Skip to content
Snippets Groups Projects
Select Git revision
  • main
1 result

README.md

Blame
  • Code owners
    Assign users and groups as approvers for specific file changes. Learn more.

    2L-VKOGA

    Python implementation of the 2L-VKOGA algorithm without specified requirements.

    Installation

    pip install git+https://gitlab.rrz.uni-hamburg.de/bbd9097/twol_optim/

    Usage

    Have a look into the demo file.

    How to cite:

    If you use this code in your work for scalar-valued output data, please cite the paper

    T. Wenzel, F. Marchetti, and E. Perracchione. Data-driven kernel designs for optimized greedy schemes: A machine learning perspective. SIAM Journal on Scientific Computing, 46(1):C101–C126, 2024

    @article{wenzel2024data,
    	author = {Wenzel, Tizian and Marchetti, Francesco and Perracchione, Emma},
    	title = {Data-Driven Kernel Designs for Optimized Greedy Schemes: A Machine Learning Perspective},
    	journal = {SIAM Journal on Scientific Computing},
    	volume = {46},
    	number = {1},
    	pages = {C101-C126},
    	year = {2024},
    	doi = {10.1137/23M1551201},
    	URL = {https://epubs.siam.org/doi/abs/10.1137/23M1551201},
    	eprint = {https://epubs.siam.org/doi/pdf/10.1137/23M1551201}
    }

    If you use this code in your work for vectorial-valued output data, please cite the paper

    T. Wenzel, B. Haasdonk, H. Kleikamp, M. Ohlberger, and F. Schindler. Application of Deep Kernel Models for Certified and Adaptive RB-ML-ROM Surrogate Modeling. In I. Lirkov and S. Margenov, editors, Large-Scale Scientific Computations, pages 117–125, Cham, 2024. Springer Nature Switzerland

    @InProceedings{wenzel2024application,
    author="Wenzel, Tizian and Haasdonk, Bernard and Kleikamp, Hendrik and Ohlberger, Mario and Schindler, Felix",
    editor="Lirkov, Ivan and Margenov, Svetozar",
    title="{A}pplication of {D}eep {K}ernel {M}odels for {C}ertified and {A}daptive {RB}-{ML}-{ROM} {S}urrogate {M}odeling",
    booktitle="Large-Scale Scientific Computations",
    year="2024",
    publisher="Springer Nature Switzerland",
    address="Cham",
    pages="117--125",
    doi="doi.org/10.1007/978-3-031-56208-2_11",
    }

    For further details on the VKOGA algorithm, please refer to here.