Skip to content
Snippets Groups Projects
Commit 5da128cc authored by Le, Mia's avatar Le, Mia
Browse files

added functional relevance to seed_var result table

parent 18bb85c2
No related branches found
No related tags found
No related merge requests found
......@@ -239,27 +239,35 @@ class cami():
prefix=f'{result_set}_{self.uid}',
file_type='png')
sub_validation_results = biodigest.single_validation.single_validation(
tar=set(self.result_module_sets[result_set]),
tar_id='entrez',
mode='subnetwork-set',
distance='jaccard',
network_data={"network_file":ppi_graph_file,
"prop_name":"name",
"id_type":"entrez"},
ref=set(seed_gene_lst),
ref_id='entrez'
)
if sub_validation_results['status'] == 'ok':
biodigest.single_validation.save_results(sub_validation_results, f'{result_set}_{self.uid}',
self.output_dir)
biodigest.evaluation.d_utils.plotting_utils.create_plots(results=sub_validation_results,
mode='subnetwork-set',
tar=set(self.result_module_sets[result_set]),
tar_id='entrez',
out_dir=self.output_dir,
prefix=f'{result_set}_{self.uid}',
file_type='png')
with open(os.path.join(self.tmp_dir, f'{result_set}_{self.uid}_relevance_scores.tsv'), 'w') as f:
rel_score_name = list(set_validation_results['input_values']['values'].keys())[0]
f.write(f'value\t{rel_score_name}\n')
val_res_dct = set_validation_results['input_values']['values'][rel_score_name]
for val in val_res_dct:
f.write(f'{val}\t{val_res_dct[val]}\n')
# sub_validation_results = biodigest.single_validation.single_validation(
# tar=set(self.result_module_sets[result_set]),
# tar_id='entrez',
# mode='subnetwork-set',
# distance='jaccard',
# network_data={"network_file":ppi_graph_file,
# "prop_name":"name",
# "id_type":"entrez"},
# ref=set(seed_gene_lst),
# ref_id='entrez'
# )
# if sub_validation_results['status'] == 'ok':
# biodigest.single_validation.save_results(sub_validation_results, f'{result_set}_{self.uid}',
# self.output_dir)
# biodigest.evaluation.d_utils.plotting_utils.create_plots(results=sub_validation_results,
# mode='subnetwork-set',
# tar=set(self.result_module_sets[result_set]),
# tar_id='entrez',
# out_dir=self.output_dir,
# prefix=f'{result_set}_{self.uid}',
# file_type='png')
def run_threaded_tool(self, tool, pred_sets):
"""run a tool in one thread and save the results into a dictionary pred_sets
......
......@@ -51,6 +51,11 @@ def make_seedvariation(cami, n_iterations, removal_frac=0.2, vis=False, plot=Tru
res_table.write(f'\t{tool}_rdr_ks_pvalue')
for tool in prediction_tools:
res_table.write(f'\t{tool}_msr_ks_pvalue')
with open(os.path.join(cami.tmp_dir, f'{used_tools[0]}_{cami.uid}_relevance_scores.tsv)'), 'r') as f:
for line in f:
val_name = line.split('\t')[0]
redisc_table.write(f'\t{val_name}')
res_table.write('\n')
# result dictionaries of the form {tool:list(value for each iteration)}
......@@ -135,6 +140,12 @@ def make_seedvariation(cami, n_iterations, removal_frac=0.2, vis=False, plot=Tru
for pred_tool in prediction_tools:
p_val = kolmogorov_smirnoff.calculate_ks_p_value(list(module_size_dict[tool]),
list(module_size_dict[pred_tool]))
res_table.write(f'\t{p_val}')
with open(os.path.join(cami.tmp_dir, f'{tool}_{cami.uid}_relevance_scores.tsv)'), 'r') as f:
for line in f:
rel_score = line.split('\t')[1].strip()
res_table.write(f'\t{rel_score}')
res_table.write('\n')
print(f'Result tables are saved in the following locations:')
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment