nZswO2hjbixdYDjdSIlfAcLR8G9c43OVEeQexr+HWL8PEOnmp2mVjmdU8Cy3adYuiOZTUcyKCzW+Li70LNNAD3a+BPTsj7tGviav05BGaS4O4Ci4hIOpp1jZ1I2u05ks+14FrtOnqG4ROPipAhvWoc+7RvQt0MDuzy9rDCtYcYtxkiZP8cZI04cxdLnIH4uPLMLfBuanaZWOpdfxLqD6azel8bqfakkZ+cBxnj66Bb1iGxRj05BfoQE+dnENBwyFNKOFBWXcPx0LodSz3E4/RyHUnPYn3qWPclnyCs0rrzzdnMmpEkdJtzUmm6t/IlsURcvt1ryqzy6Hk7EwR3/cqzCDtBtgtGXsGUG9LWDOXIckI+7CwNCGjEgpBFaa45n5rI5MZMtRzLZkpjJyr1/rO0a6OtOSJAf7Rv50irAm5YBPrQM8CbAx80mDq5qSUWwDbkFxWTk5JOZU0DGuQJOZueSnJXHyaxcTmTlkpydR3J2LoXFf5xNBfi40TrQh5FdWxDWpA6hTerQMsDb8ZpaKmrDFPDyhxtGmJ2k+vm3hna3QexM6PVXcLWTC8kclFKK5v5eNPf34p6opoBxJXfCyTPsPnmG3SezSTh5hnUH0y95z/q6u9Dc34vGdTxoXMeTRnU8CKrrQSM/TwJ93fH3dqOOp6vVm3mkuF9Ga01BcQkFRZaPUrfzy/g6J7+Ic/lFFz9feruYrPNGIc/MKSC38MpFBpydFI38jF9+5+Z1GVS3Ma0CfWgV6E3rAB/qeLmasBds1OlE2PejUfjcvMxOYx3dH4e5P8GOhRA12uw04jJ+Hq50a+VPt1b+F7cVl2hOnM7lcPo5jqTncDgth6TT50k6ncuWxNNk5145oZmzk6Kelyv1vd24tVNDnh/QodqzXrO4K6VmAYOAVK11qGXbJOBRIM3ysJe01j9a7nsReAQoBp7SWi+v9tQW+1PO8tzX2yku0ZRoYzxridYUa43WWLZry3aM29q4ffl9xnP0Jf+Br5dS4OPmgre7Cz4exud6Xm60CfShvrcb9X3c8Pd2o763O/W93Qiq60EDX4/aexR+vbbMAOUE0Y+YncR6gntBwzBj7HvkKMcYCeTgnJ3+OMLv0/7K+88XFHEqO4/k7DzSz+VfPNjLyCkgMycfH3frHMBV5Mh9DvARMO+y7e9rrSeX3qCU6gQMA0KAIOAXpVQ7rbVV1sVycVL4e7vhpBROTgonZexopRTOyvja2G752omy73NSKAVOSuHq7IS7ixNuzk64uVg+St92ccK91Nfe7i74uhuF3NPV2SZ71B1CwXmI/ww6DoY6TcxOYz1KGUfv306QKQkchJebi+VsvGYvGLxmcddar1FKBVfw+w0BvtJa5wNHlFIHgS7AhspHLF+rQB9mP9TFGt9a2JqdCyEvC7qONzuJ9YXeDb9MMubNkeIuKqkqo/SfVErtUErNUkrVs2xrAhwv9ZgkyzYhKk9r2DTdaK5o3t3sNNbn4g6Ro+HACqOfQYhKqGxxnwa0BiKAZOBflu1ltUmU2YitlBqnlIpVSsWmpaWV9RAhDEfXQepu6Dqu9rRBR40x+hdiZ5mdRNipShV3rXWK1rpYa10CfIrR9ALGkXqzUg9tCpws53tM11pHa62jAwMDKxND1BabPgHPehB2r9lJak6dJtBhoNHPUJhndhphhypV3JVSjUt9+Sdgl+X298AwpZS7Uqol0BbYXLWIolbLOm6sVBQ5qvaN+455FHIzYfdis5MIO1SRoZBfAn2AAKVUEvA3oI9SKgKjySURGA+gtd6tlFoIJABFwBPWGikjaonYmcbnmLHm5jBDy94Q0M4YAhrhgBdtCauqyGiZ4WVsnnmVx78FvFWVUEIAxkIW8Z9Bu9uhbnOz09Q8pYx/aj+9ACfioUmk2YmEHbH9OS1F7bV3KZxPh+iHzU5inhuGgas3bCn3eEqIMklxF7YrbjbUaQ6t+5qdxDwedSD8Pti1yJgJU4gKkuIubFPGITiyBqJGgVMt/zPt8igU5cHWz81OIuxILX/XCJsVPxeUM0Q8YHYS8zUMgeY3GmPeS0rMTiPshBR3YXuKCmDrfGh/O/g1vvbja4Poh+D0EUj83ewkwk5IcRe2Z+8PRkdq1ENmJ7EdHe8Ej7oQN8fsJMJOSHEXtidujqUj9Wazk9gOVw9jrPue/0FOutlphB2Q4i5sS8YhOPKbcUWqoy2jV1WRo6GkELZ9YXYSYQekuAvbcqEjtbN0pF6hQQdo1s04s7GBhe2FbZPiLmyHdKReW9QYyDwEiWvNTiJsnBR3YTv2Wa5IjRpjdhLbFTLUuLBJOlbFNUhxF7Yjbg7UaVa7r0i9FldPCB8Ge76HnAyz0wgbJsVd2IaMQ3B4tdFpKB2pVxc1GooLYPuXZicRNkyKu7AN8fMsHakjzU5i+xqGQNMu0rEqrkqKuzBfUQFsmw/tbgO/ILPT2IeoMZBxAI5ZZe154QCkuAvz7VsKOWnSkXo9Qv4E7tKxKsonxV2Y70JHaptbzE5iP9y8jKmAd38rUwGLMklxF+bKPGzpSJUrUq9b1GgozocdC8xOImyQFHdhrvh5oJzkitTKaBQGTaKlY1WUSYq7ME9RgbEAhXSkVl7UGEjbC8c2mp1E2Bgp7sI8+360dKTK1L6VFnoXuPkac/IIUYoUd2GeuDng11Q6UqvCzdvSsboEck+bnUbYECnuwhyZR+Dwr9KRWh2ixhhrrG6XjlXxBynuwhzxc6Ujtbo0DoegSOlYFZeQ4i5qXnGhMbVv2wFQp4nZaRxD1BhI2wPHN5udRNgIKe6i5u1dCjmpxqLPonqE3m10rMoVq8JCiruoeRc7UvuZncRxuPtA+L2we7F0rApAiruoaZmHpSPVWi50rO5YaHYSYQOkuIuadeGK1MgHzU7ieBrfAEGdpWNVABUo7kqpWUqpVKXUrlLb6iulflZKHbB8rlfqvheVUgeVUvuUUgOsFVzYIbki1fqixkBqAiRtMTuJMFlFjtznALddtm0isFJr3RZYafkapVQnYBgQYnnOVKWUnHsLg1yRan2h94CbD8TONjuJMNk1i7vWeg1w+ZyiQ4AL1zvPBYaW2v6V1jpfa30EOAh0qZ6owu7FzZapfa3N3QfCpGNVVL7NvaHWOhnA8rmBZXsT4HipxyVZtl1BKTVOKRWrlIpNS0urZAxhN2Rq35pzsWP1a7OTCBNVd4eqKmNbmT07WuvpWutorXV0YGBgNccQNidurmWNVLki1eqCIqBxhHSs1nKVLe4pSqnGAJbPqZbtSUCzUo9rCpysfDzhEGSN1JoXNQZSd0vHai1W2eL+PTDacns08F2p7cOUUu5KqZZAW0Cuh67tLqyRKlek1pwwS8eqXLFaa1VkKOSXwAagvVIqSSn1CPAucKtS6gBwq+VrtNa7gYVAArAMeEJrXWyt8MJOxM2BOs2hdV+zk9Qe7r5Ggd+1GHKzzE4jTOByrQdorYeXc1eZQx601m8Bb1UllHAgGYeMjtSbX5GO1JoWNcb4x7rza+jyqNlpRA2TK1SFdcVLR6ppgjobV63GzpaO1VpIiruwnsI8iP8M2t8Ofo3NTlM7RT9sdKzKGqu1jhR3YT27l0BuJnQZZ3aS2ivsXnCvA1s+NTuJqGFS3IX1bJ4OAe2hZW+zk9Rebt7QeSQkfAdnT5mdRtQgKe7COpLi4GS80ZGnyrq2TdSYmLFQUmRcSCZqDSnuwjq2fGqMsw6/3+wkwr81tL7FmNunuNDsNKKGSHEX1S8nwxhffcMw8PAzO40A4wzqbLKxxKGoFaS4i+q3dR4U50OMjK22GW37Q93msFk6VmsLKe6iepUUw5ZZENwLGnQwO424wMkZoh+Bo2shJcHsNKIGSHEX1Wv/csg+JsMfbVHkKHDxkGGRtYQUd1G9Nk8HvybQfqDZScTlvOpD6N2wfQHkZZudRliZFHdRfVIS4PCvxlWRztectkiYocs4KMwxFioXDk2Ku6g+G6eCi6dR3IVtCoqAFj1h48dQXGR2GmFFUtxF9TiXBjsWQsRw4/Rf2K4bn4QzSZDwrdlJhBVJcRfVI3amMfyx2+NmJxHX0nYA+LeBDR/JbJEOTIq7qLrCPGP8dNsBENDW7DTiWpycjH/CJ7fCsQ1mpxFWIsVdVN3Or+F8OnR/wuwkoqJuGA6e9WDDFLOTCCuR4i6qRmujQDQMldkf7Ymbl3FR096lxmpZwuFIcRdVc3AlpO0xTvNl9kf70mUcOLvCxmlmJxFWIMVdVM3afxsXLYXda3YScb18Gxq/t23z4Xym2WlENZPiLirv2EY4ug66PwkubmanEZXR/QkoPC8TijkgKe6i8n7/N3jWh6jRZicRldUwBNrdDpumQf5Zs9OIaiTFXVTOqV1wYDl0m2As5SbsV+/nIPc0xM4yO4moRlLcReWsfd9YaamLzNlu95pGQ6s+sP4jKMw1O42oJlLcxfXLOAS7F0P0Q8ZYaWH/ej0HOamw9XOzk4hqIsVdXL91/wEnF+gmFy05jOCe0KwbrP0PFBWYnUZUAynu4vpkHIKt8yHqIfBrbHYaUV2Ugt7PGxOK7fjK7DSiGkhxF9fnt38aF770+qvZSUR1a3MLBHWGNZPl6N0BSHEXFZe2H3YuhJix4NvI7DSiuikFfV+BrKMQP9fsNKKKqlTclVKJSqmdSqltSqlYy7b6SqmflVIHLJ+lx81RrH7HWIyj51/MTiKspfUt0KIHrHkPCnLMTiOqoDqO3G/WWkdoraMtX08EVmqt2wIrLV8Le3dqlzFCpttj4B1gdhphLUrBLa/BuRRjPVxht6zRLDMEuHBONxcYaoXXEDVt9Tvg7mdMNSAcW/Nuxtz8a/8DuVlmpxGVVNXiroEVSqk4pdQ4y7aGWutkAMvnBmU9USk1TikVq5SKTUtLq2IMYVVHN8DeH+DGP8sSerVF31cgLwvWf2h2ElFJVS3uPbTWkcDtwBNKqQpP6K21nq61jtZaRwcGBlYxhrCakhJY8TL4NpbFOGqTxuEQerex6PmZZLPTiEqoUnHXWp+0fE4FlgBdgBSlVGMAy+fUqoYUJtq9GE7EQd9XZQ6Z2qbvq1BSBCtfNzuJqIRKF3ellLdSyvfCbaA/sAv4HrgwTeBo4LuqhhQmKcyDX/4OjcKMZdlE7VK/pbEIy/YvjH/wwq5U5ci9IbBWKbUd2Aws1VovA94FblVKHQButXwt7NGGjyD7GPR/y1hUWdQ+vZ4F7waw7EVjSUVhN1wq+0St9WHghjK2ZwC3VCWUsAGnjxpXKnYcDK1uMjuNMIuHH9zyKnz/Z9i5CMJlxS17IYdjomzLXjTGPN8mJ161XsRIaBxhdKzL0Ei7IcVdXGn/cti3FG56Aeo0NTuNMJuTMwz+D+SkSeeqHZHiLi5VkAM/Pg8B7WVKX/GHoM7Q9TFjtabjW8xOIypAiru41C+TIOuYcaQmi16L0m5+CfyC4H9Py6yRdkCKu/hD4lpjPpGu46HFjWanEbbG3RcGTobU3bDmn2anEdcgxV0YCnLguyegXrAxcZQQZekw0Ohg/f1f0jxj46S4C8Pyl+B0IgyZIleiiqu77R3wawJLxkPBebPTiHJIcRewazHEzYEeTxtraQpxNR51YOhUyDwEy180O40ohxT32i7ziNFB1jTGmEtEiIpo2Rt6PGMcFGyXNVdtkRT32qwwDxY9ZFysdPdMY21UISqq76vGqk0//AVSEsxOIy4jxb220tq4pPzkVhg6Deq1MDuRsDfOLnDPLHDzgYWj5OpVGyPFvbZa+76x2HXfV6DDHWanEfbKtxHcO8fojF/4oIx/tyGVnjjMJpxLM+Ybd3EHFw9wdjM+e/mDTwPwaQhuXmantD0J3xmXkYfeA72eMzuNsHfBPeDOD+Hbx+CHZ4wRV0qZncq2FBca0zecSzHqVmEOFOYaH3VbQNt+1f6S9l3cs47CTy9c/TFuvlC3Gfi3gYC24N8WGnSEBp1q5xWYB3+BRY9Asy4w5CN5E4rqETHcOHr/7V3jKta+r5idqOZpDZmHIWUXpB+AjIPG59NH4HxG+c/rNFSK+xUaR8ALR6Aoz/KRD4Xn4fxpy3/IFDiXavzRpSbA3qWgi43nOrtDo1AIioSm0RDcC+o0MfOnsb6j6+GrB6BBBxixEFw9zU4kHEmfiXDmBKx5D5xcjK8dWd4ZOLYBjm+CE/FG/1Ve1h/3+wZBQBvoeKexTKVPoNGa4B1o9FO4eoKrF7j7WCWefRd3Z5frW7C5uNAo9Kd2wsl4OLEVtn8JWz417q/f2hjideHDO8AqsU1xeDV8NdKY5fGBJeBZ1+xEwtEoBYM/AF0Cq98B5WTMLOooCvPg+EY4ssb4OBFvHCwqZ2jYCToNgSaR0PgGo4XASkW7ouy7uF8vZ1ejaSagLYTeZWwrKTHmyrjwC9u5COJmA8oY+93+dmg/EALb228Txu4lsHic0TT1wGLjCEIIa3ByMtrfdQn8+hbkpBtXtDo5m52scvKyYf8K2Ps/OPCL0VaunI2z/V5/NQ4Cm8bY5Fmw0jawdFZ0dLSOjY01O4ahuAiStxlt0/t+Mm4D1GtpFPn2t0Pz7sZZg63TGtZ/AD//DZp1hRFfgWc9s1OJ2qCkGH5+zViqsd3tcPcM049kK+xcKuz7Efb8Dw7/BiWFRnNKhzuMn6VFd2MSNRuglIrTWkeXeZ8U92vIPgH7lxmF/shvUFwAnvWNCZQ6DIZWfcDVw+yUV8rLhm8fh70/GKeLQz+WkUOi5m3+1Bj0ENDOuFCuUajZicp2+qjxXtnzg9GOjjYm0es42HifN42xyXWEpbhXl/xzcGil8R99/3LIP2N0jLS9FToMgrb9jTUnzXZ4tTGlQHYS3Pq6sYK9vTYpCft3eLXRLJibBbf+HbqMM7+ZRmtI22sU8z3fw6kdxvaGocZ7ueNgaBhi8+8bKe7WUFRgtNHv/Z8xCicnzRhn36qP8cfRfmDNt22fSzNOhbd/AfVbGVeeNu9WsxmEKEtOunEmeWC5Mcpt4GRoFlOzGUqK4USc8X7d+4MxVBGgaRfoOMh43/q3rtlMVSTF3dpKiuH4Zstp3f+M8ffKyWib7zDI+MOp29x6r5+TDuv+C1tmGM1GPZ6G3s/bZCePqMW0hl3fwIpX4GyyMb675zPGEn7WUnDeOHPY96PRvJqTZgzTDO5pHJ23vwP8Glvv9a1MintN0toYanmh/S51t7G9URgE9zau5mve/fqGcJalpNg4c9j6ufEPpaQQwu6F3i8YY2uFsFX554zpLzZPN5o2g3vBDcONDsuqDtEtKjCGOV8Y/XZ8MxTng7sftOlnvEabWxxmYIEUdzNlHDIK/f4VkLTF+EMD4wrZRuHG+NiGIcZoHJ+GZY8o0Nq4wi1trzH7XqLlDzcvGzzqGkW9yzgIbFejP5oQVZJ3xpgyeMsM42zX2c048GnezejA9G8NdZqVPVtpcaFx9J913JhXPnm78XFqFxTlAso4oGrZ2yjqLXo45BXpUtxtRVG+0eZ3dB0c2wgpu40/0NJcvY2jeidno2kn/xzknjaOzC+o08xo22/TD9rdZpujdYSoKK2NC4J2LzYOWlJ2GePkwRhT7lnXeF+4uP1xFXru6T8eA8aReaMw4wKi5t2NZpeqnh3bgasVdzsYrO1AXNyNhadLLz59PtOYGiHr+B9TJuSeNppddLExGserPng3MC6kCuxgzN1h4734QlSYUtA0yvgA44j+1A7javLTicZ7pPC8McWIi6dxMOMdaFxtXaepMWSxbrBNDlU0kxR3s3nVl6XthCjNw894T8j7okrkX50QQjggqxV3pdRtSql9SqmDSikHnx5OCCFsi1WKu1LKGZgC3A50AoYrpTpZ47WEEEJcyVpH7l2Ag1rrw1rrAuArYIiVXksIIcRlrFXcmwDHS32dZNl2kVJqnFIqVikVm5aWZqUYQghRO1mruJc1Tu+SAfVa6+la62itdXRgoMwvLoQQ1claxT0JaFbq66bASSu9lhBCiMtYq7hvAdoqpVoqpdyAYcD3VnotIYQQl7Ha9ANKqYHAfwBnYJbW+q2rPDYNOFqFlwsA0qvw/JpgDxlBclY3yVl97CEj1GzOFlrrMtu1bWJumapSSsWWN7+CrbCHjCA5q5vkrD72kBFsJ6dcoSqEEA5IirsQQjggRynu080OUAH2kBEkZ3WTnNXHHjKCjeR0iDZ3IYQQl3KUI3chhBClSHEXQggHZNfF3ZanFVZKJSqldiqltimlYi3b6iulflZKHbB8rvFVepVSs5RSqUqpXaW2lZtLKfWiZf/uU0oNMDnnJKXUCcs+3Wa5lsK0nEqpZkqpX5VSe5RSu5VST1u229T+vEpOW9ufHkqpzUqp7Zacf7dst5n9eZWMNrUvAdBa2+UHxsVRh4BWgBuwHehkdq5S+RKBgMu2/ROYaLk9EfiHCbl6A5HArmvlwpiueTvgDrS07G9nE3NOAp4r47Gm5AQaA5GW277AfksWm9qfV8lpa/tTAT6W267AJqCbLe3Pq2S0qX2ptbbrI3d7nFZ4CDDXcnsuMLSmA2it1wCZl20uL9cQ4Cutdb7W+ghwEGO/m5WzPKbk1Fona63jLbfPAnswZj+1qf15lZzlMSun1lqfs3zpavnQ2ND+vErG8pj2HrLn4n7NaYVNpoEVSqk4pdQ4y7aGWutkMN5wQAPT0l2qvFy2uI+fVErtsDTbXDg9Nz2nUioY6IxxJGez+/OynGBj+1Mp5ayU2gakAj9rrW1uf5aTEWxsX9pzcb/mtMIm66G1jsRYjeoJpVRvswNVgq3t42lAayACSAb+Zdluak6llA/wDfCM1vrM1R5axjYzc9rc/tRaF2utIzBmku2ilAq9ysNNyVlORpvbl/Zc3G16WmGt9UnL51RgCcapWIpSqjGA5XOqeQkvUV4um9rHWusUyxurBPiUP05vTcuplHLFKJjztdaLLZttbn+WldMW9+cFWussYDVwGza4Py/PaIv70p6Lu81OK6yU8lZK+V64DfQHdmHkG2152GjgO3MSXqG8XN8Dw5RS7kqplkBbYLMJ+YCLb+wL/oSxT8GknEopBcwE9mit/13qLpvan+XltMH9GaiUqmu57Qn0A/ZiQ/uzvIy2ti8B+x0to42e6IEYPf+HgJfNzlMqVyuMHvLtwO4L2QB/YCVwwPK5vgnZvsQ4bSzEOKp45Gq5gJct+3cfcLvJOT8DdgI7MN40jc3MCfTEOMXeAWyzfAy0tf15lZy2tj/Dga2WPLuA1yzbbWZ/XiWjTe1LrbVMPyCEEI7InptlhBBClEOKuxBCOCAp7kII4YCkuAshhAOS4i6EEA5IirsQQjggKe5CCOGA/h+8K9k5zsJ6XgAAAABJRU5ErkJggg==\n"},"metadata":{"needs_background":"light"}},{"output_type":"display_data","data":{"text/plain":"<Figure size 432x288 with 2 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAAAWwAAAD8CAYAAABTjp5OAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAmA0lEQVR4nO2dfbAeVZ3nP18SkoCEtwkvMTeaiEEmOC4yMcvKOjICyjiscavUwlqtjMNMalwUcLUkkapxrNpUxZdlxip1tu4O7MQdNEbBIbU68jYyllVCDBkQQmAJghiIhCgKOpJrwm//6G7TPHne+3T36X5+n6pb93n66e5znr59PvfXvz59jswMx3EcJ36OqLsCjuM4znC4sB3HcRqCC9txHKchuLAdx3EaggvbcRynIbiwHcdxGoIL23EcJwCS5knaKuleSTskfSJd/mlJD0r6gaSvSzo+t806SbskPSTpLQPL8H7YjuM4xZEk4CVm9ktJRwLfBa4AjgX+2cwOSPokgJldJWk58GVgJfBS4DbgdDM72KsMj7Adx3ECYAm/TN8emf6Ymd1iZgfS5XcCU+nrVcAmM9tvZo8Cu0jk3ZPZJdR7bOYccZQdNWt+3dVoNDZvztjbHpyn8bcdv9jamTVTYNvni12h6vkChU84zx54ep+ZnVRkH284b54987MXhlp3x32/2QE8n1s0bWbT+XUkzQLuBl4JfN7M7urYzZ8CX0lfLyIReMbudFlPohL2UbPm8/oF76y7Go1l5oypwSv14RenzR1ru+dePr7oY2H+j8YT73GP7C9U7pwHdxfafpL51k++8KOi+3jmZy9wwzcWDLXuGS/b87yZrei3TprOOCvNU39d0qvN7H4ASVcDB4Dr09W7NZy+J6KnRBxgsmUN43+PcY+b027M7OfAHcBFAJJWAxcD/8UO3TjcDSzObTYFPNlvvy5sx6mRoldFTjxIOinrASLpKOAC4EFJFwFXAW8zs3/LbbIFuETSXElLgWXA1n5lRJUSccanSMOf9Og647mXa6zUyC9Om1s4NeK0goXAxjSPfQSw2cz+r6RdwFzg1qQjCXea2V+Y2Q5Jm4EHSFIll/XrIQIubGdMypD1/peNfgNu7uNh73bWIe2ZM6Y8l90CzOwHwGu7LH9ln23WA+uHLcNTIi2gjug6JPtfNjOWrItu24u2XTk47cGFPcHUnQoJKdsyxD0qRf75eS7bGQYXdsOpuqGHkHWZcg21b4+ynRgJImxJH0qfnb9f0pfTZ+pPlHSrpIfT3yeEKMs5RNWpkFCyroK6pO1RtlMmhYUtaRFwObDCzF4NzAIuAdYCt5vZMuD29L0zodSRsghRZtXSdpx+hEqJzAaOkjQbOJqk8/cqYGP6+Ubg7YHKcmhWdF13brnu8kfBo2ynH4WFbWZPAJ8BHgf2AL8ws1uAU8xsT7rOHuDkbttLWiNpm6RtMy/8umh1JgKX9egUqYenRpxYCJESOYEkml5KMkTgSyS9Z9jtzWzazFaY2Yo5RxxVtDpOYNog64wiKRJPjTgxECIlcgHwqJk9bWa/AW4EXg88JWkhQPp7b4CyJp4qo+s2yTpPldIeF4+ynW6EEPbjwDmSjk4H8D4f2EnynPzqdJ3VwE0ByppomvCATAz9oYehKml7asQJSYgc9l3A14DtwH3pPqeBDcCFkh4GLkzfO2PShLx1E0Sdp6r6urSdUATpJWJmHzezM8zs1Wb23nQGhZ+a2flmtiz9/bMQZU0iTXg4pmmyzhin3n4T0qkLf9Kx5VSRt26qrDOqknYRXNoOuLCjJ/abjE2XdUYV0i56H8Gl7fjwqhET+03GsmS9ZOrpodZ7bHeh6fwOY//LZkYernXU4ViLjp3tQ7FONi7sSIn9JmNIWQ8r6H7bhZL3ONIeFZe2My6eEomMmTOmJkbWS6aeHlvWZe5r1O9Xx0M1nh6ZTFzYEVFHI6xD1iHlWta+XdpOjLiwIyFE4yv7JmNRWZcp6jLKcmk7oyBpsaRvS9qZDjd9Rbr8LEl3SronHTdpZW6bdZJ2SXpI0lsGleHCjoBJkXUdFBW3S9sZgQPAh83sd4FzgMskLQc+BXzCzM4C/jJ9T/rZJcCZwEXAF9IJfHviwq6ZJsi6CFVG1YPqMS5NkbaLu17MbI+ZbU9fP0cyRMciwIBj09WOIxl+GpJB8zalDxo+CuwCVtIHF3ZNhGpgMXffi0HUedoubfBoOxYkLSGZQf0u4Erg05J+TDIU9bp0tUXAj3Ob7U6X9cS79dVAqEYVa4+Q2ESdJ6vbON0AR+3yN2ofbSje5Q+8298oPHPwaL727NlDrv2NBZK25RZMm9l051qSjgFuAK40s2cl/XfgQ2Z2g6R3AdeSjHLarTH2PWE8wq6QkJetLutijFvPJkXaHm0HZ182dn/6003WR5LI+nozuzFdvJpk2GmAr3Io7bEbWJzbfIpD6ZKuuLArImTjcVmHIeb6hkp1ubSrIx1e+lpgp5ldk/voSeCN6es3AQ+nr7cAl0iaK2kpsAzY2q8MT4mUTN2iBpd1P5ZMPT1yeqSK1AiESY/AoXPQ0ySlcy7wXuA+Sfekyz4G/Dnw2XTO2+eBNQBmtkPSZuABkh4ml5nZwX4FuLBLInRk47Iuj3Hy2k2TNri4y8bMvkv3vDTA7/fYZj2wftgygqREJB0v6WuSHkw7jf8HSSdKulXSw+nvE0KUFTtl5A5d1tUw6nepIp8N4XsCeX67uYSKsD8LfMvM3iFpDnA0yaXA7Wa2QdJaYC1wVaDyoqOsBjBJsr7w1AdH3ubWn5wRtA6jpkiaGGlneMTdPAoLW9KxwB8AfwJgZjPAjKRVwHnpahuBO2ihsMuMVGKVdUhRjyPpXtuHknfM0gZc3BNMiAj7FcDTwP+W9O+Au4ErgFPMbA8kTwBJOjlAWdEQo6ihObIuKup++wwh7iqkDUQTbYOLuwmEyGHPBs4G/tbMXgv8iiT9MRSS1qQDomybeeHXAapTLmXn/9ou6wtPfbAUWZdRRtk5bYgnr53Hc9zxEiLC3g3sTmdPh2QG9bXAU5IWptH1QmBvt43TzufTAMcdefLo4UYFVHHyVilqqF7WZUu6X5lFIu6yI22IL0WSkT/vPeqOg8IRtpn9BPixpFeli84n6Ve4heQJH9LfNxUtq0qyKMNl3UxZd5ZfpA4xR9pQzXgyVbYHpzeheol8ELg+7SHyQ+B9JP8MNku6FHgceGegskqj6pOxaEOLXdZ1i7qTC099cOxoO+ZIG8qPtvN45F0fQYRtZvcAK7p8dH6I/ZdJXRGDy7oe2ixtKO+GZC9c3tUycU861n1JF+Ly1WVdjCK57aZIG6qJtvN0ti0XeHhaL+y6BZ0RKs8Ys6xjF3Un40bbVUkbxuv2l1GXuDO6tT2XeDFaI+xYxNxJnaIGl/UgYpY2FI+2oX5x5+nVTl3kwxG1sGOV8LC4rJtBldIGKk+RZMQk7k6GbeuTLvaohG3z5jRe0lC/qMFlPSpVSRvqS5FkxCzuQbzIDz+prx514RMYBOIXp8397U8IikTVLuvxGPf7jHP8xp0nM+QEyiHPV6caXNgFKeOkryoFAvHL+h3Hbv/tTxU0Rdou7skkqpRIkyjjBK8yBQLxyXqQlLt9PvwEqsMTe3okI1RuOyN/TjcxXTIJuLBHoMwoZFJlXTRyzm8fUt5NkjaEyW3naXKeu824sAdQ9qVi0Uvbpsq6jBRHts9Q4q5a2jB6D5KM0NF2hkfdceE57C6EvoHYjaJ5yHFuLkL9sq4iHx2yjHEHjhr3OI+b14bwue1OqmgXTUbSYknfTqdJ3CHpio7PPyLJJC3ILVsnaZekhyS9ZVAZHmGnVHUShmhQ4zbqGGRdJe84dnspOe5hGSfShmIpEigvTZLHI++uHAA+bGbbJc0H7pZ0q5k9IGkxcCHJQHgASFoOXAKcCbwUuE3S6f1mTp/oCLvqiGFSZV1lL4+yyq6y9wgUi7Qzyo64M/LtaJKjbzPbY2bb09fPATuBRenHfw18FMj/F10FbDKz/Wb2KLALWNmvjImKsOs6meoUNdQv6xgIEW1XmdOG4nntjCoi7jyd7SzmCPzZA/NG+Jt+Y4GkbbkF0+kELIchaQnwWuAuSW8DnjCze6UXuWARcGfu/W4OCb4rrRV2DP/pQ0U3Lusw1C1toJYUSUbV4s7o1hZjlngf9plZt2GkX4SkY4AbgCtJ0iRXA2/utmqXZX3/OI0WdgxS7kbIy1CXdVjqlDbUH21DfeLO06vtNlTkv0XSkSSyvt7MbpT0e8BSIIuup4DtklaSRNSLc5tPAU/2238wYUuaBWwjCf0vlnQi8BVgCfAY8C4ze6bfPg7OU7QSHkToXGEdooZ2yzqjqdKGcNE2xCHuTkZq/3eUVo2xUGLka4GdZnYNgJndB5ycW+cxYIWZ7ZO0BfiSpGtIbjouA7b2KyPkTccrSJLsGWuB281sGXA7I8yk3iTKuLHjsi6fOm9EQrG/07hdOntR1c3JCeBc4L3AmyTdk/68tdfKZrYD2EwyB+63gMv69RCBQMKWNAX8MfB3ucWrgI3p643A20OUFQPZCV6GqF3W1dFkaUOYniR5yjqvJwUz+66ZycxeY2ZnpT/f7FhniZnty71fb2anmdmrzOyfBpURKsL+G5IuKy/klp1iZnvSSu0hd1mQR9IaSdskbTvw618Fqk45lHUyh4iYXNbj0QZphxY3eNQdK4WFLeliYK+Z3T3O9mY2bWYrzGzF7KNeUrQ6wSk76gjR2FzWxYhB2rGL2+UdByEi7HOBt6XJ9E0k+Zt/AJ6StBAg/b03QFmVUMVJGiqqdlmHoW5pQ/FoG8KnSfK4vOunsLDNbJ2ZTZnZEpLHLP/ZzN4DbAFWp6utBm4qWlaZVHUyhoqEijZul/XhtEnaZYobXtxeXODVUeaj6RuACyU9TPIM/YYSyxqZqk+4kI3IZV0esUi7KeLOcHlXQ9AHZ8zsDtLekWb2U+D8kPsvQl0nUsgGE6IRu6wHU3c/7Ywi/bXzhHzoZhg621pM/bybTisHf+qMnuuQdejoJhZZTwoxRNoQ5u+eUWXEnSeG9tgWGvtoeqx/9NANIlSDbeoQqU0nVKQN441D0o38OVpV1N3JoPbrUXl3ohL2wTnxirgfZUUtLut6CTWedghpQ7gUSZ6q0yXD0kQPVEErUyJVUdYlZqibTuCyLkrImWtCEPLcyFNXusQZjagi7CZQ9kkdsjF6zjousr9HrNE2xJEucXrjEfaQlB2BhI6cYp8wt0mE/v6xR9sZ2TnvkXc8eITdhypO1NANLnRUPemyzgg9P2SovDaEvynZDY+848Aj7Bz5iMJl7XQSa6SdUXbEneGRd31MvLDrOPnKaFhlyNqj6/Ip4+9WhbQzXN7VMnEpkTpPrLIaksu6OkKnRiBseiSjijRJJ51ty1Mn4Wm1sGP5r19mxONpkHZQhrShHnFndGt/LvFitEbYscg5T1NF7dF1f8qIsiFst79O8udiHfLO6NVOXeTDEbWwY5TwIKrIH3pU3W7KirYz6oy6ezFsW49Z7JIWA18ETiWZfWvazD7bb0JySeuAS4GDwOVmdnO/MqK66WhzrLE3Maq6Q1+2rD26Ho6yj1MV/5SrOmdDErkfDgAfNrPfBc4BLpO0nB4TkqefXQKcCVwEfEHSrH4FRB1hN4GqTniPqiePMlMkeWJJlzSddO7abB7b5yTtBBaRTEh+XrraRpIhqK9Kl28ys/3Ao5J2ASuB7/Uqo7Cwx7kMaDpVRyVVydqj69EoK5fdSdkpkjwxpkvKZGZm9ijfdYGkbbn302Y23W1FSUuA1wJ30TEhuaRsQvJFwJ25zXany3oSIsLOLgO2S5oP3C3pVuBPSC4DNkhaS3IZcFWA8mqhrktHj6wdqC7azvCouyv7zGzFoJUkHQPcAFxpZs9KPUce7PZB33FlQ8zpuMfMtqevnwPylwEb09U2Am8vWlYd1JXnu/DUB13WDaDqq5I6zomsDTQt310Hko4kkfX1ZnZjurjXhOS7gcW5zaeAJ/vtP2gOe8jLgM5t1gBrAGb9zvEhqzMWMZyUdTRKT4c0h6qj7TweefdGSSh9LbDTzK7JfZRNSL6BF09IvgX4kqRrgJcCy4Ct/coIJuwRLgNeRJoDmgaYu3SqlmkmYpA0ePrDGY0qc9vdcHkfxrnAe4H7JN2TLvsYiag3S7oUeBx4J4CZ7ZC0GXiAJLV8mZkd7FdAEGH3uwxIo+v8ZUDtxCLoDBe1My51Rtt5OtvUJArczL5L97w09JiQ3MzWA+uHLSNEL5FRLwMqJzZBZ7ionVDEIu4MF3g5hIiwR7oMKJNYxdwNl7VTBrGJO6NX23SRj0ZhYY9zGTAuTRJyL1zUThXEKu5OBrVpF/qLiepJxzlzDrRCyt1wUTt10BRx96KfD35UYT1iISphtw2XtBMLTRe3kxDV4E9toYkPvVTxiHUbadpxa+K56RzChR2QpjeGpsnHGZ+mn6uTiqdEAtCmE/9rz57tTz0OQVv+ueXPXU+XxI8Le0zaJOlOMhm5uLvTFll34nnu+HFhj0CbJd0NF/ch2irpbnjUHS8u7AFMmqS70UtWbRT5JIl5GFzeceHC7oJLejjGkVvVkncBh8PlXT8u7BSXdDW4QNuBy7seJlbYLmjHCUNnW3KBl8fECNsF7TjV4AIvj1YK2+XsOPHQrT26xMejscJ2KTtOc+nXfl3mvYlK2MfOft5F7DgTzrAO+JeS6xEjpY8lIukiSQ9J2iVpbdnlOY7j1IGk6yTtlXR/x/IPpg7cIelTueXrUi8+JOktw5RRaoQtaRbweeBCkindvy9pi5k9UGa5juM4NfD3wOeAL2YLJP0hsAp4jZntl3Ryunw5cAlwJsmM6bdJOn3QJLxlR9grgV1m9kMzmwE2kVTecRynVZjZd4CfdSx+P7DBzPan62STka8CNpnZfjN7FNhF4su+lC3sRcCPc+93p8t+i6Q1krZJ2varZ2ZKro7jOM7YLMhclf6sGWKb04E3SLpL0r9Iel26fKAbu1H2Tcducz3ai96YTQPTAIvOPN66rO84jlMKmhFzH58z7Or7zGzFiEXMBk4AzgFeRzIx+SsYwo3dKDvC3g0szr2fAp4suUzHcZxY2A3caAlbgReABYzpxrKF/X1gmaSlkuaQJNm3lFym4zhOLPwj8CYASacDc4B9JB68RNJcSUuBZcDWQTsrNSViZgckfQC4GZgFXGdmO8os02keoR6U8D78Tp1I+jJwHkmuezfwceA64Lq0q98MsNrMDNghaTPwAHAAuGxQDxGo4MEZM/sm8M2yy3Hipaon1/qV4zJ3ysbM3t3jo/f0WH89sH6UMqJ60tFpPrE+VtyrXi5yp0m4sJ2xiVXOo9D5HVzgTsy4sJ2RaIOk++ECd2LGhe30pe2CHkT++7u8nbpxYTuHMemS7oXL26kbF7YDuKRHxeXt1IELe4JxSYfB5e1UhQt7wnBJl4vL2ykTF/aE4KKuHpe3ExoXdotxScdD9rdwcTtFcGG3EBd1vHjU7RTBhd0SXNLNw6NuZ1Rc2A2nbaJ+bPdJQ6+7ZOrpEmtSHR51O8Piwm4gTZX0KDIOub8mid2jbqcfLuwG0RRRhxZzUbrVJ3aJu7idbhQStqRPA/+JZGDuR4D3mdnP08/WAZcCB4HLzezmYlWdXGIWdWxyHpamSNzTJU6eohH2rcC6dGaZTwLrgKskLSeZDuxM4KXAbZJOH2ZGBSchVkk3VdDD0PndYhO4R91OIWGb2S25t3cC70hfrwI2mdl+4FFJu4CVwPeKlDcJxCjqNku6H/nvHZO8XdyTS8gc9p8CX0lfLyIReMbudNlhSFoDrAE4buFRAavTHFzS8RNj9O3pkriQdB1wMbDXzF6dLguaNh4obEm3Aad2+ehqM7spXedqkokkr88267K+ddu/mU0D0wCLzjy+6zptJTZRu6SHJ7bo26PuKPh74HPAF3PLgqaNBwrbzC7o97mk1ST/Vc5PZwOGJKJenFttCnhyUFmTQkyidkkXJzuGMYkbXN5VY2bfkbSkY1nQtHHRXiIXAVcBbzSzf8t9tAX4kqRrSP57LAO2Fimr6bik249H3a1ngaRtuffTaYZgWMZKG+cpmsP+HDAXuFUSwJ1m9hdmtkPSZuABklTJZZPaQyQWUbukqyUmeXvU3ZtZMzD/R0NnYveZ2YpxyimSNs5TtJfIK/t8th5YX2T/TSUWSYOLOgZiTJm4uKsjZNrYn3QMSCyijlnScx+fU1lZ+182U1lZw+BR9+QROm3swi5ILJKGuERdpZhHrUMMIveou31I+jJwHkmuezfwcZJeIcHSxi7sMXBJH04Mgh6WbnWtS+IedbcHM3t3l8XX9ll/5LSxC3tIYpI01CvqJsl5WDq/Ux0CjzHqBpd3TLiw+xCbpKE+UbdR0v3If9+q5R1T1A0u75hwYXfgkj7EpEm6F3VG3zFF3XB4+3CBV8vECztGQWdULWoX9HDUEX3HJu4Mj76rZeKEHbOgoZ5o2kU9PlXLO7Z0SR6Pvsun1cKOXc55PJpuPtkxnfSoO6Nb+3OJF6Pxwm6SlLtRpahd0tXgUXdv+rVXl/lgohL2swfmNV7Aw+CSfjEjjOXQk+de3m1ohvqpS96xi7sbo7f9b5RSj5iJSthtZ1JFHULIRcuIQehVpkyaLG6nNy7skpk0SVch53HoVq+6JF5l1N2kdIkzGBd2SUyCqGOV87DEIHGPup1RcGEHZBJ6ejRd0oPo/H5VCdyjbmcYgghb0keATwMnmdm+dNnIE0w2lTZH020X9CDy379qeXsPE6eTwsKWtBi4EHg8t2ysCSabRJuj6UmXdC+qlrf363Y6CRFh/zXwUeCm3LKxJpiMHZe0k1GlvL1ft5NRdBLetwFPmNm96eDcGUNPMClpDbAGYO7J84tUpxTa/Ki4SzoMdci76qgbXN4xMFDYkm4DTu3y0dXAx4A3d9usy7KudkhnHZ4GmP+qU6MwSJtHx3NJl0tV8q5zAKoMF3j1DBS2mV3Qbbmk3wOWAll0PQVsl7SSMSeYrItJmAzARV092TFvW9Sd4dF39YydEjGz+4CTs/eSHgNWmNk+SWNNMFkVMUyr5dE0HPfI/uD7/MVpc4PvsyhVR911zpaTMYkCl/Qh4M9Isgn3Ae8Djga+AiwBHgPeZWbPjFtGKf2wx51gsgxikHOeSRN1GVIet7wYZF6FvOucLSejW7trs8QlLQIuB5ab2a9T/10CLAduN7MNktYCa0lmUR+LYMI2syUd70eeYLIIsYk5z6RIumo5j0q3+tUp8SpSJnVG3Z30aqMtEvls4ChJvyGJrJ8kmTX9vPTzjcAdxCDsMohZwsPQdlHHLuhh6PwOdQi8SnFDHPLOM0o7r1nuCyRty72fTjtNYGZPSPoMyfMovwZuMbNbJJ1iZnvSdfZIOvnw3Q5PVMKemZntkh6CuiTdBkEPok6BT0Kuuyih/TDreRvlvN5nZiu6fSDpBJLnT5YCPwe+Kuk9QSqZIyphN5U29/SYBEn3oy6BT3rU3UAuAB41s6cBJN0IvB54StLCNLpeCOwtUogLuwBtFPWkC3oQ+eNThbzb3K+7ZTwOnCPpaJKUyPnANuBXwGpgQ/r7pp57GAIX9oi0UdLgoh6HuuTdtkfh24CZ3SXpa8B2kp5x/0ryQOAxwGZJl5JI/Z1FynFhD0Fbx/RwSYejSnlXJW5weY+CmX0c+HjH4v0k0XYQXNhdaPM40y7p8smOcVXiBpf3pODCTnFJO6Fpa9QNLu+6mFhh1zn/oYt68qg66q5yqrPOtuQCL4+JEXbdE9S6pB2oLuquY6acjG5tzSUehtYJu24xd+KifjFzHtxdWVkzZ0xVVtY4tDnq7sQlHobGCTs2IXfDJV2tmEetQ2win4SouxuD2rIL/XCiErZm1Agh92JSRR2DnEehW31jkXhbe5iMQ5NdUBZRCbuJTGK/6aYJehg6v1PdAm9zDxNnfFzYY+CSbj/57xuLvD3qdgoLW9IHgQ+QPI75DTP7aLp8HXApcBC43MxuLlpWnUzao+KTJuh+xBJ9VyVucHnHStFZ0/+QZEjB15jZ/mysV0nLSWZbOJNkirDbJJ1e16wz4zJpo+O5pIej7ui7rQNQOYMpGmG/H9hgZvsBzCwbOnAVsCld/qikXcBK4HsFyysdl7QzCrHIu+phX8HlXQdFhX068AZJ64HngY+Y2feBRcCdufV2p8uiY1JnbHFRh6dOeVctbji87bjAy2egsCXdBpza5aOr0+1PAM4BXkcyjOArgG5/ua5mlLQGWAMw+7gThqt1Aeqe+9AlPRlkx7oucUP10525wMtnoLDN7IJen0l6P3CjmRmwVdILwAKSiHpxbtUpkgkpu+1/mmTcWOYtWhzUpnXLOU9donZJ18ukRd15urU/l3gxiqZE/hF4E3CHpNOBOcA+YAvwJUnXkNx0XAZsLVhWT2IScx6Ppp08kxh1d9KrrbrIh6OosK8DrpN0PzADrE6j7R2SNgMPkHT3u2yYHiKzZuKV7yh4NO30Y5Kj7l60od1XQSFhm9kM0HVmYDNbD6wvsv8m4dG0Mw4edTuj4E86FsAfbnFCEUPUDS7vokiaRTL57hNmdrGkE4GvAEuAx4B3mdkz4+7/iBCVnDSOe2R/rWmP7MdpJ3X+fbNzu+5gpMFcAezMvV8L3G5my4Db0/dj4xH2kNR9ArugJ4+60iUZHnmPhqQp4I9JUsH/LV28Cjgvfb0RuAO4atwyXNh9cEk7MVD305Tg8h6SvwE+CszPLTvFzPYAmNmebPiOcXFh56hb0BkuaqcXdUfd0C556/mZUdrbAknbcu+n0+dIkHQxsNfM7pZ0XthaHmKihR2LoDNc1M6wxBB1w+FtqOkCH8A+M1vR47NzgbdJeiswDzhW0j8AT0lamEbXC4G9PbYfiokSdmyCBpe0U5wYou6MCRP4bzGzdcA6gDTC/oiZvUfSp4HVwIb0901FymmtsGOUcx4XtROamMSd0a0dTorEUzaQjLF0KfA48M4iO2u0sGOXcicuaacKYkmX9KJfu22DzM3sDpLeIJjZT4HzQ+07KmHPet4aJ+FhcFE7dRFj1N2PNrb/kEQl7LbhonZiIfao2xkOF3ZgXNJO7DQt6nYO4cIOgEvaaSIedTcPF3YBXNROW3B5NwMX9oi4pJ224/KOFxf2ELiknUnF5R0XhYQt6Szgf5I8inkA+K9mtjX9bB1wKXAQuNzMbi5W1epwQTvO4bi866dohP0p4BNm9k/pM/SfAs6TtBy4BDiTZE7H2ySdPsw0YXXhknac4XF510NRYRtwbPr6OA7NjL4K2GRm+4FHJe0CVgLfK1heMFzQjhOGzrbkAi+PosK+ErhZ0mdIZq95fbp8EXBnbr3d6bLDkLQGWAMwd+7xBavTGxe041RDt7bmEg/DQGFLug04tctHV5M8I/8hM7tB0ruAa4ELgG5z1nedFjkdT3Ya4Nj5U4WnTnYxO058uMTDMFDYZnZBr88kfZFkDjOArwJ/l77eDSzOrTrFoXRJIVzIjtMOBrVlF/rhFE2JPAm8kWRkqjcBD6fLtwBfknQNyU3HZcDWQTsbcfYHx3FajLvgcIoK+8+Bz0qaDTxPmos2sx2SNgMPkHT3uyzmHiKO4zhNoJCwzey7wO/3+Gw9yezBjuM4TgCOqLsCjuM4znC4sB3HcRqCC9txHKchuLAdx3ECIOkiSQ9J2iVpbRlluLAdx3EKImkW8Hngj4DlwLvTMZWC4sJ2HMcpzkpgl5n90MxmgE0kYyoFRWaFnwYPhqTngIfqrkcHC4B9dVeiA6/TYGKrD3idhmXYOr3czE4qUpCkb6XlDcM8kudNMqbToTWQ9A7gIjP7s/T9e4F/b2YfKFK/TmKbwOAhM1tRdyXySNrmdRpMbHWKrT7gdRqWKutkZhcF2tXQ4ycVwVMijuM4xSlt/KQ8LmzHcZzifB9YJmmppDkkE7hsCV1IbCmR6bor0AWv03DEVqfY6gNep2GJsU59MbMDkj4A3AzMAq4zsx2hy4nqpqPjOI7TG0+JOI7jNAQXtuM4TkOIRthVPNY5ZD0ek3SfpHskbUuXnSjpVkkPp79PKLH86yTtlXR/blnP8iWtS4/ZQ5LeUmGd/krSE+lxukfSWyuu02JJ35a0U9IOSVeky2s5Vn3qU9txkjRP0lZJ96Z1+kS6vLbzqU+daj2fGoOZ1f5DkqR/BHgFMAe4F1heU10eAxZ0LPsUsDZ9vRb4ZInl/wFwNnD/oPJJHoG9F5gLLE2P4ayK6vRXwEe6rFtVnRYCZ6ev5wP/Ly27lmPVpz61HSeSvsHHpK+PBO4CzqnzfOpTp1rPp6b8xBJhV/JYZwFWARvT1xuBt5dVkJl9B/jZkOWvAjaZ2X4zexTYRXIsq6hTL6qq0x4z256+fg7YCSyipmPVpz69KP04WcIv07dHpj9GjedTnzr1opLzqSnEIuxFwI9z73fT/2QvEwNukXS3pDXpslPMbA8kDRM4ueI69Sq/7uP2AUk/SFMm2WV15XWStAR4LUm0Vvux6qgP1HicJM2SdA+wF7jVzGo/Rj3qBJGcTzETi7AreaxzSM41s7NJRt26TNIf1FSPYajzuP0tcBpwFrAH+B911EnSMcANwJVm9my/VbssC16vLvWp9TiZ2UEzO4vkybuVkl7dZ/U66xTF+RQ7sQi7ksc6h8HMnkx/7wW+TnL59ZSkhQDp770VV6tX+bUdNzN7Km14LwD/i0OXqZXVSdKRJHK83sxuTBfXdqy61SeG45TW4+fAHcBFRHI+5esUy3GKnViEXcljnYOQ9BJJ87PXwJuB+9O6rE5XWw3cVHHVepW/BbhE0lxJS4FlwNYqKpQ1+JT/THKcKquTJAHXAjvN7JrcR7Ucq171qfM4STpJ0vHp66OAC4AHqfF86lWnus+nxlD3Xc/sB3gryZ31R4Cra6rDK0juSN8L7MjqAfwOcDvwcPr7xBLr8GWSS8LfkEQXl/YrH7g6PWYPAX9UYZ3+D3Af8AOSRrWw4jr9R5JL4x8A96Q/b63rWPWpT23HCXgN8K9p2fcDfznofK6xTrWeT0358UfTHcdxGkIsKRHHcRxnAC5sx3GchuDCdhzHaQgubMdxnIbgwnYcx2kILmzHcZyG4MJ2HMdpCP8fDKwaEoRCZ20AAAAASUVORK5CYII=\n"},"metadata":{"needs_background":"light"}}]},{"metadata":{},"cell_type":"markdown","source":"This repo contains an introduction to [Jupyter](https://jupyter.org) and [IPython](https://ipython.org).\n\nOutline of some basics:\n\n* [Notebook Basics](../examples/Notebook/Notebook%20Basics.ipynb)\n* [IPython - beyond plain python](../examples/IPython%20Kernel/Beyond%20Plain%20Python.ipynb)\n* [Markdown Cells](../examples/Notebook/Working%20With%20Markdown%20Cells.ipynb)\n* [Rich Display System](../examples/IPython%20Kernel/Rich%20Output.ipynb)\n* [Custom Display logic](../examples/IPython%20Kernel/Custom%20Display%20Logic.ipynb)\n* [Running a Secure Public Notebook Server](../examples/Notebook/Running%20the%20Notebook%20Server.ipynb#Securing-the-notebook-server)\n* [How Jupyter works](../examples/Notebook/Multiple%20Languages%2C%20Frontends.ipynb) to run code in different languages."},{"metadata":{},"cell_type":"markdown","source":"You can also get this tutorial and run it on your laptop:\n\n git clone https://github.com/ipython/ipython-in-depth\n\nInstall IPython and Jupyter:\n\nwith [conda](https://www.anaconda.com/download):\n\n conda install ipython jupyter\n\nwith pip:\n\n # first, always upgrade pip!\n pip install --upgrade pip\n pip install --upgrade ipython jupyter\n\nStart the notebook in the tutorial directory:\n\n cd ipython-in-depth\n jupyter notebook"}],"metadata":{"kernelspec":{"name":"python3","display_name":"Python 3","language":"python"},"language_info":{"name":"python","version":"3.6.13","mimetype":"text/x-python","codemirror_mode":{"name":"ipython","version":3},"pygments_lexer":"ipython3","nbconvert_exporter":"python","file_extension":".py"}},"nbformat":4,"nbformat_minor":2}