Skip to content
Snippets Groups Projects
Select Git revision
  • 11bdfc582bee5106010473c3a481cfbf88df0a6d
  • main default protected
2 results

fastaIterator.py

Blame
  • Code owners
    Assign users and groups as approvers for specific file changes. Learn more.
    x 10.93 KiB
    Article title:    Feasibility of Active Machine Learning for Multiclass Compound Classification
    Publication date: January 7, 2016
    DOI-URL:          https://doi.org/10.1021/acs.jcim.5b00332
    
    Subjects:
    Algorithms, Molecules, Drug discovery, Screening assays, Receptors
    
    Contributors:
    Tobias Lang, Florian Flachsenberg, Ulrike von Luxburg, Matthias Rarey
    
    This publication is cited by the following 30 publications:
    
    
        Title:        Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery 
        Journal:      Chemical Reviews
        Contributors: Xin Yang, Yifei Wang, Ryan Byrne, Gisbert Schneider, Shengyong Yang. 
        DOI-URL:      https://doi.org/10.1021/acs.chemrev.8b00728
                
    
        Title:        De Novo Molecule Design by Translating from Reduced Graphs to SMILES 
        Journal:      Journal of Chemical Information and Modeling
        Contributors: Peter Pogány, Navot Arad, Sam Genway, Stephen D. Pickett. 
        DOI-URL:      https://doi.org/10.1021/acs.jcim.8b00626
                
    
        Title:        Designing Algorithms To Aid Discovery by Chemical Robots 
        Journal:      ACS Central Science
        Contributors: Alon B. Henson, Piotr S. Gromski, Leroy Cronin. 
        DOI-URL:      https://doi.org/10.1021/acscentsci.8b00176
                
    
        Title:        Modeling Kinase Inhibition Using Highly Confident Data Sets 
        Journal:      Journal of Chemical Information and Modeling
        Contributors: Sorin Avram, Alina Bora, Liliana Halip, Ramona Curpăn. 
        DOI-URL:      https://doi.org/10.1021/acs.jcim.7b00729
                
    
        Title:        Predictive Models for Fast and Effective Profiling of Kinase Inhibitors 
        Journal:      Journal of Chemical Information and Modeling
        Contributors: Alina  Bora, Sorin  Avram, Ionel  Ciucanu, Marius  Raica, and Stefana  Avram  . 
        DOI-URL:      https://doi.org/10.1021/acs.jcim.5b00646
                
    
        Title:        Evaluation of categorical matrix completion algorithms: toward improved active learning for drug discovery 
        Journal:      Bioinformatics
        Contributors: Huangqingbo  Sun, Robert F  Murphy, . 
        DOI-URL:      https://doi.org/10.1093/bioinformatics/btab322
                
    
        Title:        An Artificial Intelligence Approach Based on Hybrid CNN-XGB Model to Achieve High Prediction Accuracy through Feature Extraction, Classification and Regression for Enhancing Drug Discovery in Biomedicine 
        Journal:      International Journal of Biology and Biomedical Engineering
        Contributors: Mukesh  Madanan, Biju T.  Sayed, Nurul Akhmal  Mohd Zulkefli, Nitha C.  Velayudhan. 
        DOI-URL:      https://doi.org/10.46300/91011.2021.15.22
                
    
        Title:        Artificial Intelligence in Medicinal Chemistry 
        Journal:      
        Contributors: Edward  Griffen, Alexander  Dossetter, Andrew  Leach, Shane  Montague. 
        DOI-URL:      https://doi.org/10.1002/0471266949.bmc267
                
    
        Title:        Practical Chemogenomic Modeling and Molecule Discovery Strategies Unveiled by Active Learning 
        Journal:      
        Contributors: J.B.  Brown. 
        DOI-URL:      https://doi.org/10.1016/B978-0-12-801238-3.11533-8
                
    
        Title:        Machine learning phases and criticalities without using real data for training 
        Journal:      Physical Review B
        Contributors: D.-R.  Tan, F.-J.  Jiang. 
        DOI-URL:      https://doi.org/10.1103/PhysRevB.102.224434
                
    
        Title:        Active learning effectively identifies a minimal set of maximally informative and asymptotically performant cytotoxic structure–activity patterns in NCI-60 cell lines 
        Journal:      RSC Medicinal Chemistry
        Contributors: Takumi  Nakano, Shunichi  Takeda, J.B.  Brown. 
        DOI-URL:      https://doi.org/10.1039/D0MD00110D
                
    
        Title:        Active learning efficiently converges on rational limits of toxicity prediction and identifies patterns for molecule design 
        Journal:      Computational Toxicology
        Contributors: Ahsan  Habib Polash, Takumi  Nakano, Christin  Rakers, Shunichi  Takeda, J.B.  Brown. 
        DOI-URL:      https://doi.org/10.1016/j.comtox.2020.100129
                
    
        Title:        Practical considerations for active machine learning in drug discovery 
        Journal:      Drug Discovery Today: Technologies
        Contributors: Daniel  Reker. 
        DOI-URL:      https://doi.org/10.1016/j.ddtec.2020.06.001
                
    
        Title:        Designing compact training sets for data-driven molecular property prediction through optimal exploitation and exploration 
        Journal:      Molecular Systems Design & Engineering
        Contributors: Bowen  Li, Srinivas  Rangarajan. 
        DOI-URL:      https://doi.org/10.1039/C9ME00078J
                
    
        Title:        Applicability Domain of Active Learning in Chemical Probe Identification: Convergence in Learning from Non-Specific Compounds and Decision Rule Clarification 
        Journal:      Molecules
        Contributors: Ahsan Habib  Polash, Takumi  Nakano, Shunichi  Takeda, J.B.  Brown. 
        DOI-URL:      https://doi.org/10.3390/molecules24152716
                
    
        Title:        Capturing and applying knowledge to guide compound optimisation 
        Journal:      Drug Discovery Today
        Contributors: Matthew  Segall, Tamsin  Mansley, Peter  Hunt, Edmund  Champness. 
        DOI-URL:      https://doi.org/10.1016/j.drudis.2019.02.004
                
    
        Title:        A novel graph kernel on chemical compound classification 
        Journal:      Journal of Bioinformatics and Computational Biology
        Contributors: Qiangrong  Jiang, Jiajia  Ma. 
        DOI-URL:      https://doi.org/10.1142/S0219720018500269
                
    
        Title:        Accelerating Drug Discovery Using Convolution Neural Network Based Active Learning 
        Journal:      
        Contributors: Pengfei  Liu, Kwong-Sak  Leung. 
        DOI-URL:      https://doi.org/10.1109/TENCON.2018.8650298
                
    
        Title:        An Adaptive Lightweight Security Framework Suited for IoT 
        Journal:      
        Contributors: Menachem  Domb. 
        DOI-URL:      https://doi.org/10.5772/intechopen.73712
                
    
        Title:        Adaptive mining and model building of medicinal chemistry data with a multi-metric perspective 
        Journal:      Future Medicinal Chemistry
        Contributors: JB  Brown. 
        DOI-URL:      https://doi.org/10.4155/fmc-2018-0188
                
    
        Title:        Chemogenomic Active Learning's Domain of Applicability on Small, Sparse qHTS Matrices: A Study Using Cytochrome P450 and Nuclear Hormone Receptor Families 
        Journal:      ChemMedChem
        Contributors: Christin  Rakers, Rifat Ara  Najnin, Ahsan Habib  Polash, Shunichi  Takeda, J.B.  Brown. 
        DOI-URL:      https://doi.org/10.1002/cmdc.201700677
                
    
        Title:        Automating drug discovery 
        Journal:      Nature Reviews Drug Discovery
        Contributors: Gisbert  Schneider. 
        DOI-URL:      https://doi.org/10.1038/nrd.2017.232
                
    
        Title:        Classifiers and their Metrics Quantified 
        Journal:      Molecular Informatics
        Contributors: J. B.  Brown. 
        DOI-URL:      https://doi.org/10.1002/minf.201700127
                
    
        Title:        Active Search for Computer-aided Drug Design 
        Journal:      Molecular Informatics
        Contributors: Dino  Oglic, Steven A.  Oatley, Simon J. F.  Macdonald, Thomas  Mcinally, Roman  Garnett, Jonathan D.  Hirst, Thomas  Gärtner. 
        DOI-URL:      https://doi.org/10.1002/minf.201700130
                
    
        Title:        Selection of Informative Examples in Chemogenomic Datasets 
        Journal:      
        Contributors: Daniel  Reker, J. B.  Brown. 
        DOI-URL:      https://doi.org/10.1007/978-1-4939-8639-2_13
                
    
        Title:        The value of prior knowledge in machine learning of complex network systems 
        Journal:      Bioinformatics
        Contributors: Dana  Ferranti, David  Krane, David  Craft, . 
        DOI-URL:      https://doi.org/10.1093/bioinformatics/btx438
                
    
        Title:        Lightweight adaptive Random-Forest for IoT rule generation and execution 
        Journal:      Journal of Information Security and Applications
        Contributors: Menachem  Domb, Elisheva  Bonchek-Dokow, Guy  Leshem. 
        DOI-URL:      https://doi.org/10.1016/j.jisa.2017.03.001
                
    
        Title:        Active learning for computational chemogenomics 
        Journal:      Future Medicinal Chemistry
        Contributors: Daniel  Reker, Petra  Schneider, Gisbert  Schneider, JB  Brown. 
        DOI-URL:      https://doi.org/10.4155/fmc-2016-0197
                
    
        Title:        Small Random Forest Models for Effective Chemogenomic Active Learning 
        Journal:      Journal of Computer Aided Chemistry
        Contributors: Christin  Rakers, Daniel  Reker, J.B.  Brown. 
        DOI-URL:      https://doi.org/10.2751/jcac.18.124
                
    
        Title:        Large-Scale Off-Target Identification Using Fast and Accurate Dual Regularized One-Class Collaborative Filtering and Its Application to Drug Repurposing 
        Journal:      PLOS Computational Biology
        Contributors: Hansaim  Lim, Aleksandar  Poleksic, Yuan  Yao, Hanghang  Tong, Di  He, Luke  Zhuang, Patrick  Meng, Lei  Xie, . 
        DOI-URL:      https://doi.org/10.1371/journal.pcbi.1005135
                
    Article title:    Matched Molecular Series: Measuring SAR Similarity
    Publication date: May 1, 2017
    DOI-URL:          https://doi.org/10.1021/acs.jcim.6b00709
    
    Subjects:
    Substituents, Mathematical methods, Structure activity relationship, Biological databases
    
    Contributors:
    Emanuel S. R. Ehmki, Christian Kramer
    
    This publication is cited by the following 5 publications:
    
    
        Title:        Matched Molecular Series Analysis for ADME Property Prediction 
        Journal:      Journal of Chemical Information and Modeling
        Contributors: Mahendra Awale, Sereina Riniker, Christian Kramer. 
        DOI-URL:      https://doi.org/10.1021/acs.jcim.0c00269
                
    
        Title:        Approaches using AI in medicinal chemistry 
        Journal:      
        Contributors: Christian  Tyrchan, Eva  Nittinger, Dea  Gogishvili, Atanas  Patronov, Thierry  Kogej. 
        DOI-URL:      https://doi.org/10.1016/B978-0-12-822249-2.00002-5
                
    
        Title:        Bioactivity Prediction Based on Matched Molecular Pair and Matched Molecular Series Methods 
        Journal:      Current Pharmaceutical Design
        Contributors: Xiaoyu  Ding, Chen  Cui, Dingyan  Wang, Jihui  Zhao, Mingyue  Zheng, Xiaomin  Luo, Hualiang  Jiang, Kaixian  Chen. 
        DOI-URL:      https://doi.org/10.2174/1381612826666200427111309
                
    
        Title:        BRADSHAW: a system for automated molecular design 
        Journal:      Journal of Computer-Aided Molecular Design
        Contributors: Darren V. S.  Green, Stephen  Pickett, Chris  Luscombe, Stefan  Senger, David  Marcus, Jamel  Meslamani, David  Brett, Adam  Powell, Jonathan  Masson. 
        DOI-URL:      https://doi.org/10.1007/s10822-019-00234-8
                
    
        Title:        The use of matched molecular series networks for cross target structure activity relationship translation and potency prediction 
        Journal:      MedChemComm
        Contributors: Christopher E.  Keefer, George  Chang. 
        DOI-URL:      https://doi.org/10.1039/C7MD00465F