Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
L
Live integration
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Koziej Lab
X-ray Diffraction
PDF
Live integration
Commits
57014b2c
Commit
57014b2c
authored
3 weeks ago
by
Gröne, Tjark Leon Raphael
Browse files
Options
Downloads
Patches
Plain Diff
Update file maxwell_integrate_to_h5.py
parent
6a7aa2ee
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
maxwell_integrate_to_h5.py
+58
-190
58 additions, 190 deletions
maxwell_integrate_to_h5.py
with
58 additions
and
190 deletions
maxwell_integrate_to_h5.py
+
58
−
190
View file @
57014b2c
...
@@ -15,7 +15,8 @@ from watchdog.observers.polling import PollingObserver
...
@@ -15,7 +15,8 @@ from watchdog.observers.polling import PollingObserver
from
watchdog.events
import
PatternMatchingEventHandler
from
watchdog.events
import
PatternMatchingEventHandler
from
multiprocessing.pool
import
ThreadPool
as
Pool
from
multiprocessing.pool
import
ThreadPool
as
Pool
import
pandas
as
pd
import
pandas
as
pd
from
silx.io.dictdump
import
h5todict
,
dicttoh5
#from silx.io.dictdump import h5todict, dicttoh5
import
h5py
import
re
import
re
...
@@ -124,198 +125,65 @@ def integrate_ims_in_dir(path_im, path_int, dtype_im=".tif", dtype_int=".dat"):
...
@@ -124,198 +125,65 @@ def integrate_ims_in_dir(path_im, path_int, dtype_im=".tif", dtype_int=".dat"):
subdir_name
=
os
.
path
.
basename
(
os
.
path
.
normpath
(
subdir_path_int
))
subdir_name
=
os
.
path
.
basename
(
os
.
path
.
normpath
(
subdir_path_int
))
results_df
.
to_csv
(
os
.
path
.
join
(
subdir_path_int
,
f
"
{
subdir_name
}
.csv
"
),
index
=
False
)
results_df
.
to_csv
(
os
.
path
.
join
(
subdir_path_int
,
f
"
{
subdir_name
}
.csv
"
),
index
=
False
)
# Create the HDF5 file
# Sort results_data by filename
with
h5py
.
File
(
"
output_silx_format.h5
"
,
"
w
"
)
as
f
:
def
natural_sort_key
(
item
):
# Create top-level group (e.g., subdir_name)
return
[
int
(
text
)
if
text
.
isdigit
()
else
text
.
lower
()
for
text
in
re
.
split
(
r
'
(\d+)
'
,
item
[
"
filename
"
])]
subdir_grp
=
f
.
create_group
(
subdir_name
)
subdir_grp
.
attrs
[
"
NX_class
"
]
=
np
.
string_
(
"
NXentry
"
)
results_data
=
sorted
(
results_data
,
key
=
natural_sort_key
)
subdir_grp
.
attrs
[
"
description
"
]
=
np
.
string_
(
subdir_name
)
# Prepare data for HDF5 file using silx
hdf5_data
=
{
for
idx
,
result
in
enumerate
(
results_data
,
start
=
1
):
subdir_name
:
{
scan_name
=
f
"
{
idx
}
.1
"
"
@NX_class
"
:
"
NXentry
"
,
scan_grp
=
subdir_grp
.
create_group
(
scan_name
)
"
description
"
:
f
"
{
subdir_name
}
"
,
"
files
"
:
[
# --- Group-level attributes ---
{
scan_grp
.
attrs
[
"
NX_class
"
]
=
np
.
string_
(
"
NXentry
"
)
"
name
"
:
f
"
{
idx
}
.1
"
,
scan_grp
.
attrs
[
"
default
"
]
=
np
.
string_
(
"
measurement
"
)
"
path
"
:
f
"
/
{
idx
}
.1
"
,
scan_grp
.
attrs
[
"
plotselect
"
]
=
np
.
string_
(
"
q,I
"
)
"
attributes
"
:
[
{
# --- Measurement group ---
"
name
"
:
"
NX_class
"
,
meas_grp
=
scan_grp
.
create_group
(
"
measurement
"
)
"
shape
"
:
[],
meas_grp
.
attrs
[
"
NX_class
"
]
=
np
.
string_
(
"
NXcollection
"
)
"
type
"
:
{
"
class
"
:
"
String
"
,
# Datasets: q, I, dI
"
charSet
"
:
"
UTF-8
"
,
for
name
in
[
"
q
"
,
"
I
"
,
"
dI
"
]:
"
strPad
"
:
"
null-terminated
"
data
=
result
[
name
]
},
meas_grp
.
create_dataset
(
name
,
data
=
data
,
chunks
=
(
min
(
len
(
data
),
1000
),),
dtype
=
'
f8
'
)
"
value
"
:
"
NXentry
"
},
# --- Plotselect group ---
{
plotselect_grp
=
scan_grp
.
create_group
(
"
plotselect
"
)
"
name
"
:
"
default
"
,
plotselect_grp
.
attrs
[
"
NX_class
"
]
=
np
.
string_
(
"
NXcollection
"
)
"
shape
"
:
[],
plotselect_grp
.
attrs
[
"
axes
"
]
=
np
.
string_
(
"
q
"
)
"
type
"
:
{
plotselect_grp
.
attrs
[
"
signal
"
]
=
np
.
string_
(
"
I
"
)
"
class
"
:
"
String
"
,
# # Sort results_data by filename
"
charSet
"
:
"
UTF-8
"
,
# def natural_sort_key(item):
"
strPad
"
:
"
null-terminated
"
# return [int(text) if text.isdigit() else text.lower() for text in re.split(r'(\d+)', item["filename"])]
},
"
value
"
:
"
measurement
"
# results_data = sorted(results_data, key=natural_sort_key)
},
# # Prepare data for HDF5 file using silx
{
# hdf5_data = {}
"
name
"
:
"
plotselect
"
,
# for idx, result in enumerate(results_data, start=1):
"
shape
"
:
[],
# hdf5_data[f"{idx}.1"] = {
"
type
"
:
{
# "@NX_class": "NXentry",
"
class
"
:
"
String
"
,
# "measurement": {
"
charSet
"
:
"
UTF-8
"
,
# "@NX_class": "NXcollection",
"
strPad
"
:
"
null-terminated
"
# "q": result["q"].tolist(), # Convert numpy arrays to lists for HDF5 compatibility
},
# "I": result["I"].tolist(),
"
value
"
:
"
q,I
"
# "dI": result["dI"].tolist(),
}
# },
],
# "plotselect": {
"
kind
"
:
"
group
"
,
# "@NX_class": "NXcollection",
"
children
"
:
[
# "axes": "q",
{
# "signal": "I",
"
name
"
:
"
measurement
"
,
# },
"
path
"
:
f
"
/
{
idx
}
.1/measurement
"
,
# }
"
attributes
"
:
[
{
print
(
f
"
Results for subdirectory
{
subdir_name
}
saved to HDF5 file using h5py.
"
)
"
name
"
:
"
NX_class
"
,
"
shape
"
:
[],
"
type
"
:
{
"
class
"
:
"
String
"
,
"
charSet
"
:
"
UTF-8
"
,
"
strPad
"
:
"
null-terminated
"
},
"
value
"
:
"
NXcollection
"
}
],
"
kind
"
:
"
group
"
,
"
children
"
:
[
{
"
name
"
:
"
q
"
,
"
path
"
:
f
"
/
{
idx
}
.1/measurement/q
"
,
"
attributes
"
:
[],
"
kind
"
:
"
dataset
"
,
"
shape
"
:
[
len
(
result
[
"
q
"
])],
"
type
"
:
{
"
class
"
:
"
Float
"
,
"
endianness
"
:
"
little-endian
"
,
"
size
"
:
64
},
"
chunks
"
:
[
min
(
len
(
result
[
"
q
"
]),
1000
)],
"
filters
"
:
[],
"
rawType
"
:
{
"
signed
"
:
False
,
"
type
"
:
1
,
"
vlen
"
:
False
,
"
littleEndian
"
:
True
,
"
size
"
:
8
,
"
total_size
"
:
len
(
result
[
"
q
"
])
},
"
value
"
:
result
[
"
q
"
]
},
{
"
name
"
:
"
I
"
,
"
path
"
:
f
"
/
{
idx
}
.1/measurement/I
"
,
"
attributes
"
:
[],
"
kind
"
:
"
dataset
"
,
"
shape
"
:
[
len
(
result
[
"
I
"
])],
"
type
"
:
{
"
class
"
:
"
Float
"
,
"
endianness
"
:
"
little-endian
"
,
"
size
"
:
64
},
"
chunks
"
:
[
min
(
len
(
result
[
"
I
"
]),
1000
)],
"
filters
"
:
[],
"
rawType
"
:
{
"
signed
"
:
False
,
"
type
"
:
1
,
"
vlen
"
:
False
,
"
littleEndian
"
:
True
,
"
size
"
:
8
,
"
total_size
"
:
len
(
result
[
"
I
"
])
},
"
value
"
:
result
[
"
I
"
]
},
{
"
name
"
:
"
dI
"
,
"
path
"
:
f
"
/
{
idx
}
.1/measurement/dI
"
,
"
attributes
"
:
[],
"
kind
"
:
"
dataset
"
,
"
shape
"
:
[
len
(
result
[
"
dI
"
])],
"
type
"
:
{
"
class
"
:
"
Float
"
,
"
endianness
"
:
"
little-endian
"
,
"
size
"
:
64
},
"
chunks
"
:
[
min
(
len
(
result
[
"
dI
"
]),
1000
)],
"
filters
"
:
[],
"
rawType
"
:
{
"
signed
"
:
False
,
"
type
"
:
1
,
"
vlen
"
:
False
,
"
littleEndian
"
:
True
,
"
size
"
:
8
,
"
total_size
"
:
len
(
result
[
"
dI
"
])
},
"
value
"
:
result
[
"
dI
"
]
}
]
},
{
"
name
"
:
"
plotselect
"
,
"
path
"
:
f
"
/
{
idx
}
.1/plotselect
"
,
"
attributes
"
:
[
{
"
name
"
:
"
NX_class
"
,
"
shape
"
:
[],
"
type
"
:
{
"
class
"
:
"
String
"
,
"
charSet
"
:
"
UTF-8
"
,
"
strPad
"
:
"
null-terminated
"
},
"
value
"
:
"
NXcollection
"
},
{
"
name
"
:
"
axes
"
,
"
shape
"
:
[
1
],
"
type
"
:
{
"
class
"
:
"
String
"
,
"
charSet
"
:
"
UTF-8
"
,
"
strPad
"
:
"
null-terminated
"
},
"
value
"
:
"
q
"
},
{
"
name
"
:
"
signal
"
,
"
shape
"
:
[],
"
type
"
:
{
"
class
"
:
"
String
"
,
"
charSet
"
:
"
UTF-8
"
,
"
strPad
"
:
"
null-terminated
"
},
"
value
"
:
"
I
"
}
],
"
kind
"
:
"
group
"
}
]
}
for
idx
,
result
in
enumerate
(
results_data
,
start
=
1
)
]
}
}
# Save to HDF5 file using silx
hdf5_file_path
=
os
.
path
.
join
(
subdir_path_int
,
f
"
{
subdir_name
}
.h5
"
)
dicttoh5
(
hdf5_data
,
hdf5_file_path
,
mode
=
"
w
"
)
print
(
f
"
Results for subdirectory
{
subdir_name
}
saved to HDF5 file using silx.
"
)
# Save to HDF5 file using silx
# Save to HDF5 file using silx
hdf5_file_path
=
os
.
path
.
join
(
subdir_path_int
,
f
"
{
subdir_name
}
.h5
"
)
#
hdf5_file_path = os.path.join(subdir_path_int, f"{subdir_name}.h5")
dicttoh5
(
hdf5_data
,
hdf5_file_path
,
mode
=
"
w
"
)
#
dicttoh5(hdf5_data, hdf5_file_path, mode="w")
print
(
f
"
Results for subdirectory
{
subdir_name
}
saved to CSV and HDF5 files using silx.
"
)
del
results_df
del
results_df
else
:
else
:
print
(
f
"
No images were integrated in subdirectory
{
subdir
}
. No results DataFrame created.
"
)
print
(
f
"
No images were integrated in subdirectory
{
subdir
}
. No results DataFrame created.
"
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment