Skip to content
Snippets Groups Projects
views.py 25.8 KiB
Newer Older
import csv
import random
import string
import time
import uuid
AndiMajore's avatar
AndiMajore committed
from collections import defaultdict

import pandas as pd

import networkx as nx
from django.http import HttpResponse
from django.db.models import Q
from django.db import IntegrityError
from rest_framework.decorators import api_view
from rest_framework.response import Response
from rest_framework.views import APIView
from drugstone.util.query_db import query_proteins_by_identifier

from drugstone.models import *
from drugstone.serializers import *
from drugstone.backend_tasks import start_task, refresh_from_redis, task_stats, task_result, task_parameters
from drugstone.settings import DEFAULTS


def get_ppi_ds(source, licenced):
    try:
        ds = models.PPIDataset.objects.filter(name__iexact=source, licenced=licenced).last()
        return ds
    except:
        if licenced:
            return get_ppi_ds(source, False)
        return None


def get_pdi_ds(source, licenced):
    try:
        ds = models.PDIDataset.objects.filter(name__iexact=source, licenced=licenced).last()
        return ds
    except:
        if licenced:
            return get_pdi_ds(source, False)
        return None


def get_pdis_ds(source, licenced):
    try:
        ds = models.PDisDataset.objects.filter(name__iexact=source, licenced=licenced).last()
        return ds
    except:
        if licenced:
            return get_pdis_ds(source, False)
        return None


def get_drdis_ds(source, licenced):
    try:
AndiMajore's avatar
AndiMajore committed
        ds = models.DrDiDataset.objects.filter(name__iexact=source, licenced=licenced).last()
        return ds
    except:
        if licenced:
AndiMajore's avatar
AndiMajore committed
            return get_drdis_ds(source, False)


class TaskView(APIView):

    def post(self, request) -> Response:
        chars = string.ascii_lowercase + string.ascii_uppercase + string.digits
        token_str = ''.join(random.choice(chars) for _ in range(32))
        parameters = request.data['parameters']
        licenced = parameters.get('licenced', False)
        print(models.PDIDataset.objects.all())

        print(get_ppi_ds(parameters.get('ppi_dataset', DEFAULTS['ppi']), licenced))
        print(get_pdi_ds(parameters.get('pdi_dataset', DEFAULTS['pdi']), licenced))

        # find databases based on parameter strings
        parameters['ppi_dataset'] = PPIDatasetSerializer().to_representation(
            get_ppi_ds(parameters.get('ppi_dataset', DEFAULTS['ppi']), licenced))

        parameters['pdi_dataset'] = PDIDatasetSerializer().to_representation(
            get_pdi_ds(parameters.get('pdi_dataset', DEFAULTS['pdi']), licenced))

        task = Task.objects.create(token=token_str,
                                   target=request.data['target'],
                                   algorithm=request.data['algorithm'],
                                   parameters=json.dumps(parameters))
        start_task(task)
        task.save()

        return Response({
            'token': token_str,
        })

    def get(self, request) -> Response:
        token_str = request.query_params['token']
        task = Task.objects.get(token=token_str)

        if not task.done and not task.failed:
            refresh_from_redis(task)
            task.save()

        return Response({
            'token': task.token,
            'info': TaskSerializer().to_representation(task),
            'stats': task_stats(task),
        })


@api_view(['GET'])
def get_license(request) -> Response:
    from drugstone.management.includes.DatasetLoader import import_license
    return Response({'license': import_license()})


@api_view(['POST'])
def fetch_edges(request) -> Response:
    """Retrieves interactions between nodes given as a list of drugstone IDs.

    Args:
        request (HttpRequest): With keys 'nodes' representing nodes and 'dataset' representing the
        protein-protein interaction dataset.

    Returns:
        Response: List of edges which are objects with 'from' and to ' attribtues'
    """
    dataset = request.data.get('dataset', DEFAULTS['ppi'])
    drugstone_ids = set()
    for node in request.data.get('nodes', '[]'):
        if 'drugstone_id' in node:
            if isinstance(node['drugstone_id'], list):
                for id in node['drugstone_id']:
                    drugstone_ids.add(id[1:])
            else:
                drugstone_ids.add(node['drugstone_id'])
    licenced = request.data.get('licenced', False)
    dataset_object = get_ppi_ds(dataset, licenced)
    interaction_objects = models.ProteinProteinInteraction.objects.filter(
        Q(ppi_dataset=dataset_object) & Q(from_protein__in=drugstone_ids) & Q(to_protein__in=drugstone_ids))

    return Response(ProteinProteinInteractionSerializer(many=True).to_representation(interaction_objects))


@api_view(['POST'])
def map_nodes(request) -> Response:
    """Maps user given input nodes to Proteins in the django database.
    Further updates the node list given by the user by extending the matching proteins with information
    from the database, leaves unmatched nodes untouched. No informations from the input node list gets
    removed. Custom node attributes remain untouched. Returns updated node list.

    Args:
        request (HttpRequest): With keys "nodes" for the node list containing input node objects from the frontend,
        with "id" key, and key "identifier" representing the Protein backend attribute the node id are representing.
        Identifier must be of type "Identifier" as defined in the frontend.

    Returns:
        Response: Updates node list.
    """
    # load data from request
    nodes = request.data.get('nodes', '[]')
    id_map = {}
    for node in nodes:
        upper = node['id'].upper()
        id_map[upper] = node['id']
        node['id'] = upper

    identifier = request.data.get('identifier', '')
    # extract ids for filtering
    node_ids = set([node['id'] for node in nodes])

    # query protein table
    nodes_mapped, id_key = query_proteins_by_identifier(node_ids, identifier)

    # change data structure to dict in order to be quicker when merging
    nodes_mapped_dict = {node[id_key][0]: node for node in nodes_mapped}
    # merge fetched data with given data to avoid data loss
    for node in nodes:
        if node['id'] in nodes_mapped_dict:
            node.update(nodes_mapped_dict[node['id']])
            node['drugstoneType'] = 'protein'
        node['id'] = id_map[node['id']]
    # set label to node identifier if label is unset, otherwise
    # return list of nodes updated nodes
    return Response(nodes)


@api_view(['POST'])
def tasks_view(request) -> Response:
    tokens = json.loads(request.data.get('tokens', '[]'))
    tasks = Task.objects.filter(token__in=tokens).order_by('-created_at').all()
    tasks_info = []
    for task in tasks:
        if not task.done and not task.failed:
            refresh_from_redis(task)
            task.save()

        tasks_info.append({
            'token': task.token,
            'info': TaskStatusSerializer().to_representation(task),
            'stats': task_stats(task),
        })
    return Response(tasks_info)


@api_view(['POST'])
def create_network(request) -> Response:
    if 'network' not in request.data:
        return Response(None)
    else:
        if 'nodes' not in request.data['network']:
            request.data['network']['nodes'] = []
        if 'edges' not in request.data['network']:
            request.data['network']['edges'] = []
    if 'config' not in request.data:
        request.data['config'] = {}
    if 'groups' not in request.data:
        request.data['groups'] = {}

    id = uuid.uuid4().hex
    while True:
        try:
            Network.objects.create(id=id, nodes=request.data['network']['nodes'],
AndiMajore's avatar
AndiMajore committed
                                   edges=request.data['network']['edges'], config=request.data['config'],
                                   groups=request.data['groups'])
            break
        except IntegrityError:
            id = uuid.uuid4().hex
    return Response(id)


AndiMajore's avatar
AndiMajore committed
@api_view(['GET'])
AndiMajore's avatar
AndiMajore committed
def get_datasets(request) -> Response:
AndiMajore's avatar
AndiMajore committed
    datasets = {}
    datasets['protein-protein'] = PPIDatasetSerializer(many=True).to_representation(PPIDataset.objects.all())
    datasets['protein-drug'] = PDIDatasetSerializer(many=True).to_representation(PDIDataset.objects.all())
    datasets['protein-disorder'] = PDisDatasetSerializer(many=True).to_representation(PDisDataset.objects.all())
    datasets['drug-disorder'] = DrDisDatasetSerializer(many=True).to_representation(DrDiDataset.objects.all())
    return Response(datasets)

AndiMajore's avatar
AndiMajore committed

@api_view(['GET'])
def load_network(request) -> Response:
    network = NetworkSerializer().to_representation(Network.objects.get(id=request.query_params.get('id')))
    result = {'network': {'nodes': json.loads(network['nodes'].replace("'", '"')),
                          'edges': json.loads(network['edges'].replace("'", '"'))},
AndiMajore's avatar
AndiMajore committed
              'config': json.loads(
                  network['config'].replace("'", '"').replace('True', 'true').replace('False', 'false')),
AndiMajore's avatar
AndiMajore committed
              'groups': json.loads(
                  network['groups'].replace("'", '"').replace('True', 'true').replace('False', 'false'))}
    return Response(result)


@api_view()
def result_view(request) -> Response:
    node_name_attribute = 'drugstone_id'

    view = request.query_params.get('view')
    fmt = request.query_params.get('fmt')
    token_str = request.query_params['token']
    task = Task.objects.get(token=token_str)
    result = task_result(task)
    node_attributes = result.get('node_attributes')
    if not node_attributes:
        node_attributes = {}
        result['node_attributes'] = node_attributes
    proteins = []
    drugs = []

    network = result['network']
    node_types = node_attributes.get('node_types')
    if not node_types:
        node_types = {}
        node_attributes['node_types'] = node_types
    is_seed = node_attributes.get('is_seed')
    if not is_seed:
        is_seed = {}
        node_attributes['is_seed'] = is_seed
    scores = node_attributes.get('scores', {})
    node_details = {}
AndiMajore's avatar
AndiMajore committed
    protein_id_map = defaultdict(set)
    node_attributes['details'] = node_details
    parameters = json.loads(task.parameters)
    seeds = parameters['seeds']
    nodes = network['nodes']
    parameters = task_parameters(task)
    # attach input parameters to output
    result['parameters'] = parameters
AndiMajore's avatar
AndiMajore committed
    identifier_nodes = set()
    identifier = parameters['config']['identifier']

    # merge input network with result network
    for node in parameters['input_network']['nodes']:
        # if node was already mapped, add user defined values to result of analysis
AndiMajore's avatar
AndiMajore committed
            node_name = node[identifier][0]
            if node_name in node_details:
                # update the node to not lose user input attributes
AndiMajore's avatar
AndiMajore committed
                node_details[node_name].update(node)
                # skip adding node if node already exists in analysis output to avoid duplicates
            else:
                # node does not exist in analysis output yet, was added by user but not used as seed
AndiMajore's avatar
AndiMajore committed
                node_details[node_name] = node
                # append mapped input node to analysis result
AndiMajore's avatar
AndiMajore committed
                nodes.append(node_name)
                # manually add node to node types
AndiMajore's avatar
AndiMajore committed
                result['node_attributes']['node_types'][node_name] = 'protein'
        else:
            # node is custom node from user, not mapped to drugstone but will be displayed with all custom attributes
            node_id = node['id']
AndiMajore's avatar
AndiMajore committed
            identifier_nodes.add(node_id)
            node_details[node_id] = node
            is_seed[node_id] = False
            # append custom node to analysis result later on
            # manually add node to node types
            result['node_attributes']['node_types'][node_id] = 'custom'
    # extend the analysis network by the input netword nodes
    # map edge endpoints to database proteins if possible and add edges to analysis network
AndiMajore's avatar
AndiMajore committed
    # mapping all new protein and drug nodes by drugstoneIDs + adding scores
    for node_id in nodes:
        if node_id[:2] == 'dr':
            node_data = DrugSerializer().to_representation(Drug.objects.get(id=int(node_id[2:])))
            node_data['drugstoneType'] = 'drug'
            drugs.append(node_data)
            if node_id in scores:
                node_data['score'] = scores.get(node_id, None)
            node_types[node_id] = 'drug'
            node_details[node_id] = node_data
        elif node_id[:2] != 'di':
            protein_nodes.add(node_id)
        else:
            continue

    nodes_mapped, _ = query_proteins_by_identifier(protein_nodes, identifier)

    nodes_mapped_dict = {node[identifier][0]: node for node in nodes_mapped}
    # merge fetched data with given data to avoid data loss
    for node_id in nodes:
        if node_id in nodes_mapped_dict:
            # node.update(nodes_mapped_dict[node['id']])
            node_data = nodes_mapped_dict[node_id]
            node_data['drugstoneType'] = 'protein'
AndiMajore's avatar
AndiMajore committed
            # proteins.append(node_data)
            node_ident = node_data[identifier][0]
            # node_data[identifier] = [node_ident]
            protein_id_map[node_ident].add(node_id)
            identifier_nodes.add(node_ident)
            is_seed[node_ident] = node_id in seeds or (is_seed[node_ident] if node_ident in is_seed else False)
            node_types[node_ident] = 'protein'
            score = scores.get(node_id, None)
            if node_ident in node_details:
                data = node_details[node_ident]
                data['score'] = [score] if score else None
AndiMajore's avatar
AndiMajore committed
            else:
                node_data['score'] = score if score else None
AndiMajore's avatar
AndiMajore committed
                node_data['drugstoneType'] = 'protein'
                node_data['id'] = node_ident
                node_data['label'] = node_ident
                node_details[node_ident] = node_data

    for node_id, detail in node_details.items():
        if 'drugstoneType' in detail and detail['drugstoneType'] == 'protein':
            detail['symbol'] = list(set(detail['symbol']))
            detail['entrez'] = list(set(detail['entrez']))
            detail['uniprot_ac'] = list(set(detail['uniprot_ac']))
AndiMajore's avatar
AndiMajore committed
            if 'ensg' in detail:
                detail['ensg'] = list(set(detail['ensg']))
    edges = parameters['input_network']['edges']
AndiMajore's avatar
AndiMajore committed

    edge_endpoint_ids = set()
AndiMajore's avatar
AndiMajore committed

    # TODO check for custom edges when working again with ensemble gene ids
    for edge in edges:
        edge_endpoint_ids.add(edge['from'])
        edge_endpoint_ids.add(edge['to'])

    nodes_mapped, id_key = query_proteins_by_identifier(edge_endpoint_ids, identifier)

    if 'autofill_edges' in parameters['config'] and parameters['config']['autofill_edges']:
        prots = list(filter(lambda n: n['drugstone_type'] == 'protein',
AndiMajore's avatar
AndiMajore committed
                            filter(lambda n: 'drugstone_type' in n and node_name_attribute in n,
                                   parameters['input_network']['nodes'])))
        proteins = {node_name[1:] for node in prots for node_name in node[node_name_attribute]}
        dataset = DEFAULTS['ppi'] if 'interaction_protein_protein' not in parameters['config'] else \
            parameters['config'][
                'interaction_protein_protein']
AndiMajore's avatar
AndiMajore committed
        dataset_object = models.PPIDataset.objects.filter(name__iexact=dataset).last()
        interaction_objects = models.ProteinProteinInteraction.objects.filter(
            Q(ppi_dataset=dataset_object) & Q(from_protein__in=proteins) & Q(to_protein__in=proteins))
        auto_edges = list(map(lambda n: {"from": f'p{n.from_protein_id}', "to": f'p{n.to_protein_id}'},
                              interaction_objects))
AndiMajore's avatar
AndiMajore committed
        edges.extend(auto_edges)
    result['network']['edges'].extend(edges)
AndiMajore's avatar
AndiMajore committed
    uniq_edges = dict()
    for edge in result['network']['edges']:
        hash = edge['from'] + edge['to']
        uniq_edges[hash] = edge
    result['network']['edges'] = list(uniq_edges.values())
AndiMajore's avatar
AndiMajore committed
    if 'scores' in result['node_attributes']:
        del result['node_attributes']['scores']

    if not view:
        return Response(result)
    else:
        if view == 'proteins':
            if fmt == 'csv':
                items = []
                for i in proteins:
                    new_i = {
                        'uniprot_ac': i['uniprot_ac'],
                        'gene': i['symbol'],
                        'name': i['protein_name'],
                        'ensg': i['ensg'],
AndiMajore's avatar
AndiMajore committed
                        'entrez': i['entrez'],
                        'seed': is_seed[i[node_name_attribute]],
                    }
                    if i.get('score'):
                        new_i['score'] = i['score']
                    items.append(new_i)
            else:
                items = proteins
        elif view == 'drugs':
            if fmt == 'csv':
                items = [i for i in drugs]
            else:
                items = drugs
        else:
            return Response({})

        if not fmt or fmt == 'json':
            return Response(items)
        elif fmt == 'csv':
            if len(items) != 0:
                keys = items[0].keys()
            else:
                keys = []
            response = HttpResponse(content_type='text/csv')
            response['Content-Disposition'] = f'attachment; filename="{task.id}_{view}.csv"'
            dict_writer = csv.DictWriter(response, keys)
            dict_writer.writeheader()
            dict_writer.writerows(items)
            return response
        else:
            return Response({})


@api_view(['POST'])
def graph_export(request) -> Response:
    """
    Recieve whole graph data and write it to graphml file. Return the
    file ready to download.
    """
    nodes = request.data.get('nodes', [])
    edges = request.data.get('edges', [])
    fmt = request.data.get('fmt', 'graphml')
    G = nx.Graph()
AndiMajore's avatar
AndiMajore committed
    node_map = dict()
    for node in nodes:
        # drugstone_id is not interesting outside of drugstone
        # try:
        #     del node['drugstone_id']
        # except KeyError:
        #     pass
        # networkx does not support datatypes such as lists or dicts
        for key in list(node.keys()):
            if isinstance(node[key], list) or isinstance(node[key], dict):
                node[key] = json.dumps(node[key])
            elif node[key] is None:
                # networkx has difficulties with None when writing graphml
                node[key] = ''
        try:
            node_name = node['label']
AndiMajore's avatar
AndiMajore committed
            if 'drugstone_id' in node:
                node_map[node['drugstone_id']] = node['label']
            elif 'id' in node:
                node_map[node['id']] = node['label']
        except KeyError:
            node_name = node['drugstone_id']
        G.add_node(node_name, **node)

    for e in edges:
        # networkx does not support datatypes such as lists or dicts
        for key in e:
            if isinstance(e[key], list) or isinstance(e[key], dict):
                e[key] = json.dumps(e[key])
            elif e[key] is None:
                e[key] = ''
AndiMajore's avatar
AndiMajore committed
        u_of_edge = e.pop('from')
        u_of_edge = u_of_edge if u_of_edge not in node_map else node_map[u_of_edge]
        v_of_edge = e.pop('to')
AndiMajore's avatar
AndiMajore committed
        v_of_edge = node_map[v_of_edge] if v_of_edge in node_map else v_of_edge
        G.add_edge(u_of_edge, v_of_edge, **e)

    if fmt == 'graphml':
        data = nx.generate_graphml(G)
        response = HttpResponse(data, content_type='application/xml')
    elif fmt == 'json':
        data = json.dumps(nx.readwrite.json_graph.node_link_data(G))
        response = HttpResponse(data, content_type='application/json')
    elif fmt == 'csv':
        data = pd.DataFrame(nx.to_numpy_array(G), columns=G.nodes(), index=G.nodes())
        response = HttpResponse(data.to_csv(), content_type='text/csv')

    response['content-disposition'] = f'attachment; filename="{int(time.time())}_network.{fmt}"'
    return response


@api_view(['POST'])
def adjacent_disorders(request) -> Response:
    """Find all adjacent disorders to a list of proteins.

       Args:
           request (django.request): Request object with keys "proteins" and "pdi_dataset"

       Returns:
           Response: With lists "pdis" (protein-drug-intersions) and "disorders"
       """
    data = request.data
    if 'proteins' in data:
        drugstone_ids = data.get('proteins', [])
AndiMajore's avatar
AndiMajore committed
        pdis_dataset = get_pdis_ds(data.get('dataset', DEFAULTS['pdis']), data.get('licenced', False))
        # find adjacent drugs by looking at drug-protein edges
        pdis_objects = ProteinDisorderAssociation.objects.filter(protein__id__in=drugstone_ids,
AndiMajore's avatar
AndiMajore committed
                                                                 pdis_dataset_id=pdis_dataset.id)
        disorders = {e.disorder for e in pdis_objects}
        # serialize
        edges = ProteinDisorderAssociationSerializer(many=True).to_representation(pdis_objects)
        disorders = DisorderSerializer(many=True).to_representation(disorders)
    elif 'drugs' in data:
        drugstone_ids = data.get('drugs', [])
        drdi_dataset = get_drdis_ds(data.get('dataset', DEFAULTS['drdi']), data.get('licenced', False))
        # find adjacent drugs by looking at drug-protein edges
        drdi_objects = DrugDisorderIndication.objects.filter(drug__id__in=drugstone_ids,
                                                             drdi_dataset_id=drdi_dataset.id)
        disorders = {e.disorder for e in drdi_objects}
        # serialize
        edges = DrugDisorderIndicationSerializer(many=True).to_representation(drdi_objects)
        disorders = DisorderSerializer(many=True).to_representation(disorders)
    for d in disorders:
        d['drugstone_type'] = 'disorder'
    return Response({
        'edges': edges,
        'disorders': disorders,
    })


@api_view(['POST'])
def adjacent_drugs(request) -> Response:
    """Find all adjacent drugs to a list of proteins.

    Args:
        request (django.request): Request object with keys "proteins" and "pdi_dataset"

    Returns:
        Response: With lists "pdis" (protein-drug-intersions) and "drugs"
    """
    data = request.data
    drugstone_ids = data.get('proteins', [])
    pdi_dataset = get_pdi_ds(data.get('pdi_dataset', DEFAULTS['pdi']), data.get('licenced', False))
    # find adjacent drugs by looking at drug-protein edges
    pdi_objects = ProteinDrugInteraction.objects.filter(protein__id__in=drugstone_ids, pdi_dataset_id=pdi_dataset.id)
    drugs = {e.drug for e in pdi_objects}
    # serialize
    pdis = ProteinDrugInteractionSerializer(many=True).to_representation(pdi_objects)
    drugs = DrugSerializer(many=True).to_representation(drugs)
    for drug in drugs:
        drug['drugstone_type'] = 'drug'

    return Response({
        'pdis': pdis,
        'drugs': drugs,
    })


@api_view(['POST'])
def query_proteins(request) -> Response:
    proteins = request.data

    details = []
    not_found = []
    for p in proteins:
        try:
            protein = Protein.objects.get(uniprot_code=p)
            details.append(ProteinSerializer().to_representation(protein))
            continue
        except Protein.DoesNotExist:
            pass

        drug_interactions = ProteinDrugInteraction.objects.filter(drug__drug_id=p)
        if len(drug_interactions) > 0:
            for di in drug_interactions:
                details.append(ProteinSerializer().to_representation(di.protein))
            continue

        not_found.append(p)

    return Response({
        'details': details,
        'notFound': not_found,
    })


@api_view(['POST'])
def query_tissue_proteins(request) -> Response:
    threshold = request.data['threshold']
    tissue_id = request.data['tissue_id']
    tissue = Tissue.objects.get(id=tissue_id)

    proteins = []
    for el in tissue.expressionlevel_set.filter(expression_level__gte=threshold):
        proteins.append(ProteinSerializer().to_representation(el.protein))

    return Response(proteins)


class TissueView(APIView):

    def get(self, request) -> Response:
        tissues = Tissue.objects.all()
        return Response(TissueSerializer(many=True).to_representation(tissues))


class TissueExpressionView(APIView):
    """
    Expression of host proteins in tissues.
    """

    def post(self, request) -> Response:
        tissue = Tissue.objects.get(id=request.data.get('tissue'))
        if request.data.get('proteins'):
            ids = json.loads(request.data.get('proteins'))
            proteins = list(Protein.objects.filter(id__in=ids).all())
            proteins = []
            task = Task.objects.get(token=request.data['token'])
            result = task_result(task)
            network = result['network']
            node_attributes = result.get('node_attributes')
            if not node_attributes:
                node_attributes = {}
            node_types = node_attributes.get('node_types')
            if not node_types:
                node_types = {}
            parameters = json.loads(task.parameters)
            seeds = parameters['seeds']
            nodes = network['nodes']
            for node in nodes + seeds:
                node_type = node_types.get(node)
                details = None
                if node_type == 'protein':
                    if details:
                        proteins.append(details)
                    else:
                        try:
                            prot = Protein.objects.get(uniprot_code=node)
                            if prot not in proteins:
                                proteins.append(Protein.objects.get(uniprot_code=node))
                        except Protein.DoesNotExist:
                            pass

        pt_expressions = {}

        for protein in proteins:
            try:
                expression_level = ExpressionLevel.objects.get(protein=protein, tissue=tissue)
                pt_expressions[
                    ProteinSerializer().to_representation(protein)['drugstone_id']] = expression_level.expression_level
            except ExpressionLevel.DoesNotExist:
                pt_expressions[ProteinSerializer().to_representation(protein)['drugstone_id']] = None

        return Response(pt_expressions)