Skip to content
Snippets Groups Projects
Commit 01130da2 authored by Wenzel, Tizian's avatar Wenzel, Tizian
Browse files

Minor updates (some fixes).

parent a3ff177b
No related branches found
No related tags found
No related merge requests found
......@@ -20,7 +20,7 @@ np.random.seed(1)
# Settings
N_flexibility = 0
list_idx_dataset = [0, 1, 2, 3, 4, 5, 7, 8, 9]
list_idx_dataset = [4, 5]
list_kernels = [kernels.Matern(k=k_mat, flag_normalize_x=True) for k_mat in range(5)]
list_tkernels = [tkernels.Matern(k=k_mat, flag_normalize_x=True) for k_mat in range(5)]
......@@ -57,8 +57,6 @@ for idx_dataset in list_idx_dataset:
X_train, X_test = np.random.rand(10000, dim), np.random.rand(10000, dim)
y_train, y_test = f_func(X_train), f_func(X_test)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=2)
else:
continue
......
......@@ -152,7 +152,7 @@ class KEA(BaseEstimator):
indI = list(indices_inverse[:X_ctrs.shape[0]-N_flexibility]) # remove N_flexibility additional centers
# Introduce a suitable ordering into indI to save computational time later on
model_greedy = VKOGA_2L(kernel=self.kernel, beta=self.beta, verbose=False,
model_greedy = VKOGA_2L(kernel=self.kernel, greedy_type='f_greedy', verbose=False,
tol_p=1e-12, tol_f=1e-12)
_ = model_greedy.fit(X[indI, :], y[indI, :], maxIter=len(indI))
......@@ -236,7 +236,7 @@ class KEA(BaseEstimator):
# Add the N_flexibility many centers again
model_final_add = VKOGA_2L(kernel=self.kernel, beta=self.beta, verbose=False, tol_f=1e-14, tol_p=1e-14)
model_final_add = VKOGA_2L(kernel=self.kernel, greedy_type='f_greedy', verbose=False, tol_f=1e-14, tol_p=1e-14)
model_final_add.fit(X[indI, :], y[indI, :], maxIter=len(indI)) # use the existing centers
indI = [indI[idx] for idx in model_final_add.indI_]
notIndI = [idx for idx in range(X.shape[0]) if idx not in indI] # required because vkoga removes previously chosen points
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment