Skip to content
Snippets Groups Projects
Commit f0f3833b authored by Jack Christopher Hutchinson Rolph's avatar Jack Christopher Hutchinson Rolph
Browse files

Update PeakOTron.py

parent f9f0806a
Branches
Tags
No related merge requests found
......@@ -1692,7 +1692,7 @@ class PeakOTron:
minuit_lin_var = Minuit(fit_lin_var, **fit_dict_lin_var)
minuit_lin_var.limits["m"] = (self._eps, None)
......@@ -1725,7 +1725,7 @@ class PeakOTron:
minuit_lin_G = Minuit(fit_lin_G, **fit_dict_lin_G)
minuit_lin_G.limits["m"] = (self._eps, None)
minuit_lin_G.strategy=2
minuit_lin_G.migrad(ncall= self._n_call_minuit,
......@@ -1736,8 +1736,6 @@ class PeakOTron:
if((minuit_lin_var.values["m"]>self._eps) and minuit_lin_var.valid):
self._GD_data["fit_var0"] = minuit_lin_var.values["c"]
self._GD_data["fit_var0_err"] = minuit_lin_var.errors["c"]
self._GD_data["fit_var1"] = minuit_lin_var.values["m"]
......@@ -1748,34 +1746,13 @@ class PeakOTron:
self._GD_data["fit_sigma0_err"] = (0.5/self._GD_data["fit_sigma0"])*self._GD_data["fit_var0_err"]
self._GD_data["fit_sigma1"] = np.sqrt(self._GD_data["fit_var1"])
self._GD_data["fit_sigma1_err"] = (0.5/self._GD_data["fit_sigma1"])*self._GD_data["fit_var1_err"]
else:
if(self._verbose):
print("Linear fit to peak variance returned invalid. Using basic estimated parameters instead...")
self._GD_data["fit_sigma0"] = self._peak_data["x_width_s"][0]*self._FWHM2Sigma
self._GD_data["fit_sigma0_err"] = 0.1*self._GD_data["fit_sigma0"]
self._GD_data["fit_sigma1"] = abs(np.mean(np.diff(self._peak_data["x_width_s"]*self._FWHM2Sigma)/np.diff(self._peak_data["n_peak_s"])))
self._GD_data["fit_sigma1_err"] = 0.1*self._GD_data["fit_sigma1"]
self._GD_data["fit_var0"] = self._GD_data["fit_sigma0"]**2
self._GD_data["fit_var0_err"] = 2*self._GD_data["fit_sigma0"]*self._GD_data["fit_sigma0_err"]
self._GD_data["fit_var1"] = self._GD_data["fit_sigma1"]**2
self._GD_data["fit_var1_err"] = 2*self._GD_data["fit_sigma1"]*self._GD_data["fit_sigma1_err"]
if((minuit_lin_G.values["m"]>self._eps) and minuit_lin_G.valid):
self._GD_data["fit_G"] = minuit_lin_G.values["m"]
self._GD_data["fit_G_err"] = minuit_lin_G.errors["m"]
self._GD_data["fit_x_0"] = minuit_lin_G.values["c"]
self._GD_data["fit_x_0_err"] = minuit_lin_G.errors["c"]
else:
if(self._verbose):
print("Linear fit to peak mean returned invalid. Using basic estimated parameters instead...")
self._GD_data["fit_G"] = self._GD_data["fit_G"]
self._GD_data["fit_G_err"] = self._GD_data["fit_G_err"]
self._GD_data["fit_x_0"] = self._GD_data["fit_x_0"]
self._GD_data["fit_x_0_err"] = self._GD_data["fit_x_0_err"]
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment